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This work addresses the problem of describing the Josephson junction with a pseudo-
angular-momentum formalism. An alternate approach to the existing pseudo-angular-
momentum theory is begun with a modification of the fundamental operators upon which
the method is based. Along with this, a new state vector, which affords a more complete
description of the constant-charge-imbalance mode of the junction, is explicitly construct-
ed. Certain inconsistencies which arise within the existing pseudo-angular-momentum
theory are discussed in the context of this new formulation. Finally, a method is suggest-
ed for employing the charge-imbalance state in problems where the pair difference be-

tween the junction sides is allowed to vary.

1. INTRODUCTION

During the late sixties, a new approach to
Josephson tunneling was initiated by addressing the
problem from a quantum optical perspective.!

This was done by trying to extend the Anderson
pseudospin method in superconductivity® to a point
where certain operators associated with the Joseph-
son junction, $’'* and S7, could be identified as the
Bloch vector for the system. Once this analogy to
atomic systems was established, it was felt that
much of the formalism developed for the quantum
theory of the laser’ could be brought to bear on the
Josephson problem. Thus it was hoped that new
physics would emerge.

This paper is the first in a series which will
develop an alternate approach to extending
Anderson’s original pseudospin model. This new
approach will be based on the following: (i) an ex-
plicit construction of a state vector to represent the
constant-charge-imbalance mode of the junction,
and (ii) a description of junction dynamics using
the coupling of two macroscopic pseudoangular
momenta. By use of these concepts we hope to:

(a) provide an alternate physical picture to the
dynamics of the Josephson junction,

(b) study degrees of freedom not present in
Anderson’s (n,¢) theory of the junction,*

(c) provide a microscopic model for describing
the dynamics of a three-superconductor two-
insulator sandwich [a problem which is not easily
formulated in the context of the (n,¢) theory],

(d) give a simple and transparent derivation of
Feynman’s two-level model of the Josephson junc-
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tion,’ starting from a microscopic picture, and

(e) apply many of the theoretical techniques of
quantum optics and magnetic resonance to junction
problems.

This paper deals only with (i). Part (ii) of the
formulation and the specific problems that will be
addressed with it will follow in a future work. We
have chosen to publish part (i) now because the
construction of a charge-imbalance state solves a
problem that has been pointed out in the existing
pseudo-angular-momentum theory.®

To this end, Sec. II gives a short exposition of
the existing pseudo-angular-momentum theory,
which concentrates on only its most basic aspects.
Even so a serious difficulty is discovered in that
the expectation value of one of the fundamental
operators S (when taken with respect to any of
the conventional states used to describe the super-
conductors of the junction) is shown to be identi-
cally zero.

Section III starts by pointing out that (Sz)=0
is only a symptom of a larger problem. This prob-
lem has two parts. First, all basic operators of the
theory are, to a certain degree, incorrectly defined.
Second, the state used to describe the junction
when an ideal battery is placed across it (i.e., there
are no voltage fluctuations), is in fact incomplete.
Finally, methods are proposed to surmount these
difficulties while at the same time retaining the
basic integrity of the pseudo-angular-momentum
picture. In Sec. IV a suggestion is made on how to
apply the charge-imbalance state to a specific non-
steady-state problem. Section V gives a short sum-
mary of the work.
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II. A BRIEF HISTORY OF THE
PSEUDO-ANGULAR-MOMENTUM THEORY

In this section the early development of the
theory is outlined. A historical approach is used
as a means of stating approximations and assump-
tions which were made. This then allows a more
systematic analysis of the problems that eventually
arise.

A. Anderson’s pseudospin notation

In 1957 Bardeen, Cooper, and Schrieffer’ pro-
posed a theory of superconductivity based on the
highly specialized state vector

l@)= H[U K)+V(Keeck ¢l +.110),

(1)

where C , is the usual fermion creatlon operator
for:an electron with momentum k and spin s, and
U%K)+V¥Kk)=1. This state was constructed to
emphasize the central role of pairing® in supercon-
ductivity.

Shortly after the success of the Bardeen, Cooper,
and Schrieffer (BCS) theory, Anderson? observed
that each momentum subspace factor of | @) could
be viewed as a state vector for an imaginary two-
level system. That is,

) =1 1X)%
k

with
1X)p=U(X)|0)z+V (K)ot cl 2 10)5 .

He then took full advantage of this analogy by
realizing that a complete set of operators for the
theory could be written in terms of a spin-%
angular-momentum notation. These pseudospin
operators are as follows:

(r{a-—-C%tCT_ T (2a)
which creates a pair and raises spin,

oz=C_3,Cg,, (2b)
which destroys a pair and lowers spin, and

or2=%(n;'1+n_m—l) ’ (2c)

which acts like a number operator for electron

pairs or equivalently is the z component of the an-
_ct

gular momentum operator (ng, =Cy,Cy,). The

exact pair-number operator N3 for the kth sub-

space becomes

1
Ny=s(myg,+n_g))

in this notation. (Note: The definitions given here
differ slightly from those given by Anderson but
are completely equivalent to them.)

By using the fermion anticommutation relations

[CzoChp =877 8,
(€l Cly =0,

it is easy to show that the o’s do in fact satisfy an-
gular momentum commutation rules,
[o%.0%1=207,8% % "

+ +
[ogpovl=10¢dy g .

With the above pseudospin operators the state
vector for the imaginary two-level system can now
be written as

-

{X)~=U(E)]O)*+V(k e'®ot.|0) ¢
K| Dp+V(K “”IT) @

where | l);’ and | 1)y are the spin states of the
system. This then allows |@) to be viewed as a
state representing an ensemble of such imaginary
two-level systems,

]¢>)=]T(1[U(k)+V(k)e""’a+?]|0) . (5

B. The tunneling Hamiltonian

Shortly after Josephson’s® original discovery of
coherent tunneling, several authors!®!! started
work on the junction problem by incorporating a
tunneling term into the usual many-body Hamil-
tonian for superconductivity. Typically this term
was written as

Hy= 2 gvg

k q,s

(ch,cq+clicz).  ©

On the surface at least, it appears to be an operator
for single-electron tunneling. This apparent lack
of emphasis on pair tunneling has made H, a
cumbersome operator to use when dealing with the
Josephson problem.

In an attempt to simplify the junction calcula-
tions by stressing the fact that the process being
described strictly involves paired electrons, Wallace
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and Stavn!? introduced a new Hamiltonian,

H;:% Tgglohog+og0%), @)
where a k subscript refers to the left superconduc-
tor and a q subscript refers to the right. (It is as-
sumed in using this Hamiltonian that all operators
dealing with one superconductor automatically
commute with those operators dealing with the
other.) This Hamiltonian, which is derived from
Eq. (6) by a canonical transformation, explicitly il-
lustrates the paired electron nature of the Joseph-
son problem by using the pseudospin formalism of
Anderson.

Before employing their Hamiltonian, Wallace
and Stavn made the approximation that

TT"T{:T N

ie., Ty g is in fact independent of K and . This
approximation is usually followed by the proviso
that the momentum sums be restricted to a small
region about the Fermi momentum of each super-
conductor. [As Wallace and Stavn point out a
similar approximation and restriction is made in
the underlying BCS theory (see Ref. 13, p. 153).]
This restriction will be denoted by a “prime” on
the summation symbol ¥’y - which implies the
only allowed momenta are those whose associated
energies lie within a region of width 27w, about
the Fermi energy. (More will be said about this
later.) Thus they obtain the final form,

Hy=T ?2 (6to3+o070%) . (8)

-

»q

C. Extension of the pseudospin approach

Motivated by the close analogy of the BCS state,
Eq. (5), to that for a system of two-level atoms,
Scully and collaborators'#~ !¢ attempted to extend
the Anderson pseudospin treatment of the junction
problem to a point where quantum optical tech-
niques could be employed. The idea being that
these techniques, developed primarily for the quan-
tum theory of the laser,®> would lend themselves to
a class of problems not easily handled within the
framework of the usual thermodynamic equilibri-
um many-body theories.

To see how this extension was accomplished,
consider first the tunneling Hamiltonian of Eq. (8),

[ ' + — =t
HT—TT{E_’(Ui»O'E—G—O'kO'a») .
’q

This can be written as
Hy=CUp g~ +J. Y,
=C($'t+87), 9)

if the following identifications are made:

'+ 1 , *
J ZFET(» oY (IOa)
a1 i 2t
JrpT= N* Eﬁ) 0'7{ ) (IOb)
S t=J %I, (11a)
R (A [ (11b)

(in these relations, C and N* are constants which
do not bear on the problem being discussed in this
paper).

Along with these, three other operators can be
defined:

Jiz='0%; (12a)
¥

Jiz=X'03, (12b)
T

Sy=~1z—Jkz) - (120)

As is stated in Ref. (15), J;z(Jrz) “describes the
number of electron pairs in excess of the value re-
quired to maintain charge neutrality.” Imposing
charge conservation on these equations implies Sz
=Jrz. Since, as will be seen in the next section,
these are the operators of interest to this work, the
physical interpretation of the other operators will
be omitted except to say that the operators of each
set (e.g., J1 ¥ and J}z) are related to each other by
means of commutation relations.'* Finally, it is
through the operators S’'*, S'~, and Sz, which
form the Bloch vector, that the above authors at-
tempt to make the connection between the Joseph-
son junction problem and the calculational tech-
niques of quantum optics.

D. An inconsistency in the theory

The existing pseudo-angular-momentum theory,
as defined in the literature,'* !> has a fundamental
inconsistency in it. This problem, though, does not
become apparent until explicit numerical values are
obtained for certain physical quantities. It is an
error that appears already in the steady-state mode
of the junction, and therefore is unrelated to such
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topics as frequency pulling! and transient phenom-

na.'® (Here, and throughout this paper, “steady
state” is taken to mean that the pair difference be-
tween the sides of the junction is constant, i.e., nei-
ther voltage fluctuations nor charge buildup is being
described.) Consequently, the nature of the prob-
lem is fundamental to the groundwork on which
the theory rests and, as will be shown in Sec. III,
relates to the basic definition of the operators and
the states used to calculate their expectation values.
In this and the next section, unambiguous sys-
tematic calculations that clearly display this diffi-
culty will be given. The following two conditions
are imposed which serve only to simplify the cal-
culations and do not in any way effect the physics
of the situation:

(i) The superconductors of the junction are as-
sumed to be identical. That is, not only are they
made of the same material but their volumes are
the same too.

(ii) The Thouless strong-coupling model,"’
described below, is assumed for both superconduc-
tors, with all calculations being carried out at
T=0K.

1. Strong-coupling model superconductor

Consider a charge neutral superconductor at
T =0 K. Within the strong-coupling model the
state of this system is described by the BCS ground
state, Eq. (5), with U 2(X) and V%K) as shown in
Fig. 1. To be specific, the occupation distributions
of the BCS theory have been approximated as step
functions in the region about kr. The region, in
energy, over which this step occurs is of length 2A,
where A is the energy-gap parameter. The boun-
daries of this region in momentum space are given

by
172
2m,
kU= [ (-;2— (€F+A) zkp"'kA ,
m, 172
kp = -———ﬁ2 (er—A) ~kp—ky ,
(13)
with
172
P 2m, A
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FIG. 1. UXK) and VXK) are shown for a charge-
neutral superconductor in the strong-coupling limit. Ny,
N,, and N; are the number of pseudognn systems (X
vectors) in their respective regions of k space. k, is the
momentum associated with the energy-gap parameter &k,
=%(A/ep )kr, and k is the chosen cut-off in momentum

space.

The number of pseudospin systems in a given re-
gion of momentum space will be needed in the cal-
culations that follow. It is easy to see that this
number is equal to the number of momentum vec-
tors in the given region. As an example of this,
the diagrams show three regions with, respectively,
Ny, N, and N; momentum vectors in each. (k is
at this point an arbitrary cut-off in momentum
space. It has no effect in the following calcula-
tions but will be needed in Sec. III.)

2. dc Josephson effect

As is shown in Ref. 15, the pseudospin notation
can now be effectively employed to obtain the dc
Josephson current. In particular, the state of the
junction at T'=0 K and biased at zero voltage is
taken to be

[¥)o= @) ® |@)R, (14)
with

| @)= H[U(k)+V e L at110),
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| YR =TT [U(@+V(@e' %] |0) .
q

By defining the current as I = —2eN 1, Where N
is the total pair-number operator for the left super-
conductor

NL=2(07;,+-;-) ,

k

the current operator becomes
I=—2e(i/M)[Hr,Nr]

=C, 3 (0303 —0%07) . (15)
—E’a

It is now straightforward to show that

(I =Y |1 [¢)o

=ji sin(pr —@L) , (16)
where
J1=C, 3 [UKWE)IU@GV(G)]
T("_a)
Cy,C,=const . (17)

This, then, is the desired dc Josephson current.

Before going on to the ac Josephson current it
would be worthwhile to calculate (S ).
Remember (S7 ) supposedly measures the number
of pairs in excess of that required to maintain
charge neutrality, and thus should be zero in this
case. Using S as defined in Eq. (12¢) and the
state as given above, this expectation value be-
comes

(Sz)=0{¥[SZz |¥)o
=X iz | =@ | Trz | @Y1
To continue, note that

-

Helor, @) ==V VK,

, (18)
Molog, |@)=—3[UX-Vq)],
and consequently by Eq. (12),
(Jiz>=2'g_g[UZ(E)—V%E’)]} ,
k (19)

(Thz2) =3 { =3[V —VAD]] .
q

These give
<Jiz>=0 ’
<JI’QZ):O ’

by using Fig. 1 and remembering that ' means

that K and q are restricted to the symmetric 2%y,
region about the Fermi momenta. Thus

(Sy)=5[{Jiz)—(Jrz)1=0,

as expected.

3. ac Josephson effect

Consider the situation where an ideal battery
maintains a constant voltage V between the left
and right superconductors. Since the junction acts
as a capacitor, an additional term must be added to
the Hamiltonian to describe this'*:
Z, 0¥z~ 2’ 032

k q

Hy=—eV (20)

Approaching this as strictly a steady-state prob-
lem (i.e., how the charge buildup occurred is not of
interest), the state of the junction in the interaction
picture becomes

|0 =expliHyt /5) | ¥ . 1)

Basically this is the direct product of two phase-
rotated BCS ground states. Thus | )’ looks ex-
actly like | 1), but with the following substitu-
tions:

(pL—>q)L(t)=(PL —eVt/fh ) (22)
(pR—>¢R(t)=(pR +€Vt/ﬁ .

Using this state to calculate the expectation
value of the current operator gives

(I)=j sin[(pr —@L)+2eVt /%] , (23)

which again is the expected result.

But consider once more the expectation value of
Sz. Since there is a constant voltage across the
junction, there must be a constant charge differ-
ence between the two sides (if it is assumed that
this voltage is maintained by an ideal battery).
Taking the potential energy to be higher on the left
implies that there must be a charge excess on that
side. Consequently, it is expected that

(Sz)=n,

where n is the number of excess pairs on the left
side.
The expectation value is given by

(S7)=(Y|Sz|v¥) . (24)

Since this is a steady-state problem, the above can
be evaluated at any time ¢, in particular at ¢ =0.
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Doing so gives
(S7)=(¥(0)| Sz | ¥(0))'
=o{¥|Sz[¥)o
=0. (25)

The last equality follows from Sec. IID 2 above.

This apparent inability of S to measure the ex-
cess charge® is the fundamental inconsistency men-
tioned above. It is a serious defect in the theory
and must be dealt with.

III. MODIFICATION OF THE THEORY

As Anderson* has pointed out, one of the
dynamical variables governing the motion of the
Josephson junction is N; — N, the difference be-
tween the total number of pairs on the left and
right superconductors. Consequently, any pro-
posed extension of the Anderson (n,¢) formalism
must reflect this fact. As has been shown above,
the existing formulation of the pseudo-angular-
momentum theory does not manifestly exhibit this
variable. The source of this problem is investigat-
ed below and a method for correcting it is suggest-
ed.

A. Source of the problem

As was seen in Sec. II, {(S%)=0. This problem
arises from the following two sources, either one of
which alone would ensure (S )=0:

(i) The insistence on using only the BCS ground
state or a phase-rotated BCS ground state to
represent the superconductors of the junction (note:
A third state has been used and will be discussed
at the end of Sec. III C), and

(ii) unnecessarily restricting the range of the
momentum sums in the definition of the operators.

To see how these force (S ) =0, consider first
(1). The number operator for a given pair is

1
NT(’:-U?Z_FT ’

and therefore the operator for the total number of
pairs in a superconductor is

N=3 (o¢,+7) (26)
k .

where the summation is unrestricted in X space.
To check that this is indeed the total pair-number
operator, consider its expectation value with

respect to the BCS ground state:

(N)=(@|N |p)
=3 V¥Kk)
X

=N,+m/2. 27

The last equality follows by using the values of
V*(k) from Fig. 1. This is exactly what is expect-
ed for the total pair number. (Note that had the
product index of the BCS ground state been re-
stricted to a small region about kp; as is stated in
Ref. 13, this expectation value would have yielded
an incorrect result for the total number of pairs.)

Now consider the phase-rotated BCS state |¢/)’,
Eq. (21). This state supposedly represents the junc-
tion when a constant charge imbalance exists be-
tween the two sides. In particular, consider the
case described above Eq. (24), i.e., n pairs have
been added to the left side and »n have been re-
moved from the right. Hence the expectation
values of N; and N with respect to this state
should be

(N.)=N,+m/2+n,

(28)
(Ng)=N;+m/2—n .
But
(NL)=(¢|N. [¢)
=L<¢’]NL |<P)L
=N;+m/2 (29)
and

(Ng)=N,;+m/2,

where the second equality of Eq. (29) follows by
evaluating at ¢t =0.

Thus it is seen that even though | )’ leads to
the correct frequency relationship for the ac
Josephson effect, it fails to measure the change in
the total number of pairs on either side. It is in
this sense that |¢/)’ gives an incomplete descrip-
tion of the junction operating in a constant-
charge-imbalance mode. Consequently, another
state must be found to describe this situation.

Source (ii) above deals with the operators them-
selves. It is not clear how the operators J; 7, Jrz,
and S7 get the physical interpretations given to
them in Ref. 15 and quoted in Sec. IIC of this pa-
per. But for S7 it might be surmised that the fol-
lowing argument was used:
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1 1 1 1
"{(NL'—NR)‘;? %(0?2-{-?)—2(0’?:-{—7)
q
1
=E Za—fz—“gaﬁz
k q
=Sz . (30)

Assume, for the moment, that a state exists which
does accurately describe the constant-charge-
imbalance mode of the junction, i.e., Eq. (28) gives
the expectation values of the total pair-number
operators with respect to this state. Then (S%)
would measure the charge excess on the left side
since

(Sz)=5(NL)—(Ng))

Unfortunately though, the last equality in Eq.
(30) does not hold. To see this, note that the sum-
mations in N; and Ny are unrestricted while those
in the definition of S, Eq. (12c¢), are restricted to
momenta whose associated energy falls in the
range

er—fiwp <€y <€p+fiwp

(this restriction on K is clearly stated in Ref. 15, p.
770). Consequently, even if the problem of what
state to use were solved there would still be diffi-
culty with the operator Sz.

B. The charge-imbalance state

To provide a concrete model for the state used
to characterize a junction in the presence of a con-
stant charge imbalance, first consider a neutral,
isolated, nearly-free-electron metal, at T =0 K. If
n extra electron pairs are deposited on this metal,
one can, in principle, solve for the self-consistent
one-electron orbitals using, for example, a density-
functional formalism.'® Filling these orbitals with
electrons up to the Fermi momentum k,r would
then produce the electron charge density inside the
metal. The resulting charge density would corre-
spond to having a total charge —2 | e | n localized
near the surface. This excess charge density need
not, however, be associated with single electrons lo-
calized near the surface. Rather, it can be thought
of as the result of a large number of itinerant bulk
electrons whose weakly perturbed self-consistent

wave functions result in an excess charge density
near the surface. This is the physical interpreta-
tion that will be used in the remainder of this
work. !

Now imagine turning on the electron-phonon in-
teraction in the charged metal. Since all the elec-
tron orbitals are delocalized, we may take as one
model for the state vector of the superconductor

|¢>,=]:[[U,,(I<’)+V,,(E)e"¢o§][o). (32)
k

That is, | P is a BCS-like state, but with
UZ(k) and V2(k) now referred to the shifted Fer-
mi momentum, k,r, as shown in Fig. 2.

Using the states | @),, the exact pair-number
state of Anderson* can also be generated

m 2 _i(Ny+m/2+n)
[No+Gm)=J, e o) de

(33)

Thus it is seen that there are really two require-
ments which the desired state vector must satisfy if
it is ultimately to be acceptable as a description of
one side of the junction. These are as follows:

(a) The algebraic form of this state vector must
be the same as that of the BCS ground state (if a
state with a well-defined ¢ is required).

(b) The expectation value of the total pair-

V:(k) ‘-—N°+n B ——LL] —.;.—No-n—-i
1 H '
m (2)—e— (3) —|
231 :
H
de Kop H k Kk
(IRLN Koptka
2 =
U, (k) Nghn e m —omNgn =
'
' i s
|/2 L é
ke Kop K k

FIG. 2. Occupation distributions, now labeled U2X(k)
and VX l—{), are shown for a superconductor which has
had n pairs added, at T=0 K. The 2A region is now
centered about k,r but its width is the same as in Fig. 1.
(Note: « has now been chosen such that N;=N; of Fig.
1, and these are set equal to Ny.)
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number operator with respect to this state must re-
flect the excess in the number of pairs.

The state | @),, given in Eq. (32), satisfies both
of these requirements, (a) being satisfied by defini-
tion. The fact that | @), is not a well-defined
pair-number state is not a serious problem since it
shall only be used in connection with the Joseph-
son junction (i.e., the pair number on either side of
the junction is, indeed, not well defined).?

To see how | @), satisfies criterion (b), return
momentarily to Fig. 1 and the BCS ground state.
The momentum space in these diagrams has been
broken up into three regions, with «, the upper
bound of region (3), being unspecified. In regards
to these regions and the cutoff «, the following an-
satz is now made:

(i) For a given charge-neutral superconductor at
T =0 K, even though « can be chosen almost arbi-
trarily, choose it such that N;=N; and relabel
them as Ny. Then, once « has been defined, it
remains fixed regardless of how the physical state
of the superconductor changes.

(ii) The three regions of k space are always de-
fined in the same way, that is,

(1) O0<k <kp—k, ,
(2) kF—kA_<_k __<_kp+kA , (34)
(3) kp+kA <k<k,

where it is understood that kr may change depend-
ing on the state of the system (i.e., if excess charge
is added then kr is replaced by k,r, and Fig. 1 is
replaced by Fig. 2). If N, is now relabeled as m,
then the consequences of the above are that regard-
less of how the physical state of the system may
change the total number of k states from O to k is
fixed at 2Ny +m.

This then specifies | @),, the shifted-BCS state.
Even though it may be an oversimplified model for
the problem, it does contain the essential physics.
As an example, consider taking the expectation
value of the total pair-number operator N, with
respect to this state,

(N)=nl@|N |@),
=3 Vak)
k
=(No+n)+(m/2)+(0)
=No+m/2+n . (35)

Thus both requirements (a) and (b) are satisfied.
If charge is depleted from a superconductor, the

state | @) _, is obtained in a similar fashion to
| @), Here |@)_, is defined as

|} _n =TI [U_(K)+V_,(Ke®at]|0),
k
(36)

with U2 ,(K) and V2 ,(K) given in Fig. 3.
Finally, |@), and |@)_, can be used to build a
state vector for the junction

[9)a=|@)r® @R, . 37

The state |¢), is meant to represent the junction
when n pairs have been added to the left and n
have been removed from the right. It can be con-
sidered as the time-independent part of the state

* vector for the junction when an ideal battery main-

tains a constant charge imbalance between the
sides. This state should be viewed as characterizing
the constant-charge-imbalance mode of the junction
in the same spirit that |¥)o Eq. (14), has been
used previously®® to characterize the charge-neutral
mode.

In conclusion, with both conditions (a) and (b)
satisfied, | @), and the resulting charge-imbalance
state |9), become appealing instruments through
which calculations on the Josephson junction can
be carried out within the framework of the
pseudo-angular-momentum approach. Unfor-
tunately, though, this state alone is not sufficient
to remove the problem of (S%)=0.

C. Redefining the operators

The problem mentioned in Sec. III A, on the im-
proper definition of the pseudo-angular-momentum
operators, will now be addressed. As was seen in
that section, the momentum sums in S differed
from those in the total pair-number operators Ny
and Ni. This in itself is unappealing, but the real
consequence of using restricted momentum sums is
that they force the expectation value of Sz to be
zero, even when taken with respect to the charge-
imbalance state |¢),. To see this note that if the
definition of the operators' is taken literally, then
each momentum sum of Eq. (12) is centered about
the Fermi momentum of the corresponding super-
conductor. In the case of a charge imbalance
described by |¢),, J1z would be centered on k,p
while Jzz would be centered on k _,z. This plus
the fact that each sum is restricted to symmetric
27wy region about its respective Fermi momentum
ensures that the pseudo-angular-momentum opera-
tors J;z and Jgz always see the same truncated oc-
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cupation distributions regardless of the state used.
With this view of the operators J; 7, Jgz and Sz, it
is easy to show that their expectation values with
respect to | ¥),, or any other BCS-like state, are
Zero.

In the above, one interpretation of the defini-
tions of the operators, in light of the charge-
imbalance state, has been used. Alternate interpre-
tations are possible. Apparently, though, none of
these interpretations allow for a consistent set of
angular-momentum operators which at the same
time yield nonzero expectation values for S;. Con-
sequently the definitions must be modified in such
a way as to overcome these difficulties.

The change contemplated is that instead of using
the definitions of Eq. (12) the following are used:

Jiz=X0%¢, (38a)
X

JRZ =2 O'sz 5 (38b)
q

SZ=%(JLZ_JRZ) N (38¢)

where the summations over k and q are now unre-
stricted, except that they terminate at x. This
change will be justified below, but first consider
how this will affect the expectation values.

For the charge-neutral superconductor, described
by the BCS ground state and Fig. 1, the expecta-
tion values of these three operators become

(Jiz)="@|Jrz | @)*
=3 {—3 [T -VHK)]
k

=0, (39)
(Jrz)=0,
<SZ>=0 ’

as they should be according to their definitions in
terms of excess charge.

For the charge-imbalance state, though, the re-
sults are now different from those obtained in Eq.
(25), where just the phase rotated BCS state |¢)’
and the old definition of the operators were used.
Using the operators of Eq. (38) and Figs. 2 and 3
gives

<JLZ)=ﬁ<¢ |z |‘P>Ii
=3 (=3O —VaO]
k
={—5[—(No+n)]+(0)
—2[(No—n)]}=n (40a)
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FIG. 3._Occupation distributions, labeled U2, (K)
and V2 ,(k), are shown for a superconductor which has
had n pairs removed, at T =0 K.

and
<JRZ>=—§(‘P1JR2 )2,
=3 (—3[UL(@ V@]
q
=—n. (40b)

With these the expectation value of Sz becomes

<SZ)=n<¢ISZ ’ 'p)n
‘_“';_[<JLZ>_‘(JRZ>]

Now these operators yield results consistent with
their physical definitions. Also, note that the iden-
tification

SZZ%(NL—NR)

is valid, unlike Eq. (30).

Return now to the question of changing from re-
stricted to unrestricted sums. Section II'C shows
that the restrictions on k and @, in J; * and J*,
arise ultimately from restrictions on the sums in
Hy. These, in turn, were based on having made
the approximation Ty =T. The restrictions on
Jiz and Jgz then resulted from the fact that these
operators are related to J; * and Jx* through com-
mutation relations'* (i.e., all the operators must
have the same range of momenta). Consequently,
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it might be argued that changing the sums in two
of the operators requires changing the sums in all
of them. But since the approximation Tyg=T
prevents this, none of the sums can be changed.

The last statement in the above argument is in-
valid. To see this consider Eq. (8), but now let the
sums be unrestricted. That is, define Hy as

HT:TT(Z (6%05+0T70%) . (42)

If this change is going to have a physical effect
it will certainly show up in the calculation of the
Josephson current, in particular its magnitude.
Following the derivation leading to Eq. (17), which
uses Hr, gives

Ji=C, 3 UEVEONU@V @],
K.q

while using Hy it gives

h=C 3 [UEVEONUGEV ()] .
K7

But as can be seen by using the values of U%(K)
and V4(K) from Fig. 1, j| =j,.

Consequently, the restrictions placed on the
sums in Hyz, which ultimately led to those on J; 7,
Jrz, and Sz, are unnnecessary. This has come
about because the algebraic form of the BCS
ground state has led to a current which is propor-
tional to

S UKV(K),
Fq

and the numerical values of U(k) and K(E) au-
tomatically then ensure that only those k states
near ky contribute to the tunneling process.

One final note on this subject. Since the alge-
braic form of | ), is the same as that of | @),
and since the numerical values of Uy(k) and _
V,(k) near k,p are the same as U(k) and V (k)
near kp, the magnitude of the Josephson current
calculated with respect to | ), will be the same as
that given by using | ¢),.

[Note: At the beginning of Sec. III A it was
claimed that a third state vector besides |¥'),, Eq.
(14), and |¢)’, Eq. (21), had been used to describe
the junction. This state is | k) of Ref. 1, p. 24. It
is described as:

(i) being composed of strongly coupled BCS
states, and
(ii) representing a situation where there are k ex-

cess pairs on the left side of the junction.

Also “only the electron pairs within a narrow re-
gion (e€p+#iwp) of the Fermi surface” are con-
sidered when using this state.

In regards to | k) it is not exactly clear what
these authors mean by a “BCS state with k excess
pairs,” and since no explicit construction of |k ) is
given a direct calculation of (k | Sz | k) is not
possible. But one thing can be said. The restric-
tions on the pairs of interest (i.e., only those in the
2#iwp region) along with the BCS nature of the
state impose an unphysical symmetry on the prob-
lem which ensures (k | Sz | k) =0 for every | k).
(This is the same problem which arises when re-
strictions are placed on the momentum sums of
operators.) Thus |k ), as defined in Ref. 1, ap-
pears to be an unacceptable state on which to base
a pseudo-angular-momentum formalism. In con-
clusion, our differences with Scully and Lee are not
in the concept of a constant-charge-imbalance state
or in how such a state is used, rather it is in how
this state is defined.]

IV. AN APPLICATION OF THE
CHARGE-IMBALANCE STATE

As an example of how the charge-imbalance
state might be employed in non-steady-state situa-
tions consider the following problem. A Josephson
junction is initially charged such that n pairs have
been added to the left side and n, have been re-
moved from the right. The junction is then freed
from all external circuits and allowed to evolve via
tunneling and radiative transitions.

As has been shown above, the charge-imbalance
state |9¥), [Eq. (37)] describes the junction when
the average charge difference between then two
sides is held constant. But in this case the charge
difference is not constant since the junction will
eventually relax back into equilibrium (i.e., both
sides will be neutral) through the interaction of the
tunneling current with the radiation field.

Consequently, it would be expected that the state
of the junction could be approximated as a linear
combination of charge-imbalance states:

W) =3 a,(0)] ) - @3)
n=0

In the above equation a,(t) are time-dependent
coefficients, n' may differ from n, due to the ini-
tial direction of the current, and
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n<¢|SZI¢)n=n .

However, Eq. (43) is not quite the case. Remember
that the magnitude of the Josephson current, j, is
independent of the charge difference between the
sides. Therefore, it is conceivable that enough
pairs will tunnel through, during part of a cycle,
that the polarity of the sides would become re-
versed. That is, the right side now has excess pairs
while the left is deficient in pairs. Taking these
additional physical situations into account finally
gives

.
W)= 3 a,(0|¢),. (44)
n=-—n'
The importance of this is that by solving for the
a,(t) it allows for the construction of an explicit
state to use in computing expectation values.

V. CONCLUDING REMARKS

This paper deals with the states and operators
needed to develop a pseudo-angular-momentum ‘ap-
proach to Josephson tunneling. As has been shown
above, there is a problem with the expectation
value of one of the fundamental operators of the
existing pseudo-angular-momentum theory.!3
This difficulty arises from two sources. First, the
truncation of momentum sums in operators, and
second, the state used to describe the junction
when a constant charge imbalance exists. Either of
these is capable of eliminating, from the formula-
tion, essential information on the charge difference
between the junction sides.

The first source was removed by realizing that
the original restrictions on the momentum sums
were unnecessary. That is, the algebraic form of
| @) and the numerical values of U(k) and V(k)
automatically made any necessary restrictions.
This then allowed Sz, Eq. (12¢), to be replaced by
Sz, Eq. (38c). Elimination of the second source re-
quired the construction of a state, |@),, that
would accurately reflect an increase in the total
number of pairs when a single superconductor car-
ries a charge excess. With this shifted-BCS state,
the junction having a constant pair imbalance be-
tween its sides could be represented by the state
vector

i'/))n:l‘p){;@ l¢>§n .

Thus, by using the state | ¢'), and the operator Sz
the inconsistency in the original theory was
corrected. What effect, if any, these changes would
have if employed in the remainder of the existing
pseudo-angular-momentum theory is not clear at
the present time. Finally, the set of operators and
states developed in this work form a base from
which the remainder of the program, outlined in
the Introduction, can now be carried out.
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