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The parametrization to describe the magnetic properties of superconductors, ~&(t) ~2(t), and

x3(t), is extended to the case of magnetic superconductors in such a way that the effects of
average polarization are subtracted. In this extension, K&(t), x2(t) approach the. same value x in

the limit t 1. It was sho~n that when the electromagnetic interplay is the main mechanism in

the magnetic superconductors, x&(t), K2(t) [and K3(t)] are related to the nonmagnetic x;(t}'s

by the simple scaling rule near the critical temperature. In this case, it is also shown that the

magnetization curve can be obtained by a suitable scaling of fields and ~ from the nonmagnetic

ones. Especially, types of the magnetization curve are classified not in terms of x but in terms

of the the scaled a' (=— /K[ 1 +4rr X(r) 1'/2, where x(r) is the static spin susceptibility} near the

critical-temperature region. Several relations related to the magnetic properties are also present-

ed. The practical usefulness of our formulation lies in the fact that it presents a simple way of
obtaining the magnetization curves of magnetic superconductors from those of nonmagnetic

ones.

I. INTRODUCTION

Recently, many rare-earth ternary compounds such
as 8 Mo6SS and 8 Rh484 have been found to show
superconductivity as well as magnetism. ' ' These
compounds are well described by the mode16 8 where
the localized spins of rare-earth ions interact with the
superconducting electrons mostly through the elec-
tromagnetic interactions; the spin-dependent interac-
tion (so-called s-f interaction) is considered to be
weak. '~ " Using this model we have made several
theoretical predictions, 7'2 '6 some of which have
been favorably supported by experiments. '7 '9

In these materials, both superconductive and mag-
netic properties are intertwined in the observed
phenomena. Therefore it is desirable to have some
idea how to separate the properties of the rare-earth
ions (the magnetic system) and those of the conduc-
tion electrons (the superconducting system).

If two systems are independent, the magnetic sys-
tem is described by the spin Jof the rare-earth ion,
the magnetic moment g p, ~JN, the Curie temperature
T, the Curie constant C [—=(g ps) 2J (J + 1)N/3 ks]
and the stiffness constant D of the exchange interac-
tion, while the superconductive system is described
by the magnetic unit qh/XL, (0) [@: the unit flux
hc/2e, Xr. (0); the London penetration depth at
T =0], the critical temperature T„ the Landau
parameter ~s = )tL(0)/$(0) [$(0) is the coherent
length at T =0], and the BCS coupling constant
VÃ(0). The Ks is related to the Landau parameter K

at T = T,: their relation depends on impurity and in
the pure limit, x =0.96K~. Because of the interplay

r)(4n M) 1

i)»-H„p [2tr 22(r) —1]

H(t) [/@ /)tL(2r)] =K3(r)/%2(2rr),

(1.2)

(1.3)

(with t = T/T, ), has been well estabhshed. Here p is
a structure constant. They are particularly very use-
ful in determining the Landau parameter trs (or ~),
since ~t(t), trq(r), and tr3(t) approach the same value
~at 1~1.

This paper aims at generalizing the parametrization
xt(r), tc2(r), and I&3(r) tn a suitable form for tile
analysis of the magnetic superconductors. Briefly
speaking, we generalize the definition of parameters
by subtracting the average polarization effects of the
localized spin from magnetic quantities. This
parametrization helps us to put the observable quan-
tities (such as magnetization, static susceptibility,
etc.) in a simple form. This generalization will be
presented in Sec. II in a model independent way. In
the consideration in Sec. II, we do not specify the
form of the interaction among the superconducting
electron and the localized spins. The only assumption
used there is that the superconductor is of the type II
and that the phase transition at 0,2 is of the second

between the superconductivity and magnetism, the
above fundamental parameters are intermingled in a
complex manner.

In case of the analysis of the magnetic properties of
nonmagnetic superconductors, the usefulness of
parameters trt(r), K2(r), and tr 3(t), defined by

H„(r)/H, (r) = J2~,(r),
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order. Therefore the «, (t)'s are formulated on a

quite general basis. The «t(t) and «&(t) approach
the same value K in the limit t 1.

In Sec. III it will be shown, by use of the boson
method, that «;(t) 's at T near T, are related to the
nonmagnetic «;(t) by a simple scaling rule when the
electromagnetic interaction is the main agent control-
ling the interplay of magnetism and superconductivity
[that is, if s fintera-ction is negligibly weak or if s-f
interaction effect can be treated by renormalization of
parameters such as Xt, , $(0), etc.]. In this case, it

will be also shown that approximately the same shape
of the magnetization curve as that of the nonmagnet-
ic case is obtained by a suitable scaling of fields and
K. In other words, at T near T„ the type of the mag-
netization curve is classified not by ~, but by a scaled
« = «/[ I +4ttX„(t) ]'i [X„(t): static spin susceptibil-

ity of the normal state]. Since X„(t) increases when

T comes close to the magnetic transition temperature,
this indicates that the transition from type II/2 to
type II/1 or from type II to type I takes place with

decreasing temperature. This has already been
predicted by the numerical calculation in Ref. 6, and
also has been observed by experiments. " It will be
shown in Sec III. that «;(t) «(i =1,2, 3) as t l.
Some of the results of Secs. II and III are obtainable
also in the Ginzburg-Landau (GL) theory, which will

be presented in the Appendix. Section IV is devoted
to the concluding remarks.

II. FREE ENERGIES AND THE
GENERALIZATION OF ~; 's

Let us consider a general expression of free energy
for magnetic superconductors. We start with a Ham-
iltonian

H(x) = y" (x) p i '0 +—'—A(x) y(x) —
Xyt (x)yt (x)yt(x) yt(x)

hc

+ B(x)~—B(x) M(x) ——'M(x)yp( —i'7)M( )x+Hg(x)
Sm. 2

(2.1)

Here A is the vector potential, B(='7 x A) is the
magnetic induction field, M(x) is the magnetic mo-

ment given by

M (x) =g tt s QS„5( x —R„) (2.2)

with S„being the localized spin and R„being the lat-
tice point, yo is the spin-spin interaction mediated by
all the interaction except the dipole interaction, and

H&(x) is the other interactions among conduction
electrons and localized spins. When the s-f interac-
tion is effective, H~ should contain the interaction of
the form lp op M.

When the ground-state energy is evaluated, it is
convenient to separate (2.1) into two parts; the mag-
netic energy E (x),

which we write

j (Af) = —XL'(t)c( i '0)AI(x—),
C

(2.6)

where c ( i V ) is a n—onlocal kernel relating to the
photon self-energy. '

The entropy of the system in the mean-field ap-
proximation is given by

E (x) = —Wp —j (At) Af+E„„(x) . (2.5)
C

Here Wp is the condensation energy (i.e., A =0) and

Af = A —(tc/e) Vf with f being half of the phase of
the order parameter. In (2.5), the second term is the
bilinear term of At and E„„(x)includes all the
higher-power terms. We have

E (x)= B (x)-B(x)M(x)
8m

—,M(x)yp( —i V)M(x) (2.3)

TS(x) = T&, +&sT& InZ lH~(x) I

AT

—H (x)M(x) (2.7)

with yo being the effective spin-spin interaction
modified by H& in the superconducting state, and the
electronic energy E,(x) defined by

E,(x) =(oly'. Iv+ —"A p-ic
and

Z (y) = sinh — y sinh —y
2J+1 . 1

2J
, 2J

where S, is the entropy of the electrons,

(2.g)

—Xytyt ytyt +%(x) l0) (2.4) H„(x) =B(x) +yp( —i V)M(x) (2.9)
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Note that I(x) and M(x) satisfy the foBowing equa-
tions:

'7 x5(x) j (Af)+4m V' xM(x), (2.10)

y"=go+4

and is parametrized as

(2.19)

jiM(x)ii=g~, JNa, „"' iH. (x) i

8
(2.11)

Here BJ is the Brillouin function,
%hen the vortex lattice structure is specified and

the vortex density n is given, one can calculate E (x)
and E,(x) in principle and then the Gibbs free-
energy density under an applied field H is obtained as
a function of n:

G, (n) =— d'x E (x)+E,(x)

—TS (x) — I-I 5(x) (2 12)
4m

where V is the volume. Note that

The result is

HG„(H) =— +E (y",H)

where

F (y",H)--, y"m, (H)'

—ks TN lnZJ [H + y"m„(H) ]
gPaJ
kaT

The n dependence of the applied field H is
obtained from (8/Bn) G, (n) =0;

(2.21)

(2.22)

' d'x8(x) =n@ .
V Jv

It is convenient to calculate the average Gibbs free
energy of the spin-system interacting average flux
Il @, since some polarization is induced by Il f:

(2.23)

G, (n, )-G„(H„), (2.24)

H(n) =—1+n g(n) 4n m-(n)
2 8pf

At H, 2, the phase transition is of the second order,
therefore the following conditions must be satisfied:

F (yo, np) = 2yom2(n) —ksTN
1

x InZg [n &+yam(n)]
tPaJ

(2.14)

SG, SG„(H)
~H "c2

(2.25)

with

m (n) =g ps JNBJ [n g+ yom (n) ]
fgaJ

i

(2.15)

86,
aH

86„
9H

4m 4m
(2.26)

[H +4am„(H) ], (2.27)
4m 4m

F (yang) =—m(n) .
85$

Then we can write G, (n) as

(2.16)
the condition (2.25) reads as

n, @= H, 2+4n m, (H, 2) (2.28)

G, (n) = " g(n)+F (yo, np) — ' —"H . Since y) yo at H =H, 2, it follows from (2.15),
(2.18), and (2.28) that

m (n, ) = m„(H, 2) (2.29)
The g (n) means the effective magnetic field due to
vortices The H, i.s defined by 8'0+ TS, =H,2/8~.
The form of H,2/Sm and g (n) depend on the models
and approximation methods.

The free energy of the normal state is obtained
from (2.12) by putting j =0, H,'/Sn =0, E „=0,
and I= H+4m R„(H), and by yo replacing yo. Here
yo is the effective spin-spin interaction in the normal
state. The polarization m„(H) satisfies

m„(H) =g p, sJN&J [H + y"mn(H) ] (2 IS)
AT

n, @ + yo(mn, ) =H, 2+ y "m„(H, ) (2.30)

H,'= n, y[g (n, ) —n, g]

On the other hand (2.23) for H =H, 2 gives

—I +n, [g(n, ) n, y] =0—,
1 8

~&c

(231)

(2.32)

Using the relations (2.29), (2.30), and yo
——yt[at

H =H, 2 and considering (2.17) and (2.21) with
(2.19), we can rewrite the conditions (2.24) as
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where (2.28) and (2.29) were used. It is convenient
to rewrite these t~o relations as

x(n) =xs(n)/[I-xs(n)], (2.41)

g(n, ) =n, @ 1+ Hc
(2.33)

Bg (n, )
Bng

(2.34)

n, (t)P/H, = J2«)(t) (2.35)

These are the relations through which (H, /n, g)
determines the ratio between the critical flux and ef-
fective magnetic field and its variational rate at H, 2.

These relations hold true in both the magnetic and
nonmagnetic cases, because they do not exp/icitly con-
tain the polarization term m (H,2). This motivates us
to generalize «~(t) as

Xs(n) = —m (n)
dn $

The relation 7 o= vo at He2 and Eq. (2.19) give

x{n,) =x.(H, 2) .

Equation (2.37) leads to

B4n M, BH (n)
BH Bng

%e thus have

4n [x,(H, 2) —x, (H, 2) ) =4m[x, (H, &) x(—n, ) ]

(2.42)

(2.43)

(2.44)

In other words, the flux n, $ in the magnetic case re-
places the H, 2 of the nonmangetic case. Since, as
(2.17) shows, the averaged energy of the spin system
is already subtracted in the definition of g (n), the ef-
fect of the spin contributes to g (n) only through the
spin fluctuation, say xz(n). Therefore modification
of «~(t) due to the magnetic effect is expected to be
small ~hen T && T .

From (2.35) and (2.34), we have
From (2.23), we have

BH(n)
Bnqb n n, -

—[I +47rx(n, ) ] . (2.45)

1g(n, ) =1-
Bn,g

'
2«~((t)

(2.36) BH(n) Bg(n) + i B 4mx(n)
Bn $ Bn $ 2 Bn P 1+4mx(n)

The generalization of «2(t) is performed in the fol-

lowing vray. The magnetization for a superconductor
is given by

(2.46)

When (2.36) is considered, (2.46) for H-H, 2 gives

4w~, ny H(n) .-
Then (2.28) and (2.29) give

M, (H, 2) = m„(H, 2) = m (n, ) .

Define

x„(H) = m„(H),

(2.37)

(2.39)

(2.40)

BH(n) 1 I
( ) (247)

Bn y n n, I +-4n x(n, ) 2«)(t)

~here
&2

w(n, ) =—1 —«f(t)n, y g(n, ) .
Bn,g

Now (2.45) gives

w(n, )
4m[x, (H,2) —x„(H„)]= [1+4wx„(H„)] —,

2«f t I+4+X„H,q
—w n,

(2.49)

Since the deviation of w (n, ) from one is a smail-term proportional to the second derivative of g (n, ), we are

motivated to rewrite (2.49) as

1
4wfxg(H2) —x„(H2)]=[l+4nx„{Hg)],

)/[ )]
Then

2«/(t) 1 —w(n, )pt =1+
2«j(t) —[I +4wx„(H„)] w(n, )

(2.50)
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which differs from 1 by a smail-term proportional to the second derivative of g (n, ). Let us now note that the left-
hand side of (2.50) is (d/dH)(M, M-„) where M„ is the normal-state polarization m„(H) and that x„vanishes to
a nonmagnetic case. Comparing (2.50) with (1.2), we see that a natural definition of ill(t) is

4lr [x,(H, &)
—x„(H,&) ]- [1+ 4' x„(H,2) ]— 1

where the constant p is the value of p(t) at t = 1;

Obviously, this definition leads to the conventional
definition of p and K&(t) in the nonmagnetic cise
(i.e., x, =o).

It follows from (2.50), (2.52), and (2.53) that

l~l(1) =ill(1) .

We define tlat(t) in the usual way

H, /[@/x.'(t) I- ill(t)

(2.54)

where X„(a,l) is the static differential susceptibility
for the applied field 0,2.

From (2.26) and (2.27), we have

(G, -G, ) =ttt„(H) M, (H) . -(2.57)

There may exist many kinds of generalizations of x 's
in the magnetic superconductor, In the present gen-
eralization, the overall localized spin polarization is
subtracted from the definition.

In thc nonmagnetic supc1conductors K s ap-
proach the same value of x at t = l. According to
(2.54), in the magnetic case, too, tel(t) and ll2(t) ap-
proach the same value of x at t = 1. The considera-
tion in this section is quite general. In Sec. III, ere
will study how tl is related to ill(1) and how p is
modified from that of nonmagnetic case by assuming
that the s-f interaction is very weak so that the elec-
tromagnetic interaction is the main agent for the in-
terplay between magnetism and superconductivity.

F1nally, %c present some rclat1ons of p1act1cal use-
fulness. From (2.28) it is easy to derive a relation
for thc temperature dcr1vat1vc:

d[n, (t)@] dH, 1(t)

ergy of the Meissner state), we have

0' +"c2
dH [m„(H) M, (H—) ]

Sm

Especially if m, (H) is hnearly approximated, m„(H)
=x(0)H, one has

0'
8m

— ' =—'x(O)a', — ~ daM (H) (2.60)

HI. SCALING RULE OP x's

To study the modification of tt&(t) 's in the magnet-
ic superconductors, me take a specific model. Name-
ly, ere assume that the superconducting system and
the localized spin system are coupled to each other
only through the electromagnetic interplay, and that
other interactions are treated by the renormalization
of the fundamental parameters of the above system
[such as VN(0), Xt, , $0, T„C,D, T, etc ]. There-
fore the Ht term is neglected in (2.1) and H,'/8m and
the nonlocal kernel c (k) in (2.6) are the same as the
ones 1Q thc nonmagnetic case.

In order to obtain the effective magnetic field g (n)
in (2.17), we solve the Maxwell equation (2.10) and
the molecular-field equation (2.11):

~ xn(x) - T(A,)+4~V x M(x), (3.1)

)M(x)( =gp, sJN

»J II(x)+70(—t&)M(x) I

(3.2)

where yo are assumed to be equal to yo and is simply
denoted by 70 and 4n j /c is given by (2.6). When
the vortices form a lattice, ~c have

When T ) T (T: the Curie temperature for nor-
mal ferromagnetic state), no spontaneous magnetiza-
tion appears. Then by taking into account (2.24), we
have

pH 2G„(a=o) —G, (H, —— ~ da[trt„(a) -M, (a)] .

(2.58)

Since G„(H =0) 0 and G, ~e-o -H,1/Srr (the en-

with p = hc/2e. Here el is the unit vector along the
third axis and g; is the position of the vortex center.

Hereafter me assume that 8 and M are parallel to
the third axis and me omit the vector notation. The
spatial averages of 8 (x) and M(x) are tt $ and m (n),
slid tllelf devla'tioll ls delloted by b (x), lit (x),
respectively. Here n is thc vo1'tcx dcns1ty. Then %vc
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can linearize Eq. (3.2) as
1

m (n) =gtt sJNBg [ny+ go{0)m (n)], (3.4)
gpaJ
AT

Then we can evaluate the Gibbs free energy (2.12).
After using the same linear approximation as in Eqs.
(3.4)-(3.12) and following the procedure presented
in Ref. 6, ~e get

m (x) = a—j(n) [b (x) + yo( i V—' )m (x) ]
T

(gtt, )'J(J+1)
3k'

(3.5) G, (n) = " g(n)+F (yo, nlrb) — ' —" H,

(3.13)

g(n) =n@+F (0)+E,.„(n),
r

aj(n}= 8J [ny +y(0 0) m( n)] . (3.6)
3J, ' gpsJ

J+ j. AT

Then we can solve Eq. (3.1) as follows:

b(x) = Xb(x —(;)—n@

E,.„(n)- „,—d'xE,.„(x) . (3.15)

(3.16)

In (3.14), It, b, and m are taken up to second order
of them. The core energy is evaluated22 as

E„„(n)= e) —s2b'"'(n),

b(x) =-
21T

[I+4~x,(n)]) (t)c(k}
k'+ [1+4n Xt,(n) ]Zt, '(t) c (k)

1

Xt2(t) 4w

b'"'(n)= Xb(~, ) .

(3.17)

xk(n) =CaJ(n)/[T —Cy(k)aJ(n)] .

y(k) -~,(k)+4

and it is parametrized as

y(k) = Tm D
C C

(3.8)

(3.10b)

The s2 is determined from (2.31) and (2.32).
Usually the vortices form a lattice. Then It (0) and

b (n), which contain the summation over vortex
lattice points, are rewritten in terms of the sum over
the reciprocal lattice K as

Xt, '(t)c(E)„,E'+ [I+4~x,(n)]) (t)c(E) '

(3.19}

The fluctuation of the internal magnetic field It (x)
defined by It (x) =b(x) —4nm(x) [the average value
is nP 4am(n)] —is given by

-in~

X
[I +4wXtr(n) ]it, '{t) c(E)

x E'+[I+«X&(n)]~ (t)c(E)

-b(0) . (3.20)
(3.11)

It(x) =
21F

at, '(t) c (k)
k'+ [I+4wxk(n)]it, '(t)c (k)

lt(x) = XIt(x —g;)—
1+4m xo(n)

Now we inspect the structure of g (n). The I.on-
don penetration depth h. t, (t) is chosen as the units of
length, and n and E are written as n A.t. 2(t) and
EA, t. (t) with dimensionless quantities n and E.
Then we have

g (n) —n$= [@/Xt (t)]+(n, ns, s2,t), (3.21)

cg I
' [I +4wXx(n)]cn

F(n, ns, s2t)-n X, +- —s2 n XgeoE +[I+4wXg(n)]cx 4~ g E +[I+4wXg(n)]cg

T

—b(0) (3.22)
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where

cg = exp[ —v(E/n(t)) "]

tt(t) =y(t)»s,

(3.23)

(3.24)

A scaled magnetization 4a M(n) defined by

4m[M, (n) —M„(H(n)) ]
1+4' X„(H„)

is approximated by"

(3.34)

with v, q and y being certain functions of t,

c/4e
t/[t ] —nJ(n) +d(t) aJ(n)E

(3.2S)

4nM(n)/[y/Xt. (t)] = n H(—n ) = 4w—M(n )

(3.35)

with

and

c -4n C/T

d = D/T„h. t, (0)

d(t) =d(X, (0)/X, (t))',

(3.26)

(3.27)

(3.28)

1

H,'( t) »3(»s)
[g/XL2(t)'] 422m

t t

»3(its) (I+4~Xp) .
22rr

Since H,'(t) /gn has the same functional form as
that of the nonmagnetic case with renormalized
parameters, H, (t)/[P/XL(t) ) is proportional to Ks

Then we can write

n = (I+4e'Xp)n

E = (1+4rrXp)'i'E

Ks = (1 +4e'Xp) Ks

e2=(1+4nXp) 'e2,

(3.30)

( 1 + 4e'X» )c»
b (0)=, d'E, . (3.29)(2~)' " E +(I+4~X»)c»

The function in (3.22} with X» = 0 will be denoted by

Fp(n, Ks, e2', t). Note that, in the nonmagnetic case,
F in (3.21) is replaced by Fp.

When t —1, (H, 2/g psJW) «, 1. Therefore the
zero-field approximation for X»[aj(n) = 1] may be a

good approximation. Furthermore, since Xt (t)
as t 1, d(t) 0 for t 1, implying that the E
dependence of X» is neglected when t & 1 (i.e.,
X„- Xp). Experimentally, Xp(H, q) is observable.
Therefore we use Xp(H, 2) as Xp. Scaling n, E, Ks,
and a2 as

tt3(tts)
422m

I . I= n, Fp(n„»tI, e2, t ) (3.37a)

—1+n, Fp(n„»s, e2, t) =0
Qn,

(3.37b)

Equations 0.33), 0.35), and (3.37) are exactly the

same as those in the nonmagnetic case (with primed vari

ables). This indicates that the magnetization curve
(4aM vs H ) is classified in the same way as the
nonmagnetic case when KB is replaced by the scaled
KB,

I KB

(I+4~xp)'i2 ' (3.38)

and that the K values for this magnetization curve are
obtained by

(3.36)

From (2.31), (2.32), and (3.31), we can see that the
equation which determines ~2 is

we have
H, p/H, = 42K pt(tttt, t) (3.39)

IF (n, ns, e2, t ) = Fp(n, »tt, e2, t)

Thus (3.21) gives
and

8(4mA7) = 1
(3 40)

9H H-H, 2 i3 [2[K2(Ks,t]' —I]

g(n) —nP=
2 Fp(n, rttI, e2 ,t)'

t
(3.31)

&e/[@/&t, (t) ] = K3(Ks t)/~~(2~) (3.41)

m(n} = nlrb,
Xp

1+4~go

we have

(3.32)

Our task now is to express the basic relations for
magnetic quantities in terms of Fp. From (2.23) and

Here 0, is defined by

"c2
dH[ M(H)]—

teH 2=(1+4' Xp)
'

&
dH[m„(H) —M, (H)]

H() 11 „8 F(„'„.)-
y/),'(t) 2 an

02= (I +4mXp) '
Sm

(3.42)

H(n )— (3.33)
In (3.39)—(3.41), subscripts 0 indicate the functions
for nonmagnetic case. Rewriting quantities with bars
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in terms of the original quantities, we have

= J2(1+4m'xo) tet ii 2, t
H, r 1+4~xo "' (3.43a)

4aM (H) —4mm„(H)
1+4~~0

(1+4mx, )"'
(3.43b)

and
t

= (1+4~X,) '"»,'
t 1+4mxo '"' &2(2m) (3.43c)

Comparing these relations with (2.35), (2.52), and
(2.55), we have the simple scaling law for K 's in the
region where the linear approximation m„(H) = x gE
is valid,

Kl(t) = (1+4m xo)'~'~0
t,2,t, (3.44)

1+4~xo '",
and also we have the result

I

magnetic case. Scaling rule (i.e., coincidence of solid
and dotted curves) seems quite good up to t —0.5
for this choice of parameters.

(2) The magnetization curve can be compared with

that of nonmagnetic one by a suitable scaling. Name-

ly, in the temperature region where m„(H) —XDH

(0& H (H, 2) is valid, one plots H vs 4aM [=—4n [M,
—M„(H) ]/(1+4m xo)] as is shown in Fig. 2. Then
this H vs 4m M curve is the same as the nonmagnetic

0 (3.45)

Especially ~;(t) at t = 1 approaches same value ~:
1.5

.,(1)= (1+4mxo)'~'~
1+4~xo "'

="3(~s, 1) =—~ ~ (3.46)

J =75
c = 16

where we use the fact that KID approaches the same
value as ~ in the limit t 1, ' and that K3 is propor-
tional to K~.

The above results indicate simple magnetic proper-
ties of magnetic superconductors around t —1.

(1) The result (3.43a) shows that the temperature
behavior of n, (t)P is little affected by the magnetic
moments when H, (t) (and therefore also the gap en-

ergy) is not much modified by the magnetic effect.
1n other words, when the s finteraction is weak, th-e

temperature behavior of n, @ is very similar to that of
H, 2 of the nonmagnetic case with the same K. This
can be experimentally checked.

In Fig. 1, we present an example of numerical cal-
culation of n, (t)$, H 2(t), and H, ~(t) curves. Param-
eters are VN(0) =0.2635, ~s ——2.0, i=7.5, t =0.16,
c = 1.6, d =0.01, and u =0.13, where u = (g ps JN)/
[@/A.z(0) ]. The c function in (3.23) is taken from
Ref. 23. The dot-dashed line is for nonmagnetic case
and the solid line is for magnetic case. The dotted
line is obtained from the formula for the nonmagnet-
ic case by scaling ~~ as Ks = Ks/(1+4wxo) . the
difference of n, P between nonmagnetic and magnetic
case is small, though H, 2 is very suppressed in the

0
0 0.2 0.4 0.6 0.8 I.O

FIG. 1. Scaling rules in the critical fields. Solid line is for
the magnetic case, dash-dotted line is for the nonmagnetic
case. Dotted line is obtained by the scaling of Kg.
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0.5

FIG. 2. (a) Schematic magnetization curve for magnetic
superconductor. Solid line indicates 4+M, and dashed line

indicates 4+m„(m„—XH). (b) Scaling of the magnetization
curve. The dashed line is the difference (4aM, —4am„)
arid solid line is scaled magnetization curve {4mM,
—4@m„)/(]+4m X). solid curve is compared with nonmag-
netic case with K =K/'ll+4e X.

-Ol
lg
I-

t = 0.5

FIG. 3. Numerical results of magnetization curves (a)
4aM„(b) 4aM [=4a (M, —m„)/(1+4wx)1, and (c) 4rrM
obtained from scaling of Ks (Ks = Ks/ 41 +4e X) in the
nonmagnetic case.

one with K~ scaled as

I

(1 + 4w x,)"' (3.47)

In Fig. 3, we present the numerically calculated mag-
netization curves for the parameters used in Fig. 1.
Figure 3(a) is for magnetic superconductor and Fig.
3(b) is obtained from the result of Fig. 3(a) by the
scaling (3.34). Figure 3(c) is for the nonmagnetic
case with scaled Ks = Ks/(1+ 4w Xp)

' '. Figures 3 (b)
and 3(c) show good agreement.

This result indicates that effective ~~ changes with
temperature, since Xp changes (Ks is a temperature-
independent parameter). With decreasing tempera-
ture, Xo increases when T approaches T, the Curie
temperature of normal ferromagnet. Accordingly, ~&
decreases and as a result, the transition from type
II/2 to type IIl1 or from type II to type I is induced
with decreasing temperature, which was predicted in
the previous paper and is confirmed by the experi-
ment '

The practical usefulness of our formulation lies in

the fact that it presents a simple relation between the
magnetization curves of the magnetic superconduc-
tors and those of nonmagnetic one. This was expli-
citly shown in Figs. 1, 2, and 3.

In the Appendix, we also show that some of the
present results are also reproduced in the GL theory.

IV. CONCLUDING REMARKS

%e have presented a generalization of ~~, K2 in the
case of magnetic superconductors iri such a way that
the effect of the average spin polarization is subtract-
ed. %hen the magnetization of the localized spins is
approximately proportional to the magnetic field and
when the k dependence of the staggered susceptibili-
ty is neglected, x~, ~2 have the simple scaling rela-
tions (3.44) with the Kp functional form of the non-
magnetic superconductors. It was shown that the
temperature behavior of n, @ is not greatly affected by
the presence of the magnetic spins, though 0,2 may
show a very different behavior from the nonmagnetic
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case. This result comes from the assumption that H,
is not much modified because the s fint-eraction is
assumed to be very weak.

It is also shown that, if the electromagnetic inter-

play is the main mechanism, the magnetization curve
becomes that of nonmagnetic superconductors with

K = K/( 1 + 4mXO) ' ' by a suitable scaling in the region
where t —1 and the approximation m„(H) —XOH is
valid. Conversely, if experiments show a drastic
modification of the temperature behavior of n, P due
to the magnetic effect and if the simple scaling rule
needs large modifications, this would be an indication
that the s-f interaction effect or others is not negligi-
ble. Those give us more information about the mag-
netic superconductors.

As was seen in the text, the statement that the
phase transition at H = H, 2 is of the second order
plays a significant role in the derivation of many of
the results in Sec. III.

(b( x)P"( x)@(x) &
= —»([rt'(x)P(x) ]'&, (A6)

where ( & means the space average. The internal
magnetic field H(x) =H, i+ h (x) with /i (x)
= b (x) —4irm (x) is obtained from (AS) as

ii (x) =H, q
—H— 1

2K
(A7)

Here it is assumed that for $ = 0, ii (x) = H, 2
—H.

Since m (x) is the variable part of M(x), it is related
to h (x) linearly in a reasonable approximation:

m(x) =Xh(x) . (AS)

Then we have

b(x) = (1+4~X}h(x)

The first GL equation conditions the space average of
quantities br'"P and (rtr"$)':

APPENDIX
= (1+4mX) (H, i H) ——

2K
(A9)

—('7 —i»A) $=» rtr(1 —i$ii) (Al)

V x B= [$'(V —i»A)p —('7 +I»A)$ Ql
2I K

We show that some of the results similar to the
ones obtained in Secs. II and III can be drived from
the GL thoery also.

Let us start from the GL equations

Taking the space average of (A9), we have

n —n, = (1+4mx)(H, 2
—H)—1+4mX (e ~&

2K

(A10)

The condition (A6) together with (A9) leads to

1 + 4m'g —2x2(1+4~X)(e„-H)(y'y& = " ((y"y)&'

+4m& x M (A2) (A11)

Here we assumed that rt, A, B, and M are suitably
normalized. Reflecting the assumption that s-f in-

teraction is neglected, no terms exist which include
M in (Al). We assume that, at H, q, 8 is homogene-
ous and is given by n, [so that A, = (O, n,x, 0) ] and @
vanishes. When H is in the vicinity of H, 2, rtr must
satisfy the linear equation Therefore we have

(A12)

which gives

(1+4~X) (H, 2
—H )

2» 1+4m X —2»' ((rtr'rtr)'&

—( V' —i »A, ) iP = »2rtr

which determines

)le K

(A3)

(A4)

n —n, = —(1+4n X) (H —H, 2)

(1+4m X) '(H —H, 2)

Pq(1+4irX —2» )
(A13)

as the eigenvalue.
When the applied field is slightly below H, 2, we ex-

pand 8 and M in terms of H, 2
—H: 8 = n, + b (x),

M =M(H, i) +m (x). From the second GL equation
we have~

(ASa)

with

Then

B4~Ms
BH

&(d'S)'&
(e'e&'

r

B (b —4nm) =- B

By By 2~
(ASb)

1+4mX —Pg(1+4mX —2» )= —1 — 1+4irX
p, (1+4~X-2»')

(A14)
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