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The dc I-V characteristics of tunnel junctions between weak and strong superconduc-
tors characterized -by transition temperatures T, and T,', respectively (T=T, && T,'), ex-

hibit an excess pair current. This current is proportional to the imaginary part of the
generalized pair-field susceptibility P(k, m), which characterizes the dynamics of the weak

superconductor, where ~ and k are proportional, respectively, to the voltage across and
the magnetic field in the junction. We show here that this result follows in a simple way
from the interaction that gives rise to the usual Josephson current below T„and can in

fact be viewed as a second-order Josephson effect. Above T, the order parameter on the
stmng side acts as an effective conjugate field to induce an order parameter on the weak

side, yielding a proportional Josephson current between the two electrodes. We also inter-

pret this result to yield a charge-imbalance relaxation time for the effective gapless super-

conductor og the weak side. Below T, the induced part of the order parameter interacts
with the usual Josephson current to produce an excess current in a manner analogous to
the way az external oscillator coupled to a junction results in a constant-voltage step in
the I-V ch@r@cteristic. In bah temperature regimes the magnitude of this excess current
is rc;lated to an appropriate time-dependent Ginzburg-Landau equation. Finally, the ef-
fect of thermal voltage noise on the excess current is considered. Throughout, a heuristic
approach is used to bring out new aspects of the problem and to make the physical con-
tent of the theory accessible.

I. INTRODUCTION

The study of the dynamics of the superconduct-
ing order parameter is of great interest, in part be-
cause it provides a test of the application of the
ideas of nonequilibrium statistical mechanics to su-
perconductors where theory has worked so well for
equilibrium properties, and in part because dynam-
ical theory may have some real application to some
of the many superconducting devices that have
been under development. Therefore, one would
like to infer experimentally, as directly as possible,
the form of the equations that govern the time
evolution of the order parameter. The experimen-
tal determination of the frequency and wave-

vector-dependent pair-field susceptibility is in

many. instances the most direct probe of order-
parameter dynamics. Although it has been studied
theoretically' and experimentally for more
than a decade, the physical basis of the measure-
ment of the pair-field susceptibility and its connec-
tion with more familiar aspects of the Josephson

effect and the macroscopic equations for the super-
conducting order parameter have not been
described completely.

In magnetic systems, the most direct methods
for the deterinination of the dynamics of the mag-
netization M involve the measurement of the
wave-vector- and frequency-dependent magnetic
susceptibility XM(k, co), and the structure function
S(k,co) related via the fluctuation-dissipation
theorem. A superconducting system does not have
a thermodynamic conjugate field which will induce
superconductivity in a normal metal in the same
way that a laboratory magnetic field H produces a
finite magnetization in a parainagnet. ' However,
in both the superconducting and magnetic cases,
within the spirit of mean-field theory, one can
treat the internal interaction within the material as
an effective field acting on a given region of the
material. In the superconductor, this internal in-
teraction is long range (on the order of the coher-
ence length g) and gives rise to the well-known
proximity effect in a clean contact between a su-
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perconductor and a normal metal. It has perhaps
not been generally appreciated, however, that the
same type of physical effect (although weaker) oc-
curs across a tunneling barrier, and it is precisely
this type of coupling that gives rise to the usual
Josephson effects between two superconducting
electrodes. Thus, even in a tunnel junction between
a superconductor and a normal metal, there is a
small induced order parameter on the normal side.
Furthermore, there is an "excess" supercurrent
across the junction, which is a measure of the gen-
eralized superconducting pair-field susceptibility
X(k,co). Similar considerations are relevant when
both electrodes are superconducting, and the excess
pair current for V+0 is also related to the suscep-
tlb111ty.

In this paper we will consider in detail a
geometry consisting of a tunnel junction between
two films at a temperature T such that one (the
"primed film")is far below its critical temperature
T,', and the other (the "unprimed film" ) is above,
near, or slightly below its transition at T,. This
corresponds to the usual experimental situation,
and means that the background quasiparticle
current across the junction will be small, and that
the effect on the order parameter of the primed
film is likely to be weak. In order to understand
the physical basis for the experimental determina-
tion of the pair-field susceptibility we will examine
the form of the excess pair current and its relation
to the susceptibility within the context of time-
dependent Ginzburg-Landau theory, in contrast to
earlier detailed derivations which relied on
Green's-function formalism ' or linear response
theory. This approach represents a generalization
of the initial treatment of the problem of the pair-
field susceptibility by Ferrell. ' Part of the pro-
cedure is also related to the work of Kulik on the
fluctuation resistance of a tunnel junction above its
critical temperature. Throughout, connections will
be made to other types of measurements and other
theoretical viewpoints, in order to clarify the
underlying physics. We mill first examine the case
of T & T„ followed by the more complex regime
T ~ T, . Then we will consider the effect of ther-
mal noise and conclude with a general discussion.

=(AC/2ed)
i f i cosy, (2)

where 1'o ——C
I 0 I

is a critical current density such
that j&——josiny is the supercurrent density in the
junction. In the regime of interest, where

~ f ~

is
small and T=T, &p T,', jo is given by'

jo= (Gxhin/4e)ln( T,
' /T),

where G~ is the normal conductance per unit area
of the junction, and b,;„is the induced BCS gap
parameter rdated to

~ f ~

(for a dirty superconduc-
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where f=
~ f ~

e' is the complex order parameter
in the film. Above T, the quartic term can be ig-
nored. In the present case in which the film is one
electrode of a tunnel junction, an additional term
in the free energy is necessary to account for the
superconducting interaction between the two films
of the junction. We present this interaction by the
Josephson free energy Ez —(AE——o/2e)cosy, which
gives rise in the usual way to the supercurrent in
the junction I, =Iosiny. Here y is the gauge-
invariant phase difference across the barrier, and
Io is the critical current, which is inversely propor-
tional to the normal-state junction resistance R~
and goes as

~
1(

~

(provided this quantity is small).
We emphasize that because of this interaction,
there will be an induced order parameter which
permits the defiiution of a nonzero supercurrent
even above T, The on. ly difference between this
case and that of the usual Josephson current, as
will be shown below, is that since both the magni-
tude and phase of this induced order parameter are
fixed by the interaction, there is not the internal
degree of freedom associated with the phase which
characterizes the usual supercurrent-phase relation
below T, .

If we assume that the thickness
d g~ g—= (iri /2m"

~
a

~

)'~, the effective coherence
length in the film, the interaction is uniform and
we can express it in terms of a free-energy density

fJ =(fjio/2ed)cosy

II. EXCESS PAIR TUNNEI. ING CURRENT
FOR T&T,

In order to calculate the excess supercurrent
above T„we start with the usual Ginzburg-
Landau free-energy density in the unprimed film,

Here n and r are the electron density and impurity
scattering time in the normal state.

Consider the case where there is a constant volt-
age Vo across the junction and an external magnet-
ic field Ho in the plane of the junction (see Fig. 1).
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FIG. 1. Schematic of tunnel junction for measure-
ment of pair-field susceptibility, for T=T', && T,'. The
magnetic field is in the y direction, the pair field is
modulated in the x direction, and the electric field and
current flows are in the z direction.

Then y can be written

y=8 2eVpt/A —(2e/fi) f—A dz

=8—copt —qpx ~

where

(5)

q p ——(2e /A')(A, '+d /2+5)Hp,

and it is assumed that the penetration depth A,
' of

the primed film is much less than its thickness,
while d « A, for the unprimed film (5 is the bar-
rier thickness, usually negligible). Then

largely accounted for as a shift in T, .'o The quan-
tity on the left of Eq. (9) is the usual TDGL equa-
tion for T & T, . If the right-hand side were equal
to zera, then in steady state one would have /=0.
If the quantity on the right included thermal fluc-
tuations, we would still have the thermal average
of the order parameter ( lit ) =0, although
(

l g l )+0, giving rise to excess electrical conduc-
tance of the film in the normal state abave T,
In the present case, the quantity on the right can
be viewed as an effective "pair field" g(x, t) which
is conjugate to the order parameter and excites a
particular mode of oscillation with wave vector qp
and frequency cop:

g(x, t) =aCiexp[i(qpx+copt)] . (10)

(The normalization has been chosen so that
de/dg—'.) It is a remarkable fact, attribut-

able to the gauge invariance of the Josephson cou-
pling, that the application of time-and-
space —independent electromagnetic fields in the
junction leads to a temporally and spatially modu-
lated effective pair field.

The induced order parameter which satisfies Eq.
(9) takes the form

Ciexp[i(qpx+topt)]

itoorGL+(1+4 qo)

This can also be seen within the context of linear
response theory, where one can define the order-
parameter response function X(x —x', t t') such—
that

{ yexp[ i(qox—+ot) l
AC

4ed iA„(x,t)= ffg(x', t')X(x x', t t')dx—'dt'. —(12)

+g'exp[+i(qox+copt)] l .

8 2ieg 5f
rat. I

a
I a~

(8)

If we define f=fp+ fq, one can perform the usual
variational calculation to obtain the time-
dependent Ginzburg-Landau (TDGL) equation

Q;„(k,a)) =g(k, co)X(k,co), (13)

where X(k,co) is the wave-vector- and frequency-
dependent order-parameter susceptibility. In the
present case

In terms of the Fourier transforms of these quanti-
ties, this becomes

where rat. rriI/8ktt l
T———T, l

is the Ginzburg-
Landau relaxation time and (() is the local electric
potential. This leads to

+g $2V2P=Ci exp[i(q—ox+coot)],8
Bt

(9)
and

g(k, pi) =aci5(k —qp)5(pi —too)

X(k co) {a[itoraL+(1+k2g2)] I
—1

(14)

(15)
where Ci ——irtC/(4ed

l
a

l ) and we take p =0 (the
other film is at voltage Vp), and also neglect A in
V —2ieA/A, since for small fields its effect can be

so that

f;„(x,t) =g(x, t)X(qo&too) .
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In other works, 7 is Usually defined to correspond
to 5;„rather than f;„as is done in Eq. (12). In
that case, X(k,oi) would be normalized so that a in

Eq. (15) is replaced by N (0)(T—T, )/T„where

2N(0) is the normal electronic density of states at
the Fermi level.

One can now obtain the time-average excess su-

percurrent I,„ from

mL odor.

P~o&ol.)'+(1+q)']

r,„=J"J dxdyg,
L

=Ctu J dx(lmj p;„(x,t)exp[ i (q—ox+oiot)] ] ),

AC mL
ImX(qo, bio) = C (17)

This general rdationship between I„and 7 is also
valid below T„as will be shown in the next sec-

tion.
EqilRtloll (17) iildlcRtcs tllat tllc cxccss current

Jex=rosiny is time independent (as is y), even
when rao=2eVo/~0. This appears to violate the

ac Josephson relation, but the resolution of this

paradox can be achieved, together with significant

physical insight, lf wc lntroducc thc concept of
cllargC llnb81811CC. T11C cllalgC lillb81811CC (01

branch imbalance) Q' is the net charge density of
thc quasiparticles which constitute the "normal
fluid" of a two-fiuid picture of a superconductor.
In equilibrium thc clcctlonllkc and holcllkc cxclta-
tions taken together have zero nct charge. In the
nonequilibrium situation, the charge imbalance Q*

ln thc quaslpaftlclcs ls balanced by an equal and

opposite charge in the superfluid, which

corresponds to 8 proportional shift in the chemical

potential of the condensate by O'= Q'/2N(0)e.
In thc classic experiment of Clarke, ' a charge

imbalance is achieved by the tunneling of 8 normal

current I„rRessoan oxide barrier from a normal

metal electrode into a superconductor. Since this
current will leave the superconducting film as su-

percurrent, there must be an accumulation of "nor-

mal charge" Q' in the film, proportional in steady
state to the time ~&+ in which this noncquilibrium

distribution decays:

where 0 is the nonequihbrium volume. In the case
of the determination of the pair-field susceptibility

of a normal metal we are focusing on the normal

film. In the absence of superconducting order,
there can be no charge imbalance since relaxation
cannot occur. However, because of the interaction

with the strongly superconducting electrode, the
liorlllal fllfn becomes cffcctlvcly R gapless silpcr-

conductor" with a small order parameter. In the
pfcscnt case thc cxccss pall current ls a supcI'-

current injected into the normal film, and this
current presumably leaves the film at the boun-

daries as normal current. In the same way as be-

fore, this will produce a charge imbalance

for some effective relaxation time r&, . The nega-

tive sign is taken because the process is essentially
the opposite of that described by Eq. (18).

Through the chemical potential shift 4, Q*+0
affects the ac Josephson relation, which can be
more correctly expressed in the form

(20)

=mN(0)D/~ Q;„~ =2ksTA/Irk;„, (22)

whelc wc hRvc Used thc theory of dirty supcrcon-
ductors, including Eq. (4) and the relation

( =Droi (D =uzi/3 is the normal-state diffusivi-

ty), together with the fact that 2N(0) =3n/rnu~

where hp, is the difference across the junction of
the condcnsatc electrochemical potential

p,,=eg —4, and as before P is the electric poten-

tial. The Josephson relation is obeyed only if
5p, =0, which can occur only if 54&=eVo. If we

neglect the small chemical potential shift on the

strongly sUpcI'condUctlng side tllls implies that thc
relaxation time must satisfy the relation

2N(0)e VoLtud/I—,—„.
Substituting the expression for I,„ from Eq. {17)
into Eq. (21), and taking the low voltage qo ——0
limit, wc obtain

r&, ——IIl N {0)/(4arGLC I )
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The relaxation time inferred in Eq. (22) is identical
to that derived by more standard methods's for
charge imbalance relaxation in a gapless supercon-
ductor below T, .

Clearly, the longitudinal variation of the order
parameter 5', =1(»,~g exhibits different behavior
than the transverse variation 5gr g——,„i8 E. qua-
tions (2S) and (26) can be solved to yield

5d=g(x &)X'(qo ~o)+c.c. ,

5$ =g(x, t)Xr(qo, coo) c.c—

(27)

=Ciexp[i(qex+coot)], (23)

where the differences of sign relative to Eq. (9) are
due to the fact that a has changixl sign. Since we
are looking for small variations in f about its

equilibrium value 1(»,„e,we define

0;fe'=4.,(1+—g+i8), (24)

where g = 1 f and 8 are real—functions small com-

pared to unity, and 8,&
——0. Substituting this in,

and separating the real and imaginary parts, we ob-
tain

rot,—+2—0 7 g =C, cos(qox +mot)/0,
a' 22
Bt

~oi.——g V 8=Cisin(qox+coot)lf, q .

A similar approach can be used to compute the
excess current below T„alt houghthe details of the
procedure are more complicated for several rea-
sons. First, the simple time-dependent Ginzburg-
Landau equation is no longer valid except in spe-
cial cases, and a properly generalized TDGL equa-
tion is likely to be much more complicated, if
indeed one exists at all. Second, there is an equili-
brium nonzero value of the order parameter, and
as shown below, the dynamical equations for small
induced variations of the order parameter are dif-
ferent for variations in the magnitude ("longitudi-
nal" mode} and variations in the phase ("transverse
mode}. Finally, there is, of course, the usual dc
Josephson current associated with the equilibrium
value of the order parameter, which is much larger
than the excess pair current, and must be depressed
using a voltage and/or magnetic field in order to
see the desired effect.

%e will begin by using the simple TDGL equa-
tion, which is expected to be valid for T ~ T, only
for gapless superconductors. In the same way as
we obtained Eq. (9), we have

I (k,a))=[2
~
a

~

(icovoL+2+(2kz)] ' (29)

and

X (k,co)= [2
~
u

~

(i coroL+ k~p)] (30)

and the effective pair field g(x, t) is the same as in
Eq. (10) and c.c. represents the complex conjugate.
Note that this problem can no longer be described

simply by linear response theory, since there is also
a "conjugate-linear" response proportional to the
complex conjugate of g(x, r). However, as the con-
jugate term gives a contribution at frequency 2mo,
it is only the linear response term that contributes
to the dc excess current:

1m[X (qo,coo)+X (qe»~o)] ~

488

If we define the total susceptibility X=X +X,
then this takes exactly the same form as Eq. (17)
for T y T, . This current is, of course, in addition
to the usual Josephson supercurrent for V=O,
H =0, I, =CioLf,qsiny. It is important to note
that the excess supercurrent is of higher order in
the small coupling constant C, and can only be
seen when the usual supercurrent is not present or
is greatly reduced in magnitude.

Iil Eqs. (25) alld (26), botll g and 8 obey dif-
fusive equations, i.e., with only a first derivative in
time. For BCS superconductors with a gap in the
excitation spectrum, both the experimental observa-
tions and the theory' ' suggest that the trans-
verse mode should be propagating, corresponding
to a second time derivative and damped waves in
the spectrum of excitations. As an example of
how the present approach would deal with a gen-
eralized TDGL equation which contains this pro-
pagating mode, consider the equation of Kramer
and watts-Tobin, ' as modified by Skocpol and
Octav10
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(32)

roL~g+2g O'V—'g

=[AC/4ed }a
~
f~(t)]c so(q px+ cotp),

(2'„/Ar)(e+rxe ) g'V —q.
= [&C/4eci } &

~
yeq(T)]sin(qpx+copt),

(33)

(34)

where ~E is the inelastic scattering time, and
I'=2rsh(T)/irt. We will work in the exPerimen-
tally accessible limit I && 1. Note that as I ~0,
Eq. (32) reduces to the simple TDGL equations,
except for the term 4. This term was added to ac-
count for charge imbalance waves, ' a counterflow
of normal and supercurrent which constitutes the
progagating transverse mode discussed above.

Adding in the pair field g and proceeding as be-

fore, we obtain the pair of equations

X' '(k, co)=[2}n
~

(icor' '+2+/ k2)j (35)

where r' '=roLl =n keTrz/7$(3)h(T) is the
longitudinal relaxation time for a superconductor
with a gap. ' [g(3)—:1+2 +3
+ ' ' =1.202. . . .]

%"e can solve the transverse equation by apply-
ing the condition of electroneutrality within a
two-fluid picture, that V J =0, where J=J„+J,
is the total current density, J„=o.E the normal
current, and J,= } g } eiriq/m the supercurrent.
Using this to eliminate q, we obtain the following
wave equation in 4:

where q = V8 2—ieA/A is the gauge-invariant
phase gradient. From the flrst equation we obtain

rgrE 2 +(rg+rg) +1——A V
8 a , , Sr ec

[coprJ cos(qpx +copt)+sin(qpx+copt)],
Bt 2roL 4e&

I
cx

I 0'eq(T)

(36)

where

rj roi./u =——2k' TA/rcpt (T) [u =n/14((3)=. 5 79].
is the supercurrent relaxation time, and

A=P r/u)'~'=(Dr, )'"
g

is the quasiparticle diffusion length corresponding to the charge imbalance relaxation time

r&+ 4ks Trz/eh(T——). From this, we obtain the transverse susceptibility

7' '(k, co) =1 (1+icorq)/I 2(icoroi )[(1+icorq)(1+icor@)+A k ] } .

For high frequencies co » rq ', rz ', this clearly exhibits a resonance at a frequency

co=kA/(erg)'i,

corresponding to a wave with velocity

U=A/(rgrx)'~ =[2Dh(T)/fij'~ .

The same will also be true, of course, in the expression for the excess current given by Eq. (31).

(37)

(3g)

(39)

(40)

(41)

IV. EFFECT OF THERMAL VOLTAGE NOISE
ON EXCESS PAIR CURRENT

The previous derivations assumed that the voltage across the tunnel junction is a constant. In real junc-
tions, there will always be some voltage noise, which will act to broaden the peaks in the excess pair current
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I,„(V). Thc calculation of thc effect of voltage llolsc, wlllch ls rRthcr snllllar ln detail to thc cRlculRtloll of
the thermally induced radiation linewidth in Josephson junctionspl is summarized below.

Consider a tunnel junction with effective dynamic resistance R and capacitance C. In addition to the dc
voltage Vo across the junction, there is also a thermally generated noise voltage V„which assumed to be
described by Gaussian statistics. The spectral density 1(ho) of the noise is given by

J(he)=(
i V„(h0) i ) = — fdr(V„(t)V„(t+r))Ie' '=2kqTR/rh[1+a) (RC) ]j e2m'

(42)

where ( ), represents a time average.
The expression for both lIj;„and I~ must be modified to include V„. The spatial dependence cames

through as before, so we will consider the q =0 case. The effect of the noise is to introduce an additional
time-dependent phase factor which results in

g;„(t)=(AC/4ed) fdt'exp imot'+ f V, (t")dh" X(t t') .—

I (Ve) (CteI)(m=(t)t, ',.(t)ex::p —ietd —
& J V, (t")dt' )t'

x I~ e

=(t)C teI/4ed)(m Jdt'(e ' I(t —t')exp J, (Vt") t"d) . t

Changing variables, the time average can be brought into a single exponential factor:

I,„=(AC ltd/4ed)Im fdre 'X(r)F(r),

(44)

—2M
Vfel=(exp -- J V(t t, )dt, )-t=exp

x x

f, f, dh&dh2(V(t tl)V(t—t2)), —

This last reduction is a standard result from the statistics of Gaussian random noise. Following Ref. 22,
e

F(r)=exp — fdhoÃho)sinz(apr/2)/hot

=exp( —4ezRktt T/fP) I i r I +RC[exp( —
i
~ j /RC) —1 j I .

(49)

From this we take the Fourier transform to obtain the real distribution F{he), which can be expressed in
terms of a confluent hypergeometric function, but in the limits RC small (compared to the relevant times
ill X) Rlld RC 1Rrgc, lt ls glvcn slnlply

I'l/[lr(ho +I l)] (RC small)

exp( —he /I 2)/(s'+I'2) fRC large),

where I l
——4ezRkqT/4 and I'q ——{2e/A')(2k' T/ C)'~ .zIn terms of Efal), Eq. (44) can be written

I,„(Vo) =(RC lh)L/4ed)lm fdheX(t0q+Sm)E(Sr@) = fd(2eSV/A)I, ,(VO+SV)E(2eSV/A),

where I,„(V) is the excess current in the absence of
noise.

As an example, consider the case with T~ T,
and RC smaH. Then
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V. DISCUSSION AND CONCLUSIONS

In this concluding section we wi11 review the
major results established earlier, and discuss their
relationship to other points of view in order to il
lustrate the physical significance of these results.

The fundamental origin of the excess pair current

is the Josephson coupling between the strong su-

perconductor and the weakly superconducting or
normal film. This can be expressed in terms of a

free-energy density fJ —(A'C/2ed——)
~

li
~
cosy where

C- I/R~ (Rz is the normal-state resistance of the

tunnel junction). The coupling acts as a weak gen-

eralized proximity effect, and can be characterized
in terms of an effective pair field

g(x, t) =(O'C/4ed)exp[i(qox+coot)],

acting across the junction, where qo-Ho and

(51)

noise will act to broaden peaks in the excess
current, but it will not shift their centers. Reason-
able estimates of the parameters 8 and C suggest
that thermal voltage noise may be an important
consideration in attaining a quantitative fit between

theory and experiment.
Any other type of voltage noise present in an ac-

tual experiment can be treated in much the same

way, and will have a similar effect. Fluctuation in
the magnitude of the magnetic field in the junction
will similarly broaden the peaks in the dependence

I,„(H). Finally, an external rf signal could also be
treated within this picture in a similar manner.

Qlo Vo. It is a remarkable fact, attributable to the
gauge invariance of the Josephson coupling, that
dc electromagnetic fields in the junction give rise
to this manifestly ac effective pair field. For
T & T„g(x,t) gives rise to an induced order
parameter given by

I,„=(4edA /iri) Im(f;„g" )

=(4edA/iii)
~ g ~

1m[X(qo, coo)] . (53)

(A is the area of the tunnel junction. ) Evidently,

J,„-1/g~, as the square of the coupling between
the two films. This is in contrast to the usual dc
Josephson effect found when both films are below
their transition temperatures where I, -1/R~.
Thus the excess pair current can be seen as a
higher-order response due to the same Josephson
coupling.

The pair-field susceptibility g(k, co) can be deter-
mined from the definition of linear response and
TDGI. theory. Equation (53) is true in general,
and does not depend on a particular TDGI. equa-
tion, since any linearized dynamical equation
would serve. " Even in the absence of a dynamical
equation, more general theoretical techniques not
discussed in the present paper would enable the
calculation of X from microscopic theory:

g;„(x,t) =g(x, t)x(qo, coo),

which when substituted into the usual expression
for the dc Josephson current density

jJ——C
~ P ~

siny, results in the excess pair current of
the form

( —i/iii)([f(r, t),g (r ', t')]), t pt'
X(r —r ', t t')= '0—

0, tgt' (54)

where 1( is the quantum-mechanical order parame-
ter operator, [ ] represents the commutator of the
operators, and ( ) the expectation value at finite
temperature. This definition is equivalent to a
standard susceptibility using quantum-mechanical
linear response theory.

We emphasize that although the results of meas-
urements of the pair-field susceptibility are related
to the spectrum of spontaneous thermal fluctua-
tions within the weak superconductor, they are in
no sense due to these fiuctuations. The excess
current beirig a Josephson current, it depends on
the existence of a phase correlation across the bar-
rier. This does not exist with the thermal fiuctua-

l

tions, which therefore do not contribute to the ex-
cess current. In a measurement of excess conduc-
tivity within a film above T„on the other hand,
only correlations within the film are important,
and to these thermal fluctuations do contribute. In
fact, thermal Auctuations will act against well-

defined features in the excess current. We have
worked out explicitly the case of thermal fluctua-
tions in the voltage across the junction, which can
significantly broaden the peaks in I,„(V), but at
least to first order should not affect its center or
its overall intensity.

Another point which has not previously been
emphasized is that the measurement of the excess



PAIR-FIELD SUSCEPTIBILITY AND SUPERCONDUCTING. . .

supercurrent for T& T, can be viewed as the re-

verse of the usual charge-imbalance experiment.
Here supercurrent is injected into a normal metal,
and the effective relaxation time r&» goes as 1/I,„.
For the simple TDGI. equation, for qo ——0 and
small Vo, ~&» 2k'——TA/nb„„.

Fol T(T~~ the sltuatlon ls somewhat more
complicated due to the fact that there is an equili-
brium order Parameter ltd, q. However, the same
pair field g(x, t) as before induces a change
5$;„=5++5it in order parameter, where 5+ is
along the direction of tP~ (in the complex plane)
and 5$ is perpendicular to it. These two com-
ponents satisfy different equations with
corresponding susccptlbltltlcs 7 and g, and

5it;.=px, t}[&z(qo oio)+&'(eo oio}l

+g"(x, t}(Xz J( ') —. (55)

This is not strictly a linear response, but since
I,„-lm(5$;„g ) only the term linear in g contri-
butes to the time-averaged I,„;the "conjugate
linear" term yields a current -cos(2coot}. In this
context, the ac pair field g(x, t) acts analogously to
an external ac voltage of frequency to =2eV/fi
across the Josephson junction. In the latter situa-
tion the external signal at co mixes ~ith the inter-
nal Joscphson oscillator at fo to glvc a dc constant
voltage step, together with an oscillatory current at
2N. The posltlon along tbc constant voltage step ls
related to the phase difference between the external
and internal oscillators. In the present case, this

phase difference is fixed by the interaction that
gives rise to 5i/i;„, so tliat the additioiial exte111al
degree of freedom is absent.

The form of 5$;„is also more complicated below
T, than above. There is no single simple TDGL
equation which can describe a superconductor for
T g T, under all conditions. The longitudinal
mode is expected to obey a diffusive equation in
general, except for a resonance at fico =hcq. The
transverse mode is expected to be propagating for a
BCS supercondutor, corresponding at high fre-
quencies to charge imbalance vravcs %1th velocity
U=(2DE/ii))'~ . We have used a generalized
TDGI. equation which satisfies these criteria (ex-
cept for the gap resonance) to derive expressions
for X and g and the resulting I,„. Whichever
equation one uses, I,„—I /Rz, just as for T & T, .

It has been the aim of the present paper to gen-
erate more interest in, and understanding of, the
concept of pair-field susceptibility measurements.
In particular, although the excess pair current is
small and often difficult to observe experimentally,
these experiments provide what is in many cases
the only direct check of the dynamical equations
governing the order parameter.
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