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The ground state and gap properties of a spinless model of fand d electrons with hybridiza-

tion Vand f-d interaction Ufd are studied in one dimension using a real-space renormalization-

group (RG) method. To understand the dependence of the RG results on the cell size chosen,
we first study the problem for U~d =0 and arbitrary cell size N. It is found that even-site cells

give qualitatively incorrect results for the gap, while odd-site cells (as small as %=3) reproduce

very accurately the exact results for the gap and give a reasonable upper bound for the ground-

state energy. On the basis of this result the phase diagram is studied as a function of arbitrary V

and Uf& using three site cells. We consider the half-filled band situation for which the ground

state is found to be insulating for all values of Ufd( WO). The f-electron occupation number as

a function of Ef changes continuously, confirming recent mean-field results. This result indi-

cates that the interacting f-d system does not scale to a single impurity model as argued in pre-

vious studies. Using a Jordan-Wigner transformation from spin to fermion operators, the Kon-

do necklace model is mapped onto a fluctuating valence model and the transition from fer-

romagnetic to Kondo-state behavior is numerically studied using W =3,

I. INTRODUCTION

Fluctuating valence (FV) materials present a chal-

lenge to modern many-body theory. Whereas most
interacting many-body systems can be successfully
described in terms of the standard perturbation
theory based on an expansion in powers of the
Coulomb interaction, using the Feynman-Dyson dia-

gram scheme, the physics of FV systems dictates a
different approach: the characteristic and unique
features of FV materials such as SmS result from the
fact that two profoundly different states of a rare-
earth ion, one with electronic configuration f"as in
the free atom and the other with f" ' plus one con-
duction electron, can be nearly degenerate in the
solid-state environment. ' The f electrons themselves
remain deeply inside the core and strongly interact
with each other (with interaction energies of the or-
der of —10 eV) and with the band of predominantly
d-type electrons (interaction energies —1 eV). Thus,
one has to deal simultaneously with extremely local-
ized atomic states and delocalized band states near
the Fermi level. The usual Feynman-Dyson scheme2
therefore is inappropriate, as the strong local correla-
tions dominate the single-particle kinetic terms
describing f-to-band electron transfers between
atoms. Even though these kinetic terms may be
small compared to the interaction terms, at low tem-
peratures the standard perturbation expansion in
these terms becomes divergent because of the large
degeneracies (configurational degeneracies of the
f" ' levels) and quasidegeneracies (of f" ' and f"
plus conduction electron) involved.

A tool developed for the analysis of such diver-
gences and the extraction of the underlying physics is
the renormalization-group (RG) method. 3 4 This
technique has already been successful in resolving
the physics of single-impurity models of FV sys-
tems, in which the interactions between the rare-
earths atoms, embedded in a homogeneous electron
gas of ("d") band electrons are neglected. These
single-impurity studies, in particular the most ad-

vanced numerical RG study of Krishna-Murthy et al. ,
give in principle a valid description of a very dilute
system of transition-metal- or rare-earth-type atoms in
a simple metal. Here the configurational degeneracy
of the impurity atoms is lifted by the transfer term
which introduces valence fluctuations. On the other
hand, recent mean-field results on the nature of the
FV phase transition~ indicate significant (first- versus
second-order) differences if the "concentrated" case
of interacting impurities is considered.

In the present work a real-space renormalization-
group technique is used to study the ground-state and
low-excitation (in particular gap) properties of two

rather simplified, however "concentrated" models of
a FV system. The method' consists of an iterative,
approximate construction of the low-lying states of
these model systems. The lattice is split into blocks
which are solved exactly. A few low-lying block
eigenstates are retained to rewrite the intra- and in-
terblock terms, and the scheme is repeated until it
converges to a "fixed point. " Our first model em-
phasized the charge fluctuation aspects and neglects
spin dynamics, whereas the second one (Kondo-
lattice model) concentrates on spin couplings and

6748



RENORMAI. IZATION-GROUP STUDY OF A CONCENTRATED. . .

neglects charge-density interactions.
The first one is a two-band system of fand d elec-

trons with hybridization Vand f-d Coulomb interac-
tion Ufq, with a Hamiltonian

H=Ed Xd d —t X(d d+I+Hc )

+Eg Xf fj + V X (fj d +Hc) + Ufd X jtg jtf
j j j j

Here dj creates a "d" electron state at site iwith
hopping probability —t, and fj creates an "f"state
with local energy Ef. t defines the scale of energies
and is set =1 in what follows. In this one-

. dimensional model the orbital dynamics are simpli-
fied by using s instead of f and d states, resulting in a
simple form of local interactions. Furthermore, it
neglects spin degree of freedom and the Hubbard
correlation term Uff. They are essential for the study
of magnetic properties of FV compounds, in particu-
lar for the commonly observed Kondo-like quenching
of local fmoments at low temperatures as discussed
in the second model. Nevertheless, the spinless
model in Eq. (1.1) shows some of the main charac-
teristics encountered in FV systems, i.e., the quaside-
generacies of two ionic states, as well as the difficul-
ties with perturbative approaches. It also displays
within mean fields the indicated difference in the na-
ture of the FV phase transition (continuous—
discontinuous) depending on whether the "concen-
trated" or "single-impurity" system is considered.
This difference, which is probably not changed by in-
clusion of spin, is one of the main issues w'hich we
want to address and clarify with this study.

In a recent paper Schlottmann" has studied the
same model using multiplicative RG methods" which
can be justified, only for Uand Vsmall compared to
the bandwidth. He finds a distinction between

Ufq « Vand Ufd && Vregimes, with the latter cor-
responding to a system of isolated impurities in a
Fermi sea and displaying a discontinuity in the foc-
cupation number as a function of Ef.

One objective of our work is a study of the f-d
model in Eq. (1.1) at zero temperature for the entire
( Ufg V) phase diagram, without a restriction to small
parameters U~q or V. Our -results do not give a basis
for a distinction between small and large Ufq regimes:
they show that the scaling is always towards a "local-
ized state" which is partly f and partly d in character
and not towards a localized f level embedded in an
extended d band (single-impurity model).

Another interesting aspect of the Hamiltonian (1.1)
is the possibility of a metal-insulator transition which,
according to mean-field studies by Falicov and co-
workers, '3 can be driven by the electron-hole
Rttl'Rctioll —Ujg jjy(1 —jlf) Rs R fullctloll of fcIIlpcra-
ture (and thus electron and hole population). A fin-

ite temperature calculation will be the subject of a
forthcoming paper. At T =0 K the metal-insulator
transition in our RG results does not occur and we
find for finite Vand Ua fixed-point Hamiltonian 0'
with a hybridization (Ef W Eg ) and Coulomb
( U" &0) gap. However, these results are strongly
related to the fact that we consider here only the
half-filled band situation with, when averaged in the
ground state, one electron per site. Extensions to
non-half-filled-band cases where one starts from a
metal, and ~here Ufq may introduce a Coulomb gap,
will also be considered in a forthcoming paper.

The second model which we study is the "Kondo
necklace" model introduced by Jullien et al. "for the
description of the critical behavior of a concentrated
system of magnetic Kondo impurities. This model
can be derived from a model Hamiltonian very simi-
lar to Eq. (1.1) by a Jordan-Wigner transformation
replacing fermion by spin operators, and results in
one localized Kondo impurity spin. per site, interact-
ing antiferromagnetically with the conduction electron
spins. As in previous block RG studies with two
sites per block we find a tl'ansltion whei'e tlm
magnetism of the localized spins is destroyed by the
formation of a singlet state with the conduction-
electron spins.

The paper is organized as follows: after discussing
in Sec. II the basics of the RG method, we demon-
strate in Sec. III that the real-space RG method, with
an appropriate choice of low-lying states kept in the
iterations, is capable of reproducing very accurately
ground-state and excited-state (gap) properties of the
exactly solvable free fermion ( Ufo=0) model. This
exercise presents a valuable testing ground and illus-
trated the ability of the real-space approach to repro-
duce inherently k space related features of a two-
component fermion system, It also gives a systematic
procedure for choosing odd-site blocks to conserve
internal symmetry (parity) and to produce correct gap
results. In Sec. IV the general situation for Ufq Wo is
discussed on the basis of RG results with N =3 sites
per block as a function of Ufq, V, and Ef. Ground
state, gap properties, f-electron occupation, and local-
ization length [behaving like a [exp( —bt/U&q) ] for
small Ufd/t] are calculated. In Sec. V the "Kondo
necklace" model is mapped onto a FV model and the
transition from antiferromagnetic to Kondo-state
behavior is studied, again for N =3. Summarizing
remarks are given in Sec. VI.

II. DESCRIPTION OP THE METHOD

The method we employ is a well-known nonpertur-
bative RG technique for quantum systems. It con-
sists of dissecting the lattice into small blocks, each
colltRllllllg R fcw (say N) sites, wlllch Rlc collplcd to
one another by the link terms [—t in Eq. (1.1)] in
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the Hamiltonian. A new effective Hamiltonian is
constructed by computing the matrix elements of the
original Hamiltonian in the space of states spanned
by the eigenvectors having the lowest-energy eigen-
values in each block. The process is then repeated
for the new effective Hamiltonian, whose coupling
parameters change at each step. The procedure is
iterated until reaching a regime that can be solved
trivially or by perturbation theory. The iterations
usually bring the Hamiltonian quickly to a "fixed-
point" form. This form of the RG method has been
employed for quantum field theories on a lattice'
and for interacting spin (for example, the "Kondo
necklace" model'~) and electronic (the Thirring
model" and the Hubbard model"") systems.

Consider the Hamiltonian in Eq. (1.1) with the
chemical potential adjusted in such a way that the
ground-state average of the site occupation

(nf) + (nq) = 1 (half-filled-band case). Our Hilbert

space has four states per site, denoted by

Ip), I+), I
—), and I+—). We have the freedom

of working with the d and felectronic states, as in

the Hamiltonian (1.1), or with a site-diagonalized
representation, making use of the canonical transfor-
mation

c;, = ad+Pf, c;+=Pd —nf, (2.1)

where u +p =1(a=p= 2, for Eq—= Ef). In the

latter representation, with

c1, —Ip& =
I

—
&1, ci,'+Ip& = I +&1, c+'c' Ip& =

I
+—

&;

(2.2)

and after reexpressing on-site and hopping terms of
Eq. (1.1) in the basis (2.2), we arrive at an
equivalent new form for the starting Hamiltonian
which no longer contains explicitly the hybridization V

H (n=2)

H (n=3)

FIG. 1. Schematic picture of the block RG procedure.

ing use of efficient diagonalization procedures.
The second step consists in "freezing out" higher-

energy block states, since we are only interested in
ground-state and low-excitation properties of the
Hamiltonian (1.1). Since the calculation is restricted
to the average occupation (nf) + (nq) =1, the chem-
ical potential is chosen so that the lowest-energy state
satisfies that condition. We keep the m =4 lowest-
energy states of the 4"block states (N =3 gives 64
states), with the two lowest states stemming from the
N-particle subspace, denoted again by I

+ )")and
I

—)"'. The other two states come from the lowest
states of the (N I)-particle su—bspace (Ip)"') and
the (N+1)-particle subspace (I +—)"'). The
choice of keeping only four lowest states is partly dic-
tated by noting that these four states resemble the
original site states in their occupation number if we
subtract two from the particle number in the new
states. This choice will be further substantiated in
Sec. III. It guarantees that the new Hamiltonian H~'

is of the same form as the starting one in Eq. (2.3) if
we now proceed to the third step and reexpress the
Hamiltonian in the new basis of these four lowest
states. After n iterations, one thus maintains a Ham-
iltonian of general form (see also Fig. 1)

0=X(E+n;++E n;, +E+ n)+n;, ), H(n) X(H(n) +H(n) )
J

(2.4)

—t X[(c(++c) )(c,+1 ++c;+1 ) +H.c. j . (2.3)

In the first step of the RG procedure, the chain is

decomposed into N-site blocks as in Fig. 1, which are
coupled together through the hopping term propor-
tional to (—t) in Eq. (1.1) or in Eq. (2.3). The
Hamiltonian for each block is then exactly diagonal-

ized by making use of the good quantum numbers, in

our example the number of particles per block and

parity. For N =2 sites per block, for example, the
largest matrix (only in the N —1, parity =——1 sub-

space) encountered in solving the eigenvalue problem
in 4 x 4. With all other matrices being 3 & 3 or small-

er the N =2 sites-per-block problem can easily be
solved analytically and the RG equations derived.
The N =3-sites-per-block problem is somewhat more
tedious and has been carried out on a computer mak-

Here the intrablock Hamiltonian is given by

H(n) E(n 1) Ip(n —1) )
—(p(n 1)I—

+E(n 1)
I

+(n —1—)) ( +(n —1)
I

+E(n-1)
I

(n —1)) ( (n 1)I, —

+E(n-I)
I
+ (n —1)) (+ (n-1)I (2.5)

where the four projection operators select the
lowest-energy states in the Hilbert space of the
(n —1)th diagonalization step. Defining new cell
operators by the relations

Ip(n —1))
I

+(n —1))

where the four projection operators select the
lowest-energy states in the Hilbert space of the
(n —1)th diagonalization step. Defining new cell
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operators by thc relations

i0(n-}))
i
y(n-}))

)0(n-1) ) (
(n-1) ) (2.6)

)0(n-1)) Ct C" )0(n-1))
) + (n 1})

and making usc of the identity representation

the same site and may bc called a "Coulomb gap.
"

In order to construct thc interblock Hamiltonian
H)gg( we have first to express the old [(n —1)th
step] hopping operators on the left-hand and right-
hand boundary sites of the block (see Fig. 1) in the
reduced subspace of states ~0'" "),

~

+'" "),etc.
For example, the (n —1)th step operator c+,( is then
rcplaccd by

(0(n-1)) (0(n-1)( + )
+(n-1)) (+(n-1))

(n —1)) ( (n —1)[ +) + (n —1))(+ (n-1)[

(2.7)

wc obtain thc fath step lntraccll Hamiltonian H~

Hj =E+ e+gc+J+E e ~c J
(n) (n) ~ ~ (n)

(2.8)

T1M rccurs1on 1clatlons fol thc cQcrgy parameters 1Q

Eq. (2.8) are given by

~ )0(n —1) ) ( y(n —1)
)

+p [0(n—1)) ( (n —1)(

[
+(n-1)) (+ (n-l}J

(n-1) ) ( + (n-1)
f (2.10)

E (n) E(n-1) E (n-1)

E (n) E(n-1) E(N-1)

(2.9)
U(e) E(n-1) +E(e-1) E(n-1) E(n-1)+— 0 +

Slmllal'ly, tlM (n 1)tll step opcfatol' c+(+1 ls ex-
panded as in Eq. (2.10), but with the matrix elements
u+, P+ etc. calculated with the block-diagonalized
states ~0(" "),,j +'" "),etc. and the operator c+, 1

taken at the left-hand side of a block. Using then the
expansion in new (nth step) ceil operators

with the initial conditions d' = Eo ' =0 [compare
with the starting Hamiltonian H =H( } in Eq. (2—.3)l.

Precisely as in thc original "site-diagonalized"
Hallllltolllan (2.3), tile difference I (E+ —E )"—
provides information about the splitting of the two
lowest levels in the N-particle-per-block subspace due
to hybridization and thus corresponds to a "hybridi-
zation gap.

" On the other hand U'") measures the
energy difference created by putting two particles on

(n-1))(+ (n-1)(

we arrive at the general form for the interblock Ham-
iltonian

r [[)(I"c+J+)()"'c-, +()()"'—)(I"')c+Jn-,j+()l)"'—)()"')c',Jn+J] x (ident. form)J' +H.c.} (2.13)

with the initial conditions [see Eq. (2.3)] )tP =
XI ) =—P and XP) =)(.P =n. Thus, in general, the
)(.I"), X("},etc. are obtained by calculating all the ma-
trix elements of the old [(n —l)th step] hopping
operator contained. in the curly brackets of Eq. (2.10)
on the boundary sites of the block between the states
~0(" "),

~

+'" "),etc. , and then collecting the terms
proportional to one of the new (nth step) operators
according to the prescription in Eq. (2.12). This fi-
QaBy defines the recursion relations for the hopping.

If one starts with a chain of N„, sites, the chain
after the first iteration has W„,/i}}'sites. Thus, after a
few iterations n, we have constructed thc ground and
low-lying excited states of a very long chain (for
n =7:N„,=3' =2187 sites). Effectively, the RG

method therefore replaces thc impossible diagonaliza-
tion of a 42'87 & 4~'87 matrix by an approximate itera-
tive procedure solving seven times a 4' x 43 block
Hamiltonian matrix (which can be further reduced
making use of conserved quantities). Typically, the
calculation converges for the f-d problem within
7—10 iterations (except for very small Ujq). The
physical meaning of a "fixed point" of the RG
transformation is then that thc physics contained in
H'") is no longer changed when "diagonalizing" in
the (n +1)th step, a system which is a factor X
larger. Finally, the ground-state energy density ~0 is
extracted out of the RG equations by noting that the
constant d'"' in Eqs. (2.8) and (2.9) is the only
parameter in the Hamiltonian which increases by a
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.,= iim (d'"'/N") . (2.14)

power N for each iteration, and therefore scales with
the volume of the system. It is thus given by

ing ~nI, ) and ~Pq) one-particle states (for simplicity
of notation we write down here only the Ed =—Ef
case)

III. FREE-FERMION MODEL ( Ufg 0}

&k (dk +&fa) [1 +~'(k)]
Pq=( —adq+fq) [1+a'(k)] '~'

with energies

(3.5)

H = $[eI dadi, + V(dI, fa+H. c.) ]
k

(3.1)

Here we want to study the RG treatment of the ex-
actly solvable free-fermion f-d two-band model.
This provides an analytically solvable and critical test
of the method. In particular, we want to demonstrate
that not only ground-state but also low-excitation

(gap) properties can be very accurately reproduced
(including the correct analytical behavior for the hy-

bridization gap) with a proper choice of low-lying

block states and number N of block sites.
Consider the Hamiltonian (1.1) with Ufd =0, giving

rise to an energy-band scheme as indicated in Fig. 2.
In k representation we have

a., p(k) = —"+ l (~g/2)'+ V']'", (3.6)

and normalization

a(k) =—[aq+(aq+4V )'~ ]/2 V,
with the result

(3.7)

H —X [E~(k) nanna + 6p( k)/3qPq] (3.8)

a denotes the lower and P the upper band as in Fig.
2. From Erl. (3.6) the behavior of the hybridization

gap EG in the exact solution (N ~~) is

where

ek =—2t cosk, (3.2)

V, V&&1
EG= lim [ap(kl) ta(kN)] y2/r V((1 (3 9)

and

ki= (1 «I «N)ml

W+1
(3.3)

dq = (2/N + 1) '~

/sin�(

kR;) d;
l

f, = (2/N+1) ' ' Xsin(kR, )f,
(3.4)

The Hamiltonian (3.1) can be diagonalized, introduc-

7T/~ 7r/~ 5'rT/~

FIG. 2. Single-particle states for a three-site cell in the
two-band model,

denoting the k points in the Brillouin zone for a fixed
choice of block sites N. The operators are

We next have to introduce an appropriate choice of
sites Wand lowest states in the RG transformation.
It has been pointed out by Drell et al."that for a
single-band fermion model (or a two-band model
with identical bands) the low-lying energy levels of
an even-site cell do not resemble the energy-level
structure of a single site, and thus they advocate tak-
ing odd-site cells. Rabin' has studied the possibility
of choosing even-site cells and mapping the model
onto a more general model after the first RG itera-
tion, but has shown that this can lead to spurious
behavior. For our problem, the inadequacy of even-
site cells is not completely obvious, since the four
lowest energy states are separated by a gap from the
rest of the cell states for both even and odd cells.
Nevertheless, we will see that the rule of thumb that
fermions require odd-site cells seems to hold for this
case too.

The simplest case to consider is N =2 sites per
block. For this case one can analytically derive the
RG equations for general Vand Ufq ~0. The result
of this exercise is a phase diagram in the ( U, V) plane
which everywhere displays a gap between ground-
and next-lowest excited state, with the exception of a
parabolically shaped regime for small Uf~ and
V & 0.4 where the system becomes a metal. This
finding is clearly in contradiction to the exact result
for Ufo =0 [see Eq. (3.8)], which gives always a hy-
bridization gap for V AO.

For arbitrary N, the four lowest-lying states are
given in the momentum-space description of Eq.
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(3.8) by

N-1
I0"'& = ll -', Io&, I+"'& =p,",I0&'&&

I

I
-'"& = ~' I0"'& I+-"'& =p' ~ Io'"&

Thus, the lowest state I
—"') corresponds to having

the n band full, whereas the next-lowest state IOt"
&

is with the e band full except for the state with larg-
est k —= kN, etc. The states in Eq. (3.10) define the
new intrablock Hamiltonian 0,'" as in Eq. (2.8).

From this thc new hybridization follows

V"' = (Ej'."—E"' )/2 = ap(k)) —e (kpg)

=—t cos(m/N+1)

+ [t'cos'(m/N+1)'+ V']'t'

(3.11)

which is already proportional to V2/t or V, for
V && 1 or V && 1, respectively. For the new intcr-
cell coupling we need to express the operators d~ and
d~ on the block boundaries in terms of the operators
ak and Pk.'

' i/2

Xsin [1+a'(k)] 't'[a„—a(kt)P„]%+1 I ] W+1

t i/2

X sin [1+a'(ki) ] 't'[nk a(kl)P-k ]
I 1 +

(3.12)

As described in Sec. II [Eqs. (2.10) and (2.11)],we
then have to calculate thc matrix elements
n+, p+, y+, and 5+ of d) and d~ between the four
lowest block states as defined in Eq. (3.10). After
this straightforward exercise, and making use of the
expansion (2.12) in new cell operators, we find

d) =Ii(c,"'+c"')=&2) c,,
d =A.[c"' +(—l)~+'c"'] =%2Xc+ 9.13)

where we have defined canonical cell operators c+
and c, and

r i/2

sin — — . 3.14
N +1 [1+a'(k~) ]'t'

as

~j,"kt = t[dt't(j) dt(j +1)—+H.c.]

~"'=2&) '

(3.15)

(3.16)

Extracting from Eqs. (3.11), (3.14), and (3.16) the
ratio of the new hybridization to the new linking to
lowest order in V, we find

V"'/t"~=(N+I) 2cos tan'
%+1 %+1

or, for

N=2: V&"/t"&=I,
N=3 V&'&/t"&=283

(3.17)

(3.18)

%e note that, for even %, the parity of the new cell
states changes after every iteration step. The new in-
tercell coupling follows from

This result already indicates in the first iteration one
further difficulty with a two-sites-per-block model:
with t"' [from Eq. (3.14), X —V/t, to lowest order]
being proportional to V'/t and thus very smail, V'"
for thc X=2 case is pushed to a similar very small
value, %hen further iterated this process continues,
finally converging into a vanishing hybridization gap
EG for small but finite V, in contrast to the exact
result. The construction in Fig. 2 for the hybridized
bands gives also some indication about why the N = 2
case cannot reproduce the gap properties: for N =2
only two momenta, k~ = n/3 and k2 ——2m/3, are used
to construct the four lowest states. Thus, the most
important region for hybridization around k = m/2 is
left out. However, this is not so for odd-site cells,
starting from N =3 with k~ = m/4, k2= m/2, and
k3 =3m/4.

The recursion relations for arbitrary Xcan be
derived immediately by noting that H " is again of
thc same form as our starting Hamiltonian in Eq.
(3.1) and simply repeating the above construction.
The general case with Ed W Ef follows step by step
thc above procedure.

The result for the energy gap, defined as
EG = (E+'"' —E'"' )/2, as a function of V/t is com-
pared in Fig. 3 for the N =3 case with the exact
result. %c get analytically the correct limiting
behavior with EG being proportional to Vor V'/t for
large and small V [as in Eq. (3.9)]. Also the magni-
tude is in very good agreement with the exact
behavior. The N =5-sites-per-block calculation is al-
ready indistinguishable from the exact result for thc
gap on the scale of Fig. 3. In Fig. 4 we compare the
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1

)u=o

act
ites RG

and in the second and third

E(2) (()(2)~H(1)~0(2)) ~E(1) +C( V(1) t(1))

(3.21)
E'" =N(NE") ) + C( V'",t"')+ C( V"',t"'), e«.

Thus, for the energy density the recursion formula
derives

FIG. 3. The hybridization gap EG (E+ —E")/2 from
the RG calculations. All calculations are vrith N =3 sites per
block.

exact result for the ground-state energy density

ao
———Xa (k) =—— dk[1+t'cos'k/V2]'~',

N „
(3.19)

%e note in Fig. 4 that the overall agreement of the
approximate ground-state energy with the exact result
is quite good, in particular for N =5, and again the
exact analytical behavior for V && /with ~o —Vis
reproduced. For small Vthe deviations are larger
and increasing for smaller block sizes.

Summarizing this section, we have found the RG
analysis to work very accurately for the case of a free
two-component fermion system when taking odd-site
cells. Gap properties for small and large hybridiza-
tion rcprodUcc thc exact analytical behavior. The
value of this exercise lies in particular in providing a
rational for a proper choice of sites N and lowest
states kept in the block diagonalization procedure.
On the basis of this result we can now tackle the gen-
eral Ufd &0 situation.

with the RG calculation results for N =3 and
X=5(u~q =0). The ground-state energy is derived
by iteration, i.e., having in the first step

IV. RESULTS FOR ARBITRARY Uf~

E,(') = X ..(k,) =c(v, t), (3.20)
The RG study for %=3 and general U~q was done

numerically, following the steps of Sec. II. Efficient
diagonalization subroutines were used to construct
the cell eigenstates from which the new Hamiltonian
H~"~ of the nth iteration step results. Typically, the
procedure converges after n =7 to 10 steps.

The numerical results can be summarized as fol-
lows: if we start from V W 0 initially, the scaling is
always towards a fixed-point Hamiltonian H', which
is characterized by [see E(ls. (2.5) and (2.13)] a finite
"hybridization gap"

(4.1)

and vanishing intercell couplings

A.] = A,
"= A.3 = A.4 =0 (4.2)

U=0
This includes U =0, which is therefore also a fixed
point. If, furthermore, U &0 initially, the fixed
point is in addition characterized by a "Coulomb
gap

U'~0 . (4.3)

FIG. 4. Ground-state energy from the RG calculations
for Uf&=o and %=3, N-5 sites per cell, and for

Ujg 5, Ujg=l for %=3.

Thus, we find the f-d model (1.1) always to scale to-
wards a fixed-point Hamiltonian H' with insulating
behavior (except for U= V =0). Of course this find-
ing is closely related to our choice of the half-filled



25 RENORMALIZATION-GROUP STUDY OF A CONCENTRATED. . . 6755

band case. Present extensions of this work are there-
fore directed to non-half-filled situations, starting
from a metal, where the Coulomb interaction Ufg

may introduce a metal-insulator transition. Another
interesting extension is the T WO K situations.
Here, a finite electron-hole population can give rise
to an electron-hole attraction, U~qnq(1 —n~), which,
according to mean-field studies, "can introduce an
insulator-metal transition.

Figure 3 gives the results for the hybridization gap
as a function of the initial hybridization Vfor the
U)g 1 and Uf~=5. We note that the gap is
enhanced for larger Coulomb interaction. For very
large Ufq &) 1, the hybridization gap E~ becomes
again proportional to V, which is in accordance with
the exact result [for U~q ", every site is singly oc-
cupied, giving rise to (E+ E) ——V].

Figure 4 displays the ground-state energy, which is
of course enhanced for larger interaction Ufg Also
the ground-state energy for U && 1 is proportional to
V, again following the exact results [with every site
being singly occupied, for Ed = Ef=0, there is no
hopping, and only the hybridization term in the
Hamiltonian, Eq. (1.1), contributes].

Quantities which display different behavior in sin-
gle versus concentrated fluctuating valence models
are the shape and dependence of the fand doccupa-
tion number, (ni) and (nq) on the location of the
total f energy Ey.

It has been shown by Leder, ' within mean-field
[self-consistent Hartree-Pock (HF)] approximation,
that the Falicov-Kimball model extended by hybridi-

N

ny=N)x fi fi (4.4)

Then, compute the matrix elements of nf between
the new cell states Io"'), I+"'), I

—"'), and
I+—"'), denoted by ap, a+, a, and a+ . As a
result, we find [see also Eqs. (2.6) to (2.9)]

ni=ap+(A+ ap)I+')(+"'
(1))( (1)I

+(a a)+ (1))(+ (1)I

= ap+(a+ —ap) n++(a —ap) n

+(a+ —a+ —a +ap) n~n (4.5)

In the next step, write the recursion relations for the
operators I+"') (+"'I,

I

—"') ( —"'I, and
I+'") (+—"'I in Eq. (4.5). They can be arranged in
matrix form, starting from

zation [Eq. (1.1)] always results for nonvanishing V

in an occupation (n~) which varies continuously with

Ef. On the other hand, earlier mean-field calcula-
tions for this model' suggest that first-order phase
transitions can still exist for finite hybridization.
Closer inspection of this earlier work reveals, howev-
er, that here the one-particle Green's function for the
f electrons is taken from the single-impurity model,
resulting in a discontinuous solution of the Hartree-
Fock equations for (n~)

The RG calculation of the ground-state expectation
value of nf proceeds very much along the lines of the
analysis for 0 in Sec. II. Define the operator

( —"'I = »+ a21a22a23

,I+—"'&(+—'"I » a» '32'33 I+—'"&(+—'"I
(4.6)

or, when iterated

eel
(it) = vp+ Ap' v&+ Ap' A~ ' v2+

with the recursion relations

~n+1=~n+~n'~n i ~n+) =~n'An

(4.7)

(4.g)

1.0 ————~
U =100t
U = tOt
U=5t
U =2.5t
U =1t
U=0

&n~&+ &nd&

f Occupation (V = 0.1t)

The initial conditions are Kp =1 and o7p =0. Here
& nfl

0.5—

~ (I) = (O'"+') III) (I IIO("+'))

A„(I,J) =(I "+ III)(IIIJ "+ ) (4.9)

with I and Jstanding for the states +, —and +—.
Figure S gives the results for the ground-state ex-

pectation value (n~) around the center of the d band
as a function of f-d interaction for fixed hybridiza-
tion V =0.1. The valence transition from Ef )0 to
Ef & 0 is always continuous, and is in qualitative
agreement with the mean-field results of Leder. ' The

0 I

1.0

U=O
U=1t
U =2.5t
U=st
U =10t
U =100t

]

1.0
Ef/t

2.0

FIG. 5. Ground-state average of the f-electron occupation
as a function of the f-level energy EF for fixed hybridization

V =0.1t and varying interaction Ufg.
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slope is steeper for larger Coulomb interaction, also
in accordance with. mean field. Figure 6 displays the
behavior of (nf) for fixed Ufd=5 but varying hy-
bridization V. The slope is steeper for smaller V,

again in qualitative agreement with the HF results.
However, the RG calculation always results in a
smooth transition near Ef=0, and never gives the
sharp, nearly discontinuous changes for very small
V's of the mean-field study. '

Another interesting quantity containing important
physical information is the "localization length" g. It
is a measure of the extension of the electronic wave
functions in the ground state and is related to the de-
cay of the correlation function'

F(R) = —X(c;+pc;)
1 (4, 10)

—exp(- R/g) (4.1 1)

That is, F(R) decays exponentially on a length scale

1.0—

I

& nf&+ &nd& = 1

f Occupation (0 = 5t)

V = 0.1t
V = 0.01t

V = 0.5t
V =1t

0.5—
V =1i
V = 0.5t

V = 0.01 t
V = 01t

1.0
I

1.0 2.0

FIG. 6. Average occupation of f level as function of Ef
for fixed interaction Ufd =St and varying hybridization V.

where the c's stand for d and foperators of Eq.
(1.1). The general behavior of this function for large
Coulomb interaction Ufd can be derived from the fol-
lowing perturbation theoretical argument, in complete
analogy to the half-filled Hubbard chain': for infin-
ite Uf~ = ~ all sites are singly occupied. For finite
but very large Ufd, we can derive the ground state
from a perturbation expansion in t/Ufd and calculate
with it the correlation function F(R). Since every t
term in this expansion introduces a nearest-neighbor
hopping, the nth neighbor correlation in F(R = na)
(with a the lattice parameter) implies that only in

nth order perturbation F(R = na) is nonvan-

ishing. Thus,

F(R) —( r/Ufd) "-exp[ —R (Int)/Ufd]

g in the insulating regime, where the above perturba-
tion theory is convergent.

If the system behaves instead metallic with free-
electron behavior, then it is easy to show" that F(R)
will display algebraic decay

F(R) —1/R", (4.12)

with q depending on the dimension and Fermi-
surface topology.

%e can derive an estimate of the correlation length
near the insulator-metal transition from the following
well-known argument: start the scaling with a small
value of Ujd/t and assume, after no iterations we
have scaled to a "strong coupling regime" with

«o~ «o
Ufd /(& ) & 1, where (X) is some average over
the four intercell hopping constants of Eq. (2.13).
This will happen when (h. ) has scaled to a very small
value, in which case the blocks will behave effectively
as decoupled. The localization length will then be
given approximately by the distance over which the
nth iteration block extends, i.e.,

3
"0 (4.13)

in the X=3, three site per cell calculation. For small

Uf4 we found (from our numerical RG analysis) the
behavior of g to be

g
—a exp(b/Ufd) (4.14)

with a and b only weakly depending on the remaining
parameters Vand Ef. This behavior indicates that
the Coulomb interaction term is a marginal operator.
The Coulomb gap behaves as the inverse of the local-
ization length

E, —exp( —b/Ufd)

which is the same behavior obtained in the Hubbard
model from the exact solution. ' However, there
the real-space RG calculations"" do not reproduce
this exact analytic behavior [they give Eg—exp( —bt'/U') ]. It would be interesting to shed
some more light on the reason for this difference in
the RG results for the two models.

Finally, we want to comment on some of our
results when compared with those obtained by
Schlottmann using the multiplicative RG technique. "
In that work a different behavior emerges for the two

regimes Ufd &( Vand Ufd && V. For Ufd (( Vthe
model of Eq. (1.1) is found to behave as "extended
and coherent, "which basically means that one has to
treat the system as concentrated. On the other hand,
for Ufd )O' Vthe system behaves as "local and in-

coherent, " and it is argued that each, rare-earth ion
behaves essentially as an isolated impurity. In this
latter regime one would therefore be able to treat the
system as a set of isolated impurities embedded in a
Fermi sea of delocalized (the d —) states. Corre-
spondingly, the ground-state expectation value of the
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valence (n~) changes discontinuously as a function
of Eg.

These results of the perturbative RG analysis partly
disagree with ours: from our analysis we find no jus-
tification for differentiating between the two regimes,
Ufgf O'O' V and Ufd (& V. As discussed above, our
calculation yields a scaling which is always towards a
"localized regime" on a length scale which is mea-
sured by the localization length g. However, there is
an important difference to the "local and incoherent"
picture of Schlottmann: our "localized regime"
stems from a localized state that is partly fand partly
din character with, in particular, localization also oc-
curing in the d states. In addition, as already men-
tioned above, we find the transition into the fluctuat-
ing valence regime to be continuous.

V. RELATION %ITH THE CRITICAL
BEHAVIOR OF THE KONDO

NECKLACE FOR N 3

In this section we want to elaborate on the formal
similarity between the two-component fermion
model and-a Kondo lattice model, the "Kondo neck-
lace." One of the reasons to study this model arises
from the anomalous electric resistivity and magnetic
properties of many rare-earth compounds at low tem-
peratures. For example, in the case of CeA13 the
electrical resistivity curve increases with lowering
temperature in the intermediate temperature range
(100—50 K) and exhibits the characteristic ln T
behavior as for isolated Kondo impurities. In addi-
tion, the low-temperature susceptibility is characteris-
tic of a nonmagnetic ground state. This behavior
may be the result of a quenching of the unpaired f-
electron magnetic moment by correlation with the
conduction-electron spins, again in complete analogy
to the Kondo effect for isolated impurities. The need
for a study of a concentrated system of impurities,
the Kondo lattice, arises from the competing tenden-
cies for the system to condense to a Kondo system
with a vanishing gap, in which each f-electron mo-
ment is compensated by an associated conduction-
band moment, or to order antiferromagnetically due
to the Ruderman-Kittel-Kasuya-Yosida interaction.
When the antiferromagnetic interaction Jbetween
conduction-electron spins and impurity spins is
enhanced, a transition should occur from the magnet-
ic state to the Kondo metal state.

Such systems may be modeled in one dimension
by a straightforward generalization of the single spin
s -d Hamiltonian to a periodic arrangement of the
magnetic spins at each lattice site. The "Kondo
necklace" (KN) introduced by Doniach" neglects the
charge-density fluctuations originally contained in the
Kondo lattice and only takes the spin degrees into ac-

0 1 0 —I I 0
s,"=, 0, s, = 0, s,*= 0, . (5.2)

The main idea in that the model (5.1) has some anal-

ogy with the original Kondo lattice, in particular the
crossover transition from an antiferromagnetic to
"Kondo metal" state. However, whereas the real-
space RG calculation by Jullien et al. ' and also our
RG analysis give a transition of a finite critical value
J, for the "Kondo necklace, " a similar study for the
Kondo lattice for a half-filled band gives a gap open-
ing immediately when J is different from zero. ' This
is both reminiscent of the one-dimensional Hubbard
model'6 and of the f-d model studied in this paper.

One can write the Kondo necklace Hamiltonian in
terms of fand d fermion operators by using the fol-
lowing Jordan-Wigner transformations

(5.3)

and

i —i

S; =f; exp —im Xnf&
jmi

(5.4)

where S~ =SP+ist', r~ =rf+irf The tra. nsforma-Z ' t Z

tions in Eqs. (5.3) and (5.4) take care of the fact that
the spin operators v and cr anticommute on the same
site, like Fermion operators, but commute on dif-
ferent sites.

Define

Si =a2;, & =a2]+& (5.5)

Then,

H =J x[(2n2( —1) (2n2(+) —1)

t t
+2(&2i&2i+1 + a2i+1&2i) ~

+2 ~ (&2I—1&2i+1+&2i+1&2i—1) (5.6)

With the Jordan-Wigner transformation

I-1
ai =exp —im ~ ci ci ci

j~]

and (5.4) we find the term proportional to J in Eq.

count. It is defined by the Hamiltonian

HKN =J XSI ' r, + W x (r fr j+f +Sir i+]) . (51)
l

H ere Fdenotes the conduction-band half-width and J
the antiferromagnetic interaction between the spins
of the conduction electrons and those of the impuri-
ties. S& and r; are the Pauli operators (the same for



(5.6) unchanged, whereas for the term proportional to IV

2i -2 2i

u2-io2i+I= exp —i~ X nIc»-Ic2+I exp i~ 1ng =exp(i'~n2i) c2i-ic2i+I = cubi-Ic2+I(I —n») + n»{—cubi-IcIi+I)
J~$

JJKN 2Jll g ( itd, i + itf, i)

+2W X(d; dpt+H. c.)(I 2',-+I)

+2JI X (di f; +H.c.) +4Jii X Ita I itf,; (5.8)

where we have used the definitions in Eqs. (5.3) to
(5.5). With the initial conditions Jll- JI=J,
I =—2W, V =2', J =-Eq/2, and U=2V
the Kondo necklace therefore can be Inapped onto
the two-component fermion model of Eq. (1.1).
There is, however, a slight modification in that a fac-
tol' (1 2itf i+I) appears In thc transfct' tcrIIls. This
factor, however, modifies the results substantially.
As discussed in Sec. OI, the X =2-sites-per-block cal-
culation gives wrong results (metallic instead of insu-

lating behavior) for small Ujq and V. This is due to
the fact that in this case one misses the most impor-
taItt hybr1dlzatlon Rt k = 'ir/20 III tllc Intddlc of tllc 8
zone, and that internal symmetries (parity) are violat-

ed. In view of this fact it is quite surprising that al-

ready the N =2 RG calculation gave a transltlon, .

which we also find in ouf N =3 study. The transition
is from a degenerate ground-state characteristic of the

magnetic state for J/W ( (J/W)„;i = ( V/I), ,-0.382
to a singlet ground state which is characteristic of the

Kondo state and which is separated by a gap
5=2(JIt"') from the next excited state for
J/ W & (J/ W) „;,. The W =2 calculation in Ref. 14
with aga. in four lowest states kept in the iterations
gives for the critical ratio {J/W) „;,=0.411, and with

16 states kept (J/ W),„;,=0.375. In mean field the

(J/W)„;, value equals 1.'4 Figure 7 gives a plot of
the gap &/Was function of J/8'. For (J/W)
& (J/ W)„;&, the system is equivalent to an XI'
model2' with a magnetically degenerate ground state,
where both neighboring S and v spins are found to
be antiferromagnetically correlated.

Critical exponents have been evaluated at
(J/ W)crit. T11C crtttcal Index for tllc gap + = [(J/ W)
—{J/ W) „;,]' is numerically extracted as s =1.36, ap-
preciably larger than the % =2 result s = l.'4

Finally, the ground-state energy found from our
calculations (shown in Fig. 8) is lower than that ob-
tained in Ref. 14 for N =2 with four lowest states
kept, but somewhat higher than that of Ref. 14 when
16 lowest states per cell are kept in the iterations.

(J-Jc I)
t W ~

0 01 0.2 0.3 0.4 0.5 0.6

FIG. 7, ReQormallzatio11-group 1esUlts oQ the Korldo

necklace for N 3 sites per block: log-log plot of the gap as

function of J/W.

FIG. 8. Ground-state energy of the Korldo necklace

model. Full line: this calculation (N =3}. Dashed line:

N =2 calculation with four states per cell (Ref. 14). Dash-

dot hne: N =2 ~ith 16 states per cell (Ref. 14).
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We have studied a one-dimensional model for a
concentrated Auctuating valence solid using a real-
space renormalization-group technique. The results
presented in this paper are instructive both with

respect to the method of calculation itself and to the
physical properties of the model under consideration.
Methodological questions were addressed in the study
of the noninteracting case, Ufq =0, where exact
results can be found and where the RG calculation
can be carried out easily for arbitrary cell size. It was

found that the method gives wrong results when us-

ing even site cells, as occurs in other models, '8 and
some tentative reasons for this failure were given.
For odd-site cells, the RG results for the gap were
found to be very accurate even for three-site cells
(better than 3'lo for all values of V), and the analytic
behavior of the gap for small and large Vwas repro-
duced. The results for the ground-state energy were
also reasonable. These results are very encouraging,
since there is reason to believe that the method
should be even better when Coulomb interaction is
included and the states become more localized. On
the basis of these results, the behavior of the model
for nonzero Ufq was studied using an odd-number
cell (N 3). The model was found to be insulating
for any nonzero U, and the Coulomb gap was found
to depend exponentially on the Coulomb interaction
as in the Hubbard model. The fermion occupation
number of fand d states'was found to vary continu-
ously with the parameters, confirming recent mean-
field results.

Finally, a closely related model, the Kondo neck-

lace, was studied using this technique with cell
number N =3, The motivation for that study was
the following: a previous RG study of this model us-
ing N 2 (Ref. 14) had found a transition from
Kondo-quenched to antiferromagnetic behavior for a
finite value of the coupling. However, in our fluc-
tuating valence model we also found such a transition
when taking N =2 which was, however, spurious, as
it dissappeared when taking W =3. Nevertheless, in
the Kondo necklace model we found the transition to
persist for N 3, confirming the previous results by
Jullien et al. , '4 with small modifications in the nu-
merical values of the results.

We believe the results reported in this paper
should encourage the study of more realistic models
using these techniques, in particular the concentrated
Anderson model including spin degrees of freedom.
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