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Elementary excitations of solid ortho-hydrogen diluted with para-hydrogen
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The elementary librational excitations of solid molecular hydrogen are calculated using
the recursion method of Haydock. This method permits a correct treatment of the prob-
lem of dilution with para-hydrogen. Agreement is obtained with previous calculations of
the excitations of pure ortho-hydrogen. It is found that the gap in the single-excitation

density of states decreases much faster than the ortho concentration. The specific heat
and the NMR line shapes and relaxation times are calculated and compared with experi-
mental data. For ortho concentration less than 0.5, the data suggest the existence of exci-
tations with energies several times smaller than those of the collective librations we con-
sider.

I. INTRODUCTION

At low temperatures, solid hydrogen exhibits a
phase transition in which the molecular axes be-

come aligned along directions related to the crystal
axes. Because of the small moment of inertia of
the hydrogen molecule, the molecular angular
momentum J is a good quantum number in the
solid. This means that para-hydrogen molecules
are all in the isotropic state J=0, and cannot par-
ticipate in the orientational ordering. Ortho-
hydrogen molecules are in states with J=1, and
interact primarily through the electric quadrupole-
quadrupole (EQQ) interaction. ' Ortho-para con-
version is sufficiently slow to allow the system to
be studied as a function of the fraction X of ortho
molecules. The problem is thus to study the prop-
erties of a randomly diluted lattice of molecules
with unit effective spin and with quadrupolar in-

teractions.
For pure ortho-hydrogen (X =1), there is a tran-

sition at 2.8 K to the four-sublattice Pa3 structure,
in which the molecules are aligned along the body
diagonals of a face-centered-cubic (fcc) lattice.
[This orientational transition actually drives a crys-
tallographic transition into the fcc lattice structure;
hydrogen crystallizes in the hexagonal-close-packed
(hcp) lattice structure. The fcc structure however
is apparently stable or metastable at low tempera-
tures, allowing the orientational transition with
which we are concerned to be observed indepen-
dently, ]

The orientational phase transition in pure ortho-
hydrogen has been studied theoretically using mean
field theory, a restricted-trace method, and di-

agrammatic techniques. Elementary excitations in
the ordered phase (librons) have been computed by
several authors, ' using closely related approxi-
mations based on Green's-function or operator
equation-of-motion formalisms. Berlinsky and
Coll" used an approximation developed by Coll
and Harris' to compute the effects of anharmoni-
city on the libron density of states. The correction
to the libron energy averages about —20%, al-
though the high-energy edge of the libron band is
shifted downward considerably more than this. As
a result, the total width of the band is reduced by
almost 50%.

These corrections brought the theory of pure
ortho-hydrogen at zero temperature into good
agreement with experiment. ' On the other hand,
understanding the effects of para-hydrogen dilution
has remained an outstanding problem. As X is re-
duced from one, the temperature of the transition
falls toward zero at X=0.5. For X &0.5, there is
evidence of orientational freezing at very low tem-
peratures (T &0.3 K), from NMR studies. '" Sul-
livan et al. have hypothesized that the system is
similar to a spin-glass, ' but some controversy
remains about the sharpness of the transition into
the orientationally frozen state. '

For X & 0.5, the orientational state is apparently
closely related to the Pa3 phase of pure ortho-
hydrogen. Nevertheless, Harris' found that a sim-
ple scaling of libron energies with X failed to
reproduce the rapid variation of NMR relaxation
times with X. Similarly, Harris, Berlinsky, and
Meyer introduced a phenomenological X depen-
dence of the average libron energy to fit the ob-
served X dependence of the orientational specific
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heat. The low-temperature properties of hydrogen
are largely determined by the gap in the libron
density of states, and this gap apparently shrinks
very rapidly with decreasing ortho concentration.
Scaling theories based on the X=1 density of
states are unable to reproduce this rapid X depm-
dcncc.

Diehl and Siem have used a coherent-potential
approximation (CPA) to compute the libron densi-

ty of states for 0.8&X&1. ' Their computations
suggest that dilution with para-hydrogen has a
drastic effect on the shape of the libron band and
on the size of the gap. It is therefore desirable to
find a computational method which is valid for ar-
bitrary ortho concentrations and which does not
involve an effective-medium approximation. The
dilution problem is difficult because the introduc-
tion of random para-hydrogen substitutions breaks
the crystal and sublattice symmetries. The prob-
lem may no longer be simphfied by taking Fourier
transforms. Even when the usual linearizing or
decoupling approximations are made, one is left
with the problem of diagonalizing a Hamiltonian
of dimensionality on the order of X (the number of
ortho molecules); the matrix elements of the Ham-
iltonian will depend upon the random occupation
of the lattice with ortho molecules.

The recursion method of Haydock has proved
very useful for problems of this type. In the recur-
sion method, a new basis is found in which the
Hamlltonlan assuIDcs thc form of a Hamlltonlan.
for a one-dimensional system. The physical prop-
erties of the system are then extracted from this
"chain" Hamiltonian. We refer the reader to Ref.
22 for a complete description of the recursion
method.

In this paper we calculate the elementary excita-
tions of solid hydrogen for X & 1, using the recur-
sion method. Qf necessity, we work within the
harmonic approximation. Thus, the substantial
anharmonic effects computed by Berlinsky and
Coll" are not included in our calculation. These
effects could be introduced in a crude way by
reducing the EQQ coupling constant by 20%. We
prefer to use the best estimate of the actual EQQ
coupling constant, bearing in mind that anharmon-
ic corrections apply.

Let a,p, . . . label ortho-hydrogen molecules, and
let 0 =(8,$ ) describe the orientation of mole-

cule a with respect to a fixed laboratory coordinate
system. Then the Hamiltonian we wish to consider
is a function of the orientations of all of the mole-
cules:

Here q, J(Q~) is the quadrupole moment tensor for
molecule a, defined in terms of the molecular
charge density p(r) as

qJ ——fp(r)(r;rj/2)d r .

Fg~ is the EQQ interaction tensor between mole-
cules a and p, and (a,p) signifies that the sum-
mation is over nearest-neighbor pairs of molecules
(with each pair counted only once). Throughout
this paper, indices i,j, . . . may take on the values

(x,y,z) for the three basis directions of the labora-

tory coordinate system. Summation over repeated
indices is implied. %e restrict the Hamiltonian to
nearest-neighbor interactions for simplicity; this is
a good approximation because the interaction ener-

gy varies as r, where r is the distance between
molecules. The interaction tensor is given by

F,qgj =80 (35; 5ki+35g5 k+35;k5 i

—155"nknI —155 In nk —155 I, n n~

—155kin(nj —155jk iv) ni 155' n—; nk

+ 105n;nj nkni ), (2)

where Ro is the distance between nearest neighbors
and n; is a unit vector along the direction of the
intermolecular separation. Because the interaction
tensor is traceless, 5;JF~g~ =0, we do not need to
subtract the trace from the quadrupole moment
tensor. In particular, if e;(Q~) is a unit vector
oriented along the direction 0 of the internuclear
axis of molecule a, we may take

q;;(0,)=(2eg)e;(0 )e, (Q ) . (3)

Here, eQ is the conventionally defined quadru-
pole moment of a hydrogen molecule. This form
of the EQQ interaction is much easier to use in nu-
merical calculations than the more usual form in-
volving spherical harmonics. Following conven-
tion, we will generally express our results in units
of I"=—„(eg) /Ro . Experimental values for I in
the solid range from 0.82—0.85 K.

Our calculation proceeds in four stages, which
are described in detail below. First, we generate a
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cluster of molecules corresponding to a randomly
occupied lattice with the desired ortho concentra-
tion X. [In what follows, "molecule" will always
mean "ortho molecule, " since the para molecules
do not enter into the Hamiltonian (1) in any way. ]
Second, a mean-field "ground-state" configuration
is found by iterative relaxation of the orientations
of the molecules in the cluster. Third, a truncated

EQQ Hamiltonian is transformed into two chain
Hamiltonians (tridiagonal matrices) for each of a
number of the molecules in the cluster. Finally,
these chain Hamiltonians are used to calculate
single-excitation densities of states and physical
properties such as NMR relaxation times and line
shapes, and specific heats.

Generation of the cluster. A small segment of an
fcc or hcp lattice is given periodic boundary condi-
tions and randomly populated with ortho mole-
cules. A typical cluster contains 64 lattice sites,
but clusters containing up to 512 lattice sites have
been studied to determine the effects of cluster
size. The recursion method works well with these
small clusters bccausc 1t 18 scns1t1vc mainly to thc
local environments of the rnolecules used to start
the chain calculations (see below). Periodic boun-
dary conditions allowed us to calculate chains for
all of the molecules in the cluster. This is desir-
able because the next stage of the calculation,
determination of a ground state, is time consum-
ing.

Determination of a mean field gro-und state. The
full orientational wave function is an unknown
function of all the molecular orientations. In a
mean-field (Hartree) approximation, we assume
that the wave function may be approximated by a
product of single-molecule wave functions,

+(Q~, Qtt, . . . ) =Q (Q~)P(Qp) . . (4)

The approximation to the ground state is found by
varying the molecular wave functions so as to min-
imize the expectation of the Hamiltonian (1). In
the fully occupied (X=1) case, all of the molecular
wave functions are the same within each sublattice,
The problem is thus reduced to a small number of
variables and may be solved analytically. For
X~ 1, we must determine each of the molecular
wave functions individually.

Because the Hamiltonian (1) is a real function of
the set of molecular orientations, we may choose
Rll of our wRvc funct1ons to be I'cR1. Any I'cal
molecular wave function within the space J=1
may be written in the form

p (QN)=v 3g; e;(QN), (5)

where g; is a unit vector describing the. orientation
of the molecular wave function and e; is a unit
vector pointing in the direction 0 . This wave
function is normalized so that J(dQ/4r)tP =1.
The expectation value of the quadrupole moment
tensor for this wave function is

(qti(Q~)) = J(BQ~/4m)[f (Q~)] qq(Q~)

5eg(g,'(J + 2S,J)

As pointed out above, the term in 5;J may bc ig-
nored. The expectation value above is then seen to
be just —, times the quadrupole tensor for a mole-
cule oriented along the direction g; .

To find the mean-field ground state, we must
find the set of vectors g~, (~i, . . . which minimizes
the expectation value of the Hamiltonian. It is not
possible in general to find the absolute minimum
of a function of so many variables. Rather, we
find a local minimum by choosing the vectors

so as to minimize the expectation value
of the Hamiltonian with respect to small variations
of each vector's orientation. The condition for
such a local minimum is that each vector g; be the
eigenvector with lowest eigenvalue, of the local
field tensor

~;,=gag(q„(Q, ))
P

, QQ—FgiÃÃ
8

where the sum runs over nearest neighbors of mol-
ecule a. Our procedure for generating the mean-

field ground state is as follows. Initial orientations
of the vectors g; are chosen either randomly, or
according to the Pa3 structure (that is, along the
appropriate body diagonals of the fcc lattice). We
then step through the lattice, executing the follow-

ing procedure for each molecule a:

(a) The local field tensor P;~ is constructed, us-

ing the vectors f; of neighboring molecules.
(b) Its three eigenvalues A g, A v, A

g
and the cor-

responding eigenvectors. g;, ri~, g; are found and
stored. c choose A~ gA& pA~ Rnd wc choose
the eigenvectors to be orthonormal.

This whole procedure is repeated until the vectors

g; remain constant (within rounding error). This
generally requires several hundred passes through
the lattice, unless X)0.9 and the starting configu-
ration was Pa3 (i.e., the ground state for X = 1).
This part of our calculation is mathematically
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equivalent to iteratively relaxing a lattice of classi-
cal quadrupoles by rotating them one by one to the
orientations of lowest energy in the fields produced
by their neighbors. We note that Klenin and
Pate have performed Monte Carlo studies of ar-
rays of classical quadrupoles.

Transformation to chain Hamiltonians. Now
that we have found an approximation to the
ground state of the system, we wish to calculate the
elementary excitations. Within the mean-field ap-
proximation, the excitations consist simply of rais-
ing an individual molecule u from its lowest state
in the local field (corresponding to the eigenvector

g; of the local field tensor) to one of the two
higher states (corresponding to the eigenvectors g;,
rt;). The energies of these two excitations of mole-

cule u are

Eg = —,eg (A g
—A

g ),

E„=—,eQ(A„—Ag) .

As our more detailed calculation will show, these
are good approximations to the elementary excita-
tions for low ortho concentration X. This is ap-
parently because the high degree of disorder intro-
duced into the Hamiltonian by diluting the occupa-
tion of the lattice, results in highly localized eigen-
states. In the case X=1, however, the crystal
symmetry ensures that the true excitations are in-

finitely extended (librons). Indeed, the mean-field
approximation gives the energies of all excitations
as 19I', while Green's-function and equation-of-
motion treatments of the X=1 problem ' gen-
erally predict a band of excitations about 15I"
wide, centered on 19I .

At this stage, we could introduce two annihila-
tion and creation operators for each molecule,
which would take the molecule from its lowest
state in the mean field, to its two upper states.
The operators ~ould obey approximately bosonlike
commutation relations. The equations of motion
for the operators would be complicated, but could
be simplified by replacing some operators by their
expectation values in the ground state. This is a
standard linearizing-type approximation (see Raich
and Etters for an example of this procedure for
the case X=1). Within one such approximation,
the equation of motion of a creation operator
would contain only the creation operator itself, and
creation operators for other molecules. Creation
operators for the elementary excitations would be
found by taking appropriate linear combinations of
the creation operators of the individual molecular

Ka~(a,X)(a,X)

while the off-diagonal elements are given by

4 ( g)(t)v)
——(eg/10) (g; gq +g; gq )

X+g~jgl('9kgt +gk'9l ) ~

(9)

(10)

Let the normalized eigenstates of the Hamiltonian
be given by V~~;), satisfying

X~( )(i) V(t) =&"V(.)
(j)

The recursion method allows us to evaluate expres-
sions of the form

I n (E)f(E)dE,

where f(E) is an arbitrary function and the "local
density of states" is defined by

2

n (E)=+5(E—5'&) g V~(;) U(;)
P (i)

(12)

(13)

Here, U(;) is the "starting vector" for the chain
calculation. By choosing appropriate starting vec-

tars, the integral (12) may be related to the various

physical quantities we wish to calculate. Nex
and Haydock provide details of the method, as
well as a procedure for generating the approximate
local density of states, itself.

states.
An entirely equivalent procedure, which avoids

the introduction of much notation, is to restrict the
Hamiltonian to the subspace of product states of
the form (4), in which one molecule is in one of its
two mean-field excited states, and all other mole-
cules are in their mean-field lowest states. There
are 2N such states, where N is the number of ortho
molecules. The restricted Hamiltonian is diagonal-
ized within this 2N-dimensional space to find the
elementary excitations. These excitations are then
assumed to be approximately superposable (that is,
they are assumed to be approximately bosonlike),
just as in the operator equation-of-motion formal-
ism outlined above.

The eigenstates and eigenvalues of the 2N-
dimensional restricted Hamiltonian are found with
the aid of the recursion method. We will label the
2i)i states defined above with indices like (i), (1), . . .
where (i)=(a,X) with a labeling one of the N mol-
ecules and X labeling one of the two states (g or rt)
for each molecule. The diagonal elements of the
restricted Hamiltonian are simply given by
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We choose our starting vectors localized on one
excited state of one molecule,

»f (i)=((z,X)
(l ) O othcrwisc (14)

There are 2N different such starting vectors, corre-
sponding to the 2N possible choices for (a,X) in

the equation above. In practice, we choose a sub-

set of the N molecules (typically 30 molecules), and
calculate two chain-Hamiltonian matrices for each
molecule in the subset. For each starting vector

(14), we obtain a local density of states n(,z)(E).
«t A (Q ) be an operator depending only on the

orientation of molecule a. Within the subspace of
states with J=1,A (Q ) has matrix elements

BQg
~g„=I [i/3g; &;(Q )]A(Q }[~3il;e(Q )] .

(15)

«t
~ p) and

~
v) be two single-excitation states of

the system. The matrix element of the opeiator
& (Q~) between these two states is then

()M ] A(Q, ) ) v) = y V~(;) ((i) [ A(Q, )
~
(j))V{/

I'~~= l'(N, g) l (,g)

I'~~ =~(a,g) ~(,g)

I' l 5
dT „(i3

=I'e"I+I'vn" tv+I'~v" ~s+Pv~" v~+(&' Pg —I'vv )~—u (16)

I

Hei'e cp ls tlie inolai specifiic heat, Il ls the gas
constant, and P= 1/kT. Ttm results of' this calcu-
lation may bc compared with cxpcrlmental mea-
surements of the derivative of pressure with respect

(17) to temperature through the relation '
g)

Calculation ofphysical quantities The .t.otal den-

sity of states for one excitation may be obtained by
averaging all of the local densities of states:

M
N(E)= g g n(~z)(E),

N= 1 g=g', q

where M is the number of molecules for which
chains have been calculated. While this density of
states is not itself a physically measurable quantity,
it provides important information about the excita-
tions. For example, the gap in the density of states
(the energy below which the density is zero) gives a
good indication of the temperature below which
the specific heat will fall off rapidly, the NMR
spin-lattice relaxation time will rise rapidly, and
thc NMR linc shape will assume its zero-tem-
perature form. The total density of states calculat-
ed for X=1 may be compared directly with the
calculation of the same quantity by Green's-
function or equation-of-motion techniques, thereby
providing an important test of both the numerical
and theoretical aspects of the calculation. In addi-
tion, the specific heat is directly related to the total
density of states:

where () is the molar volume. This relation de-
pends upon the (excellent) approximation that the
translational degrees of freedom (phonons) are
frozen out at the temperatures of interest, and
upon ihe assumption thai the anisotropic interac-
tion cnclgy varies as U

The nuclear spin Hamiltonian for a hydrogen
molecule may be written

~„=—ima, (I,")+I"')—i c(I")+I(2))J
+5hdI;"'(5; 3n;n )I '. .— (21)

Here I;"' and I ' are spin operators for the two
protons, n; is a unit vector oriented along the inter-
nuclear axis, J,. is the molecular angular momen-
tum, and Bo is the apphed magnetic field (which
we assume is along the z direction). For the free
hydrogen molecule, Ramsey has measured
a =4.257 76 kHz/6, c = 113.8 kHz, and d =57.67
kHz. The expectation value of I; is zero for any
real orientational wave function (the orbital angu-
lar momentum is quenched). This means that the
term in c has no effect upon the NMR line shape.
However, since J; can have nonvanishing matrix
elements between two different real wave functions,
this term can contribute to the NMR spin-lattice
relaxation rate.
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The NMR absorption lines contributed by mole-

cule a are located at the frequencies

(22)

The double brackets signify a thermal average of
the expectation value of the enclosed operator. We
may compute this thermal average using Eqs. (16)
and (17):

(23)

(24)

'rhe three densjties of states appearing in these for-
mulas are defined in terms of the eigenvectors and

eigenvalues of the restricted Hamiltonian by

n (~ g) (E)=g 5(E —I'")(V~(~ g) )

n(~ v)(E)=+5(E—8'")( V~(~ v) )

n(~ g„)(E)=+5(E 8'")V~(—g) V~(

The first two of these are simply local densities of
states as defined in Eq. (13) above. The third
function involves the product of the projections of
eigenvectors onto two different starting vectors
which are not connected by the restricted Hamil-
tonian. Unlike the first two functions, we do not
have a convenient means of evaluating it and we

make the approximation of setting it equal to zero.
This is reasonable because, unlike the local densi-

ties of states, this quantity is not positive definite
and thus tends to cancel in averages. Moreover,
when the eigenvectors become highly localized (for
X & 1) the lack of a matrix element connecting the
two starting vectors makes this term inherently

small. In the case X=1, the starting vectors may
be chosen to make this term identically zero by
symmetry.

For comparison with experiments on polycrystal-
line samples, we must average the NMR line shape
over all possible orientations of the applied mag-
netic field. In order to perform this "powder aver-

age,
"we construct a list of several hundred direc-

tions distributed randomly over the unit sphere.
These are taken to be the relative orientation of the
magnetic field with respect to the local vectors g;,

ri;, and g; . The several thousand line frequencies
calculated in this manner [via Eqs. (22)—(25)] are
accumulated in a histogram. This histogram gives
the powder-averaged NMR absorption line shape.
When the temperature is much smaller than the
gap in the density of states, the quantities pg and

pv calculated from Eq. (24) are essentially zero.
The powder-averaging procedure then yields the
familiar Pake-doublet line shape.

Homma ' has calculated that the major contri-
bution to the NMR relaxation rate T&

' comes
from the Raman process, in which a change of nu-
clear Zeeman quantum number is accompanied by
the annihilation of one elementary excitation and
the creation of another. The term in d in the
Hamiltonian (21) causes transitions with hm =1 or
2, where m is the nuclear Zeeman quantum num-
ber, while the term in c causes transitions with
hm =1 only. The relaxation rate is

—1~1 hm 1 +2Nhm

where the transition rates for the individual pro-
cesses may be calculated using the golden rule:

—gp(i) I &f I
~l i & I'p«y=&r) .

(27)

Here p (i) is the thermal probability for the given
initial state, and p(E) is the total density of states
(not the local density of states). The matrix ele-

ments of the Hamiltonian (21) within the subspace
(J=1,I =1) may be found using Eqs. (16) and
(17). When these matrix elements are squared, we
find positive-definite terms which may be comput-
ed from the local densities of states, along with in-

terference terms which are difficult to evaluate.
As in our computation of the NMR line shape, we
make the approximation of neglecting the interfer-
ence terms. The reasons for the validity of this ap-
proximation are the same in both cases. Equation
(27) then gives
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w = JdE(e~ 1—) 'j [n( g)(E)] ~P ~~
—8 g~ +[n( v)(E)] ~A vv

P—'g~

+[n( g)(E)n( v)(E)]( (
A gv ( + [4 vg ~

)J . (28)

When evaluating this formula, we have averaged the squared matrix elements of each term over all possible
orientations of the applied magnetic field. Our final result is

Ti ' nh——JdE(e~ 1) —'( [[ni~ si(E)] +[ni~ vI(E)] I96d +[n~~ g~(E)ni~ v~( E)](—,d +» c )) . (29)

Similar formulas for the case X=1 have been ob-

tained by Homma ' and Harris. ' The integral ap-
proximations developed by Nex only allow the
evaluation of integrals over the local density of
states, not its square. To evaluate formula (29), we
therefore numerically integrate the square of the
smoothed local density of states as calculated by
the procedure given in Ref. 28.

I

30 molecules, or over all of the occupied sites,
whichever was smaller. All of the results present-
ed here were calculated using fcc lattice structure
and the Pa3 starting configuration. Several calcu-
lations carried out with hcp lattice structure
and/or random initial configurations showed that
these factors have a small numerical effect upon
the quantities we calculate, but that the qualitative
differences between theory and experiment are not
affected.

III. RESULTS

Aueraged density of states. Figure 1(a) shows the
total density of states calculated for X=1, with

the Pa3 structure. Note that all densities of states
calculated in this paper (both local and total) are
for a single excitation, and should not be confused
with the density of states for the solid as a ~hole.
This calculation was performed both with a cluster
containing 512 molecules and a chain of length 9,
and with a cluster containing 64 molecules and a
chain of length 5. For comparison, Figs. 1(b) and

1(c) show the densities of states calculated by Mer-
tens et al. using an equation-of-motion technique, '

and by Ueyama and Matsubara using a Green's-
function technique. The chain calculation accu-
rately reproduces the size of the gap and the width
of the one-excitation band, as well as the overall

asymmetry of the density of states. The density of
states calculated with the 64-molecule cluster is not
as smooth as that calculated with the 512-molecule
cluster, but otherwise the agreement with the ear-
lier calculations is not degraded. Calculations for
X & 1 require much longer computations, because
the ground-state configuration must be found and
because we must average over many molecules to
obtain physical quantities. Therefore, the re-
mainder of the calculations were performed on
clusters containing 64 lattice sites, and with chains
of length 5. For quantities which depended on
averages over molecules, we averaged either over

0.1 5
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0,05-

0,15—

0.10-
O

I- 0.05—
x
UJ
O I I I I I

0,15 — (c)
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10

E/I
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FIG. 1. Single-excitation densities of states for solid
ortho-hydrogen, calculated by various methods. (a) Re-
cursion method (present paper), using the 512-molecule
cluster (solid line) and using the 64-molecule cluster
(dashed line). (b) Operator equation-of-motion method
(Ref. 10). (c) Green's-function method (Ref. 8).
I =0.83 K is the quadrupole-quadrupole coupling con-
stant.
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FIG. 2. Average single-excitation density of states as
a function of the ortho concentration X.

Figure 2 shows the variation of the average den-

sity of states with ortho concentration X. The
band shape changes considerably with X, and the

gap decreases in size much more rapidly than X.
Local density of states. In the Pa3 structure at

X=1, all molecules are in equivalent sites. Thus
the total density of states [Fig. 1(a)] for X=1 is
also the local density of states for any molecule. It
is interesting to compare this with typical local
densities of states for low X. In Fig. 3, we show

the two local densities of states associated with a
molecule in a cluster with X=0.34. The arrows in
Fig. 3 indicate the mean-field approximations to
the excitation energies, from Eq. (8). The local
densities of states are approximately 5 functions (in

the sense that the full width at half maximum is a
small fraction of the peak location), located near

the mean-field estimates for the excitation energies.

[By contrast, the mean-field estimates for X = 1,
Fig. 1(a), are both at energy 19 I'.] This indicates

that the excitations have become essentially local-

ized on single molecules. One consequence is that
increasing the cluster size or chain length would

not have much effect upon the results presented

here.
Specific heat. The specific heat was calculated

for the same sequence of ortho concentrations us-

ing formula (19). In Fig. 4 we show these results,

along with some experimental results from Jarvis

et al. and from Haase and Saleh. Our results

have been expressed in terms of (dP/dT)„, using

formula (20). A value of 22.9 cm was used for
the molar volume. Here and throughout, we

used I =0.83 K. The agreement is good for X
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FIG. 3. Typical local densities of states for a mole-
cule in a cluster with ortho concentration 0.34. The two
curves give the local densities of states associated with
the two excited substates of this molecule. Arrows indi-
cate the mean-flicld-theory estimates of thc excitation en-

ergies. Note the large change in vertical scale from Fig.
2.

near 0.7, a direct result of the drastic reduction in
the gap in the density of states, brought about by a
relatively mild dilution of the system with rota-
tionally inert paramolecules (see Fig. 2). For
X&0.5, the agreement with experiment is poor.
The experimental (dP/dT)„curves lie consistently
above the theoretical ones, suggesting that the cal-
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" 0.2-,~

CL

0.06—

1.0
TEMPERATURE

FIG. 4. Derivative of pressure with respect to tem-

perature at constant volume, as a function of tempera-
ture. The solid curves show our calculations for various

ortho concentrations X: a, X=0.34. b, X=0.55. e,
X=0.70. d, X=0.88. e, X=1.00. Circles (X=0.47)
and triangles (X=0.71) indicate the experimental data
of Jarvis et al. (Ref. 25). The dashed line (X=0.32) and

the dotted line (X=0,45) indicate experimental data of
Haase and Saleh (Ref. 32).
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culation overestimates the size of the gap in the
density of states by a factor of about 3.

NMR relaxation times. Figure 5 shows our cal-
culations of T~, using Eq. (29). Also shown in
Fig. 5 are some representative experimental data
from Washburn et al. ' at a Larmor frequency of
10 MHz, from Sullivan and Pound at 310 MHz,
and from Ishimoto et al. at 22 MHz. Other re-
cent T~ measurements are consistent in order of
magnitude with this data. ' We note that within
our model, T, is frequency independent and a
strictly decreasing function of temperature. The
data for X=0.7 appear consistent with a frequency
independent Tj, at least in the low-temperature
limit. However, the experimental relaxation times
are 2 orders of magnitude smaller than those
predicted from Eq. (29). The specific heat is very
directly related to the density of states, so the
agreement between theory and experiment for this
quantity suggests that the calculated densities of
states are approximately correct. This tells us that
the simple Raman process calculated above is not

the dominant contribution to spin-lattice relaxation
for X & 1. It would be desirable to have more data
for very low temperatures and ortho concentrations
close to one.

%MR line shapes. Figure 6 shows the NMR line
shapes we have calculated for X=0.55. The se-

quence of shapes is similar to that observed experi-
mentally, but the temperatures at which the line

shapes are observed are about 5 times smaller than
the temperatures we calculate (see Ref. 18 and

references therein). This discrepancy in tempera-
tures for X &0.55 is comparable to that noted for
the specific heat, above. While the Fake-doublet
shape which we calculate for very low tempera-
tures is not seen experimentally at these low ortho
concentrations, it has been shown that ortho-para
conversion heating places a practical limit on the
temperature to which hydrogen may be cooled, on
the order of 100 mK.

IV. DISCUSSION

10'
I

I

I

10
2

10—

In this paper we have described a calculation of
the excitations in solid hydrogen which treats the
problem of dilution in a fundamentally correct
manner. In the limit X—+1 our calculation agrees
with previous calculations which relied on the
crystal symmetry of the X=1 case. Also, as the
dilution becomes large, the density of states we cal-
culate clearly shows signs of strong localization, as
would be expected for this highly disordered sys-

1.5 K 3.0 K

-1
10

Q.P K 5.5 K

10
0.0 1.0 2.0

TEMPERATURE (K)

FIG. 5. Nuclear spin-lattice relaxation time T~ as a
function of temperature and ortho concentration X.
Solid lines show our calculations. Dotted lines are ex-
perimental data taken at various Larmor frequencies.
Curve g (X=0.67): Sullivan and Pound (Ref. 34) at 310
MHz. Curve b (X =0.71): Ishimoto et al. (Ref. 35) at
22 MHz. Curve c (X=0.67) and curve d (X=0.32):
%'ashburn et el. (Ref. 17) at 10 MHz. Experimental
data have been drawn as curves rather than points for
clarity.

2.5 K 4.P K

FIG. 6. NMR absorption line shapes calculated for
ortho concentration 0.55, as a function of temperature.
The horizontal width of each graph is 6d =346 kHz.
The vertical scale is arbitrary.
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tern. The calculation therefore interpolates suc-
cessfully between two different regimes.

Some qualitative features of experimental results
are reproduced, in particular, the rapid decrease in
the size of the gap in the density of states with
ortho concentration, as manifested in the specific
heat. The agreement becomes increasingly poor as
X decreases toward 0.5. The calculation fails com-
pletely to reproduce experimental NMR relaxation
times, NMR line shapes, and specific heats for
X&0.5. The experimental data suggest the ex-
istence of excitations with energies several times
lower than the lowest excitations found by our
method. In an earlier paper, ' we introduced a
phenomenological model of "effective-spin —one-

quadrupole" excitations, to explain experimental
NMR line shapes and specific heats. Consistent
with the discussion above, agreement with experi-
ment required a significant density of states with
energies below 1 K.

This suggests that a model involving small col-
lective oscillations about a fixed mean-field
ground-state configuration does not apply for solid

'

hydrogen with ortho concentrations less than 0.5.
The phase diagram strongly suggests that the rota-
tional freezing which occurs at very low tempera-
tures for X & 0.5 is of a fundamentally different
character than the long-range ordering which oc-
curs for Xp0.5. This is supported by x-ray mea-
surements by Gates et a/. , which indicate that
the crystal structure remains hcp at all tempera-
tures for X &0.5, thus precluding the possibility of
remnant I'a3 structure. It seems possible that the
lack of long-range order for X &0.5 results in in-

stability for any mean-field ground-state configura-
tion.
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