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The relativistic Hamiltonian and Dirac current density for a charged particle in a rotat-

ing frame are derived. Simple results are obtained correct to all orders in the particle

velocity and to first order in the rotation velocity. An extension is made to the many-

electron current and is used for calculating the relativistic corrections to the magnetic

field generated within a rotating superconductor (London moment). With the use of sim-

ple solid-state models, estimates of the corrections for common elemental superconductors

are presented. The results predict several hundred ppm corrections for most supercon-

ductors and are of direct significance to high-precision measurements of h/m, now under

way at Stanford. In addition, comparison of the experimental values with the accepted

value of h/m, for the free electron at rest will provide a direct measure of the expecta-

tion value for the kinetic energy of the electron wave functions averaged over the Fermi

surface, a quantity not observed directly by any other technique.

I. INTRODUCTION

The first successful measurements of the mass-

to-charge ratio of the electron using accelerated
conductors were performed by Tolman' and co-
workers in the 1910s and 1920s on oscillating nor-

mal metallic cylinders. These clearly demonstrated
that dectrons are the current carriers in metals. In
1933 Becker and co-workers first predicted that a
resistanceless conductor rotated from rest would

exhibit a magnetic moment proportional to its spin

speed. The effect came to be known as the Lon-
don moment after the phenomenological theory of
F. London and H. London was applied by F. Lon-
don to a rotating superconductor. He predicted a
uniform magnetic field
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within the rotating superconducting lattice. It was

6rst observed by Hildebrandt and has been veri-

fied many times to an accuracy approaching a few

percent.
Beginning in 1967 and continuing into the

1970s, high-precision measurements of h/2e have
been based on the ac Josephson effect." ' A
resolution better than 0.1 parts per million (ppm)
has been achieved, which is by far the most accu-
rate determination of any property of a solid-state
system. At that time several suggestions were
made for measurements of him in rotating super-

conducting rings, ' again taking advantage of the
unique properties of the macroscopic quantum na-

ture of the superconducting state. These are based
on balancing the magnetic flux from an integral
number of flux quanta n(Itc/2e) against the Lon-
don moment flux (2mc/e)coS, where S is the
cross-section area of the ring. Several experiments
have measured h/m in this way, ' ' with the most
accurate result reported by Parker and Simmonds'
in 1970 at a resolution of 400 ppm. It is in agree-
ment with the accepted value for the free dectron
at rest obtained by other techniques. As Joseph-
son pointed out, the arguments for the derivation
of equations containing It /trt have been based on
Galilean invariance rather than Lorentz invariance.
Two possible sources for relativistic corrections
have been mentioned: the relativistic mass shift
due to the Fermi velocity' ' and surface effects
characterized by the metallic work function. '7

Technological advances in magnetic shielding, '

superconducting quantum interference device
(SQUID) magnetometry, ' cryogenic rotors, and
high-precision dimensional metrology ' during the
past decade, primarily associated with the relativity
gyroscope experiment, now allow a significant
improvement in these measurements. With experi-
mental work now underway at Stanford to perform.
measurements on rotating superconducting rings at
a resolution approaching 1 ppm, we felt @ thor-

ough theoretical examination of these relativistic
corrections to be necessary.

In this paper we present a formalism for calcu-
lating the relativistic corrections involved in mea-
surements of h/m using rotating superconducting
rings. It is shown that the mass-velocity correction
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for the conduction electrons on the Fermi surface
dominates all other effects, usually by an order of
magnitude. However, it is not the Fermi velocity
but the expectation value of the kinetic energy
which enters into the final expression. The por-
tions of the electron wave functions near the atom-
ic cores dominate this expectation value. Our esti-
mates predict several hundred ppm corrections for
many superconductors.

Outlining ouf approach, in Sec. II we give a
brief summary of the nonrelativistic treatment of
the rotating superconductor. In Sec. III the rela-
tivistic Hamiltonian for a charged particle in a ro-
tating frame is derived. A simple result is ob-
tained correct to all orders in the particle velocity
and to first order in the rotational velocity.
Motivated by this result, in Sec. IV we derive the
Dirac current density in a rotating frame, again to
first oldci' ln thc I'otatlollal vcloclty, hilt othcrwlsc
exact. An extension to the relativistic many-body
electron current is made in Sec. V and used in Sec.
VI, where we derive the form of the relativistic
corrections to the London moment and make esti-
mates for various elemental superconductors using
simple solid-state models. In Sec. VII we complete
the derivation of the theory for the rotating-ring
experiment to measure h/III and include discus-
sions of other smaller corrections.

II. THE LONDON MOMENT

The London moment in a rotating superconduc-
tor results from the Coriolis force on a charged
particle in a rotating frame of reference. This
force is derived from a vector potential which ap-
pears in the Hamiltonian of a particle in the rotat-
ing frame on an equal footing with the ordinary
electromagnetic vector potential. In the nonrela-
tivistic limit this Hamiltonian is

the last term is the potential energy of the particle
in the scalar potential 4(r). The electrodynamics
of a superconductor is described by Maxwell's
equations together with London's phenomenologi-
cal equation for the supercurrent, "

2~se A.

The electromagnetic properties of a rotating super-
conductor are the same as those of a stationary su-
perconductor but with A replaced by the effective
vector potential A+A„. In the case of simply
connected bodies the Meissner effect implies

8+8„=O,
which means that the rotation gives rise to a mag-
netic field

In the case of thick multiply connected bodies, the
rotation modifies the flux quantization constraint

@+A„ 1 =n-
2e

This equation forms the basis for the experimental
measurements described in Sec. VII.

One should mention at this point that the elec-
tron mass in Eq. (6) is the bare mass and not the
effective mass which appears in the dynamic and
thermodynamic properties of electrons in the solid.
The easiest way to sIx: this is by starting from the
full Hamiltonian of the solid including the elec-
trons, the ions, and all their interactions.
Transforming to the rotating frame, one finds
again that each electron "feels" the additional ef-
fective vector potential given in Eq. (3), regardless
of its complicated interaction with the ions and the
other electrons.

H = p ——[A(r)+A„(r)]
2@i C

——,m(01 Xr) +e4(r),
where —e is the charge of the electron,

A (r)= — (01Xr),
e

and Po is the angular velocity of the rotation. The
second term represents the centrifugal potential
which. gives rise to a radial electric field balancing.
the centrifugal force induced by the rotation, and

III. THE RELATIVISTIC HAMILTONIAN

To obtain the relativistic expr'ession for the
Coriolis vmtor potential A„we have to start from
the relativistic Hamiltonian. The Hamiltonian of a
charged particle in a general noninertial frame of
reference, characterized by the metric tensor g&„,
was derived by DHVitt and Papini,

H = C(g gOig0j g00) ™c —g Kk&I)
ij 1/2 2 2 kl 1/2

~ ~—eg'Jgojn;. +eAo,

where mk
——pk —(e/c)Ak, A0 is the scalar potential
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4(r ), and summation over repeated indices is im-

plied. The metric tensor g&„ in the case of a uni-

form rotation with angular velocity Po is given by

goo
———1+—(c0 X r)',

C2

1
gko=gok= (~ X—r)k

The inverse metric tensor gI" is

This pfoccdufc apploxilnatcs thc tfansfofmation to
thc nonlncftial fotatlng franM by R local Galilean
transformation at each point r. The last two
terms on the right-hand side of Eq. (13) form a
world scalar and are unaffected by such a transfor-
mation.

Returning to Eq. (12), we want to express it in
the form

I

H = '»5 c +c p ——A+Q (cgXr)
e

+e4, ( 14)

choosing a so that H' wiB be identical to H in Eq.
(12) to lowest orde~ in cor/c. Comparing the first
derivatives of Eqs. (12) and (14) with respect to
(co X r), one finds

a=, (m'c'+c'm )'~'=, =-y, (15)
me me

= ——(co X r)k(PoX r)» for k+1 .
C2

Inserting (9) and (10) into Eq. (8), one gets
I/2

(»'0 X r )

X[»r» c +c rr (c0Xr)k(co—Xr)»nkm»]

(~Xr)'
1 — (co X r )»m»+e4 .

C

p ——A (ra X r)+e4 (12)

Thc nonfclatlvlstlc llmlt of this cxprcssion 18 thc
Hamiltonian in Eq. (2). It is worth pointing out
that Eq. (12) can be obtained in the classical way
from the Lagrangian of a charged particle,

' 1/2
U

L, ——me I —— +A v —e+
2

{13)

by replacing v = v + cg X r in the ftirst term only.

We shall now neglect terms of order (ror/c) . In
the experiment under consideration this amounts to
an error of order 10 ', far below the experimental

accuracy. This leaves us with a Hamiltonian

Which tlcats thc paftlclc velocity rclativisticaHy

and the rotational velocity classically,
' 2 1/2

8= m2e4+e2 p ——'A.

where yme is the relativistic kinetic energy and E
is the total relativistic energy. Note that y reduces
to the familiar form [1—(u /c )j '~ for a free
electron. Thus, the Coriolis vector potential of a
relativistic particle is, up to the first order in the
rotational velocity» given by

A~=y (PoXr) . {16)

We have shown that relativisticaHy the effect of
rotation retains!ts equivalence to the presence of a
magnetic field. This is not a trivial conclusion and

is strictly true only for nonrelativistic rotation ve-

locities. The application of a magnetic field to a

system adds to thc Halmltonian a term involving

the current, whereas a uniform rotation involves

thc IDoIDcntum. Hovrcvcr, as ln nonr'clativlstlc

theory, the two can still be equated provided thc
relativistic IDass shift 18 included. Thus %'c IDay

verite

because of the isotropic nature of the relativistic

mass shift. The proportionality constant is no

longer independent of the particle dynamics as it
%RS ln thc nonfclatlvistlc case» ho%'ever» as %'e

show below, it carries interesting information on

thc particle dynaimcs.

We shall now derive the same result in a dif-
ferent way, which will allow us to make direct
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contact with quantum mechanics. This is not
necessary for the discussion of the London mo-
ment itself, because quantum mechanics play no
explicit role in London's original derivation, once
the phenomenological equation (4} is postulated.
However, we shall ultimately have to calculate the
relativistic mass shift of an electron in the solid,
and this can be done only in the framework of
quantum mechanics.

We start from the Dirac relativistic expression
for the currerit vector

j =

eclat

a l(,
where f is the Dirac 4-spinor, and the 4&(4 ma-

trices o,k are

0 ok
k= ~ O

where ok are the Pauli spin matrices. The com-
ponents of j are the spatial components of the
current 4-vector j&, which transforms under a
Lorentz transformation as the 4-vector x&. We
shall transform j to a rotating frame of reference

by performing at each point a transformation to a
coordinate system moving with velocity

where QL, ,P, are 2-spinors of the "large" and
"small" components, respectively. We use the
Dirac equation to express f, in terms of Pz, ,

c(o'n )
41. (21)

where E'=E —mc, E being the total relativistic
energy of the particle. Inserting Eq. (21) into Eq.
(20) one obtains after tedious but straightforward
manipulations

v(r) = co g r and taking the Galilean limit of this
transformation. The discussion of Eq. (12) justifies
this procedure, showing that the resulting error is
of order (for/c) T. he result of this transformation
is

j =ecgtag e(—a) X r)ftf
The spinor g consists of two "large" and two
"small" components. Let us rewrite Eq. (19) in
terms of these components:

tAniti. +(n'4l. } A &~x.i—ti. o'4l. ](2mc +E' e4)—
—e(eiXr) iti. gL,+, , P~~ n2 — o"p&&A

(2mc +E' e4)i- c (22)

The last term in the first bracket is the spin
current, which vanishes when the total current of a
Cooper pair is considered. For the same reason,
the term with 0"V gA does not contribute in our
case. The remaining terms can be combined to-
gether to give

8C

(2mc +E' e4)—
X Pi p ——'(A+A ) Pi, + H c.

c

I

to all orders in u/c (where u is now the particle
velocity). Using E'=E —mc and c n
=(E —e4 ) —m c, one finds that the expression
in large parentheses is identical with y of Eq. (15).

For our purpose here, we shall now approximite
Eq. (24), keeping terms to order (u/c)~. We first
neglect E' —e4 in the denominator of the third
term. Next we assume that E' is the nonrelativis-
tic limit of E —mc; namely, it is the energy ob-
tained from the Schrodinger equation. In this ap-
proximation, E' —eC is equal to the kinetic energy,
and the second and third terms can be combined to
give

mc
&

E'—e4 c m'

2mc2 2mc (2mci+E' —e4)
mc

1
E —e@

e +mc (25)

X(BXr) . (24)

This expression is exact to first order in mr/c and

Note that classically, the expression in the first
parentheses is 1+u /2c, which is the value of y
to lowest order in (u/c) .
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V. EXTENSION TO RELATIVISTIC
MANY-ELECTRON CURRENT

Equation (23) represents the relativistic current
density of a single electron in a rotating system,
and Eq. (25) is the vector potential associated with
the rotation, again, for a single electron. In gen-
eralizing to a many-electron system, like the con-
duction band in a metal, we must calculate the
relativistic mass correction taking into account the
many-body interactions in a solid. In addition, we
have to keep in mind that the mass correction y
depends on the electron kinetic energy and is there-
fore not the same for all the electrons in the Fermi
sea. In this section we show that the mass correc-
tion is given by an averaged value of y over only
Fermi-surface states. We argue that although each
electron in the conduction band participates in the
supercurrent, the contributions from all but a nar-
row band around the Fermi surface cancel out ex-

actly.
First we consider the simpler case of free elec-

trons in a one-dimensional ring. The ground-state
energy is

2 1/2
24 2E= I dp m'c'+c' p- '-

—&F cL

which is obtained from Eq. (28) by substituting
p'=p —Q, and noting that the integrand is odd
and therefore there is no contribution from the in-
terval [—p~,pF]. Equation (29) shows that al-

though all of the states are shifted by Q, the
momentum states which contribute to the net
current are restricted to states within Q of p~. In
general, Q «pF and the current can be written, to
a very good approximation, as

(30)

If we ask what vector potential must be applied to
the rotating ring to obtain zero current, one finds
the London moment

y(pF)(co X r)g,
e

(31)

where y(pF) is evaluated at the Fermi momentum.
To include interactions we note from Eq. (15)

that only the kinetic-energy part of the total energy
contributes to y, so that the generalization of Eq.
(31) becomes

2ce pF 2epFI= —&g ~ —,4 . . .~, + ~ (~Xr)g.
(~ c +c p~)

e
p — (~xr)g

cL
(~xr)g ~

mc

I = dE' 'd
Thus,

I = dp
PF —ec (p —Q)

~F L[m c +c (p —Q) ]'~

(27)

+—(co X r)g
L

(28)

where Q =eglcL. It is instructive to rewrite this

expression in the form

ec2 PF+Q pld

( +c p' )'~

(26)

where L is the circumference of the ring, pz is the
Fermi momentum, P is the flux through the ring
which is related to the vector potential by P =A gL,
and the index 8 is the tangential component of the
vector. We have used two spin states per momen-
tum state. The current at T =0 is given by

(32)

In a three-dimensional system the derivation of Eq.
(30) requires integration over the Fermi surface,
and thus the expectation value of the potential en-

ergy in Eq. (32) becomes an average over all
Fermi-surface states. In a general lattice the can-
cellation within the Fermi sea remains exact as
long as p and —p are time-reversed conjugate
states.

To be more precise, we note that the energy in-
terval around the Fermi energy which is involved
in the London moment is determined by the vector
potential as in Eq. (29) only when the occupation
of the momentum states is given by n (p) =1 for

~ p ~
&pF and n(p)=0 for

~ p ~
&pz. In a super-

conductor this sharp momentum distribution is
modified by the pairing interactions. The energy
interval which contributes to the supercurrent can
be found exactly in the limit T~ T, . To this end,
let us evaluate the gap function b, ( r ) in this limit.
Generally,

2e+ pF(c7)Xr)g &
(29) b(r)= Vg Ul"(r)ul(r)[1 —2f(EI)],

1

(33)
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u}(r)=u}e"'+q'", (34)

where u}(r ) and u}(r ) are the wave functions used
in the Bogoliubov transformation, f(E})is the
Fermi-Dirac distribution at the quasiparticle ener-

gy EI, and I labels the single-particle states. Con-
sidering a weak current, characterized by wave vec-
tor q, we have

(~r) u el} 1 —(} ) v

serting Eq. (32) into Eq. (6). Thus

BI
E —e(a)

2mC av
(40)

where ( )„denotes an average over the Fermi sur-
face. The second numerator in Eq. (40) is also the
average kinetic energy of electrons on the Fermi
surface, and we can equivalently write

where

k
2 E

1/2

(35)

BL

(p2),„/2m
=y —1.

mc
(41)

When the electrons in a metal are described
reasonably well by a tight-binding approximation,

f2
((2+g2) }/2

2m
(36) (~r) ye( k R (~r g )

l

(42)

(}is the normal-state single-electron energy mea-
sured from the Fermi energy, and AI is the gap
parameter which depends on T. Substituting Eqs.
(34) into (33), we find

~ + +

b, ( r )= Ve ' q
' ' g u}u} tanh

I

In the limit (}}1/2m) 1.q « /}.} and T~T, :
u, ~l, u, ~h(T)/2g}, E,~g, , so that

(37)

VI. ESTIMATE OF THE RELATIVISTIC
CORRECTION

From Sec. V, we now obtain an expression for
the relativistic shift of the London moment by in-

tanh( }l2kT, )
b, ( ) = Vh(T) ' q ' ' y (38)

2k

The function in the summation is strongly peaked
at g}=0 with a half-width of nearly 4kT, which is
equal to the gap energy 5 at T =0. In this limit
Gorkov 0 has shown the gap function b.( r) to be
exactly proportional to the Ginzburg-Landau order
parameter g( r). Since the supercurrent is given by
the order parameter as

2

A
2im mc

one concludes from Eq. (38) that the states contri-
buting to the net supercurrent are restricted to an
energy interval of order 5 around the Fermi ener-

gy. This is generally larger than the energy inter-
val determined by Q in Eq. (29) but still very small
compared to the Fermi energy itself, so an average
of y over the Fermi surface provides a good ap-
proximation to order b, /e~ (usually 10 —10 ).

where tp is an atomic wave function centered at the
lattice site R;, and the kinetic energy is given by its
atomic expectation value. This is the case for the
d electrons in the transition metals. In general, an
electron in the solid is described by a Bloch func-
tion,

Qk(r)=uk(r)e'"'' . (43)

The expectation value of the kinetic energy may be
written in this case as

fi
(k~

~

T
~

k~ ),„= (k~ ),„
2m

+ J d'r «} (r)V'««, (r(),„.
(44)

On the right-hand side we have dropped the cross
term, which is proportional to kF and therefore
cancels out after averaging over the Fermi surface.
The first term in (44) is the Fermi energy, and the
second term is a core contribution which will now
be smaller than in the atomic case, because the
wave function is spread over a larger volume of the
Wigner-Seitz cell.

We find that the dominant contribution to (p ),
or (4), comes from the atomic cores. To get an
estimate of the magnitude we have computed ( T)
for the valence electrons in the free neutral atoms.
From Eq. (40) we calculate e (C}) using the tabu-
lated wave functions and the self-consistent poten-
tials from the Herman-Skillman tables. ' The re-
sults for several superconducting elements, includ-
ing simple (s-p) metals and transition (d-s) metals,
are shown in Table I. The large values of the ki-
netic energy, over 100 eV for the Sd orbital in Ta,
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imply mass shifts of 100—200 ppm. From Eq.
(44) we see that in totally neglecting the con-
densed-state interactions, errors in ( T &,„oforder
the Fermi energy p are expected, about 10—20%
for most superconductors as shown in Table I.

To obtain a more reliable estimate for an elec-
tron in the simple metallic solids, we performed a

calculation of (T& for Be and Al using the
orthogonalized-plane-wave (OPW) technique.
Thlls

I +opw& =
I
k~ &

—X I
a& &ale& (45)

T
& +opw I +opw &

r

(+4~2m} 1 —2X &a
I
kF &' + X &~l T la&&a 14&&(l}14&

a,P

1 —g (a
I
k~&'

a

where a and P are over the normalized atomic core
states and the Fermi wave vector k~ is obtained
from the bulk density. As above we actually cal-
culate (a

I
e@1P& and obtain (a

I
T

I P& as
(a I

E' e@
I P &,—and in addition the overlap in-

tegrals (a I k~) are needed. For beryllium we cal-

1

culate ( T & =24.9 eV (y—1=49 ppm), and for
aluminum ( T & =32.6 eV (y —1 =64 ppm). Both
results are not very different from the estimates
based on free atoms, and they support the con-
clusions that the expected corrections to the I.on-
don moment exceed by 2 orders of magnitude the

TABLE I. Estimates for the relativistic corrections y—1 are calculated from the
Herman-Skillman tables. For each valence electron the expectation value of the potential en-

ergy ( V) is numerically integrated. Then using the tabulated nonrelativistic valence energies
E (NRL), ( T ) and y —1 are computed using Eq. (40) or (41). All energies are given in eV.
The ratio of the Fermi energy p to the calculated ( T) is also shown as an estimate of the
error in y—1.

Element Shell No. E(NRL) —( T )
y—1

(ppm) pl(T)

0.92

3$

3p

43.3
23.1

10.0
4.8

33.3
18.2

65
35

0.35
0.64

3d
4$

130.2
29.7

121.7
23.5

238
46

0.04
0.22

114.5
30.6

6.1

5.4
108.3
25.1

0.04
0.16

72.3
34.4

10.2
4.7

62.1

29.6
0.14
0.29

Sn 111.7
62.6

12.5
5.9

99.2
56.7

194
111

0.10
0.18

145.6
45.4

8.5
6.2

137.0
39.1

0.04
0.13

Pb 101.1
55.6

12.1
5.7

89.0
49.9

0.11
0.19
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estimated experimental accuracy. Detailed solid-
state calculations using existing techniques will
therefore be needed to interpret fully the measure-
mcnts.

(In a recent independent calculation, Liberman
has found for Ta that ( T }=110.8 CV and for Pb
a value of ( T}=74.3 eV. Again both are in good
agreement with Table I. He has used a model in
which a neutral atom is embedded in an electron
gas with a neutralizing positive background which
possesses the same Fermi level as thc metallic lat-
tice. )

VII. THE ROTATING-RING EXPERIMENT

The measurements of the experiment are best
understood by studying a generalized Ginzburg-
Landau current-density equation

2

j = . , (P'V P PV g~) — —(A+A„),
2lym ym c

which includes both the effective vector potential

yiiic ~ ~ hcj.d 1 =n
en, ~ 2e

—f 8dS

(51)

For a thick superconductor we can always find a
contour I' many penetration depths away from
all surfaces. Then j =0, and for co =0 the expres-
sion reduces to exact flux quantization, as has been
derived previously with relativistic rigor. For
co@0 we obtain the London moment equation (6),
where now A„ includes the relativistic correction y
as in Eq. (48).

We wish next to derive an expression for h /m
using Eq. (50). Since the cross-section area Sr will
enter, it is necessary to use thin films, unambigu-
ously deflning Sr to high precision. For films that
are thin compared to the penetration depth, the
current density is constant. For each n we can
then find an co„such that j =0 throughout, and
thus Eq. (50) becomes

Ac 2/ppgc
(52)

2e e

A„=y (co X r)
e

and the relativistic mass correction

(4&)

(49)

where we have assumed a planar geometry. For
the moment, we have also assumed that the super-
current is the only source of the vector potential A.
Using Eq. (52) for any two consecutive values of n,
we get

h/ym =4Srhco,

@+A„ 1 . (50)

Next, requiring f to be a single-valued function
and using Stokes's theorem, we obtain

where all the Fermi surface states are averaged as
discussed in Sec. V. The supercurrcnt j is ob-
tained from g, the superconductor order parameter
with phase y such that g=

~

1}'j
~

e'~. The mass m~
and charge e~ are, respectively, 2m and 2e, where
the factor of 2 was first experimentally determined
in 1961 (Ref. 34) and results from Cooper pairing.
The density of the superconducting electron pairs
is

~ f ~

= , n„and the supercurre—nt velocity is
proportional to Vy.

Integrating around a closed path I contained
within a multiply connected superconductor, we
obtain from Eq. (47)

where hco=—m„+& —m„. In the nonrelativistic limit
(y= 1), this simple relation was the original
motivation for the Stanford rotating-ring experi-
ment.

Returning again to Eq. (51), we now consider the
effects of all contributions to the field 8, writing

(54)B=B,+8,+8„+8„,
where 8, is generated by the supercurrent, Bo is a
constant background field, B~z the field from static
electric charges, and 8 the field from the electric
dipole sulfacc cliargc IRycrs 80 cali lic. cRS11y

dismissed since only differences between equations
of different n are used in arriving at Eq. (53), thus
cancelling any constant term. Both of the remain-
ing terms, however, vary linearly with spin speed,
as does the London moment. The term 8

&
origi-

nates from static electric charges on or in the ro-
tor. Any charges on the ring can be eliminated by
grounding the ring. %e can derive 8„& from a
vector potential,
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A„p(r)=-
c

@'in a
BNO'

c

and the fiux through the dipole layer is

-+ 2c04inf BdS= ma
c

(61)

where the integration extends over the volume V of
the rotor and p( r ') is the charge density. Averag-
ing the current over one revolution of the rotor,
only the azimuthal component remains, and Eq.
(55) can be written as

A„p(r)= 4,rr(r},
c

where the effective electrostatic potential 4,rr is
given by

) I p(r')r'dV'
~ r[r —r'[

(56)

(57)

4;„=4+ad, (58)

where 4,„,=0. Under rotation the charge sheets
become current sheets, and we have

4~.
1n coo' Jc

4m C'in a(ona)=-
c c d

where we have assumed a radius a at the surface.
Note that 8;„(=8,«} is small since the field must

retuni to its original value after the second layer

and that 8;„~gB„~.Thus to a. good approxima-

tion,

8„& can be measured by observing the field as a
function of spin speed with the rotating ring above
its transition temperature.

The contribution B~~ from electric dipole sur-
face layers originally suggested by Josephson' (and
more recently by Brady ) can also be included in

Eq. (55) and (56), but is best understood by noting
that a strong magnetic field B„~is formed within
the surface dipole layer. Consider a superconduc-
tor spinning about an axis of rotational symmetry.
Its average electrostatic potential is constant within
the latt1ce and zero outs1de, 11neafly chang1ng ovef
a distance d (-5 A) through the surface dipole
layer. %e see that this geometry corresponds to an
inner positive-charge sheet followed by a surface
negative-charge sheet a. distance d apart. Each has
surface charge density o. such that 4;„, the inner
electrostatic potential, is given by

which in general becomes

inB dS= a).SI- .
d'pole C
layer

The vector potential from this field does not con-
tribute to the supercurrent j, because d &(g,
where the coherence length g is about equal to the
Cooper-pair radius. However, since the rotating-
ring supercurrent is measured with a sensing loop
outside of its surface dipole layer, the dipole-layer
flux is detected by the readout. Note that for non-

cylindrical geometries, although 8;n g& B~~, Bin is
not zero and in fact the flux through the entire
cross section is of order the dipole-layer fiux.
However, the vector potential corresponding to Bin
extends throughout the superconductor and is thus
"sensed" by the supercurrent and driven to zero.

We now combine Eqs. (51},(56), and (62) to ob-

tain
r

2$PPlC ~@in ~ jeff
1 + Q)g S

8 /pic QNvc

(63)

of

h/I'=4Si hen,

(65)

where we have substituted for y from Eq. (41) and
then kept only first-order terms in energies divided

by mc . This equation is directly applicable to the
experimental results. For jeff & 1 V, as expected
from preliminary measurements, a small correction
of less than 2 ppm will result. The inner crystal
potential 4;„is predominantly a bulk property of
solids as first discussed by Bethe and later by
Tull, and has a value between 10 and 20 eV for
nearly all solids producing negative corrections of
20—40 ppm. It may be estimated by neglecting
condensed-state interactions and smaller surface ef-

fects using the Herman-Skillman tables and the
Bethe relation
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4;„=4m N n(r)r dr,
3 0

(66)

where X is the number of atoms per unit volume
and n (r) is the total electron density for each
atom. Approximate values of e4;„, good to
10—20%, for each of the elemental superconduc-
tors in Table I are shown in Table II, and com-
bined to give overall estimates for m'/m. We find
the ( T),„ term is typically 5 —10 times larger than
e4;„resulting in a mass increase approaching
several hundred ppm.

The experiment now under way at Stanford will
make measurements on 50-mm-diameter rings, 200
0
A thick by 15 pm wide, deposited on precision
quartz rotors. These are levitated and spun using
helium gas, and modulated through their transition
temperatures to measure varying values of n In.
Eq. (64) Sr is known to 2 ppm and b,co will be
measured to better than 1 ppm.

Element
T

(eV)
eC'in

(eV)

m'/rn —1

(ppm')

Be 25' 20

Al 33'

73 13 120

Nb 92 16 150

80

130

Ta 180

TABLE II. Estimates of the total relativistic mass
shifts for elemental superconductors based on the expec-
tation values of the kinetic energy from Sec. VI and ap-
proximate values of the inner potential.

Pb 74 120

VII. CONCLUSIONS

In conclusion, the relativistic theory for rotating
superconductors presented here predicts that
corrections of several hundred parts per million to
the classical value of the London moment should
be observed in rotating-ring experiments. Already,
independent experimental measurements allow
the calculation of Planck's constant divided by the
free electron mass, with an uncertainty of 0.2 ppm
through the relation

'From OP% calculation.
From Liberman calculation.

'To nearest 10 ppm.

theoretical values which are to be compared with
the experimental results. These together with the
experimental measurements will also yield an in-
dependent value for h/m, approaching a resolu-
tion of several parts per million or better.

h cu
m, 2R„
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