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The question of the validity of the average Hamiltonian theory is discussed. This is de-

rived from consideration of the Floquet theorem for periodic systems. A perturbation

scheme is developed and shown to give an average Hamiltonian equivalent to that ob-

tained from the Magnus expansion. The convergence condition is shown to depend on

the existence of resonances. These results are applied to a discussion of pulse spin-

locking experiments.

INTRODUCTION

In the development of high-resolution NMR
spectroscopy the average Hamiltonian theory
(AHT) has evolved as a powerful method of
analysis. ' lt rests on the principle that under

suitable conditions the evolution of a spin system
driven by a time-dependent external field can be
described by the average effect of the field over
one cycle of its oscillation. The external field, if
carefully selected, can be used to selectively aver-

age out undesirable parts of the internal spin in-

teractions. The aim is to remove portions of the

interaction which cause line broadening while at
the same time to retain those parts which yield

useful spectroscopic information. For this, AHT
has been widely successful. '

Recently, in the literature, conflicting opinions

have appeared as to the validity of the average
Hamiltonian approach. The objections arise from
results obtained from multiple-pulse experi-

ments. ' One group of these, carried out by
Erofeev and Schumm, and also by Erofeev ei al. ,

"

provides new data on the behavior of a spin system

under pulse spin-locking conditions. In the experi-
ment the fluorine nuclei in CaF2 are subject to a

periodic train of pulses polarized along the x axis
of the rotating frame, each with a flip angle of 8.
Erofeev ei al. find two main results. The first is
that after a time period of a few T2 there appears
a quasistationary magnetization dependent on 9,
the pulse sparing, and the detuning from the line

center. In a theoretical analysis of these results,
Ivanov, Provotorov, and Fel'dman ' maintain, as
part of their conclusion, that the average Hamil-
tonian theory cannot predict the quasistationary
state. In fact that is incorrect as will be shown

below. Subsequently the pulse spin-locking experi-
ment has been repeated by Suwelack and %augh. '

They use an average Hamiltonian formalism to
compute the behavior of the quasistationary mag-
netization. 80th sets of Icsults will bc discussed 1n

detail in Sec. V.
The second finding by Erofeev et al. ' poses a

more serious question as to the validity of AHT.
The quasistationary magnetization is found to have

a slow exponential decay. Such long-time decays
are found more generally in dipole systems evolv-

ing under external fields. "' AHT predicts that
the spin system should appear to evolve under a
time-independent Hamiltonian and hence, by the
general arguments of spin thermodynamics, should

reach a stationary state. This holds true for
times t g T&& when spin-lattice relaxation is negli-

gible. However, contrary to this, a variety of ex-

periments show that the quasistationary state does
not persist; rather, it decays over a time scale less

than T&&. This decay has been attributed by Can-
tor' to the failure of the Magnus expansion under

certain conditions. This mill be discussed below

and a different reason mill be given.
It is important to settle these questions. One

concern is that some of the criticisms made about
the theory are due to misunderstandings of exactly
what conclusions can be drawn from an average
Hamiltonian analysis and under what conditions
the theory may be applied. Secondly, various other
fields make use of similar theories. For example,

the description of multiphoton processes in

molecules has been studied within the framework'

as has the interaction of molecules and intense

laser fields. '5 In addition, ever more complicated

pulse sequences arc being applied to spin systems

in order to selectively excite multiple quantum

transitions.
In Sec. II the criteria for the existence of an ex-

ponential solution to the Schrodinger equation are
reviewed. As this assumption is not really neces-
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sary for the average Hamiltonian concept, a dif-
ferent approach is taken in Sec. III using Floquet
theory' ' and is shown to give an expression
equivalent to the Magnus expansion. Section IV
covers the convergence conditions for the average
Hamiltonian and in Sec. V the pulsed spin-locking
experiment is treated.

II. MAGNUS EXPANSION

where H(t) is a continuous function of time. The
analysis then proceeds by a series expansion of
H(t) into

H (t) =H"'(t)+H"'(t)+H"'(t)+ (3)

Various methods have been used to solve for the
H'"'(t): first by Magnus' and later by Wilcox
and Haeberlen. For reference the first two terms
are given here ':,
H'"(t)= f A(t, )dt, , (4a)

(4b)

The usual derivation of the average Hamiltonian
is based on the following: It is known that the
evolution operator for a time-independent system is
in the form of an exponential operator. Hence, it
is assumed that even in the time-dependent case,
the Schrodinger equation,

dU(t) = —iM(t}U(t),
dt

with initial condition U(0) =1 has a solution given

by

U(t) e
—iH(t)

vides a considerable simplification in the calcula-
tion, there is now the restriction that the system
can only be observed once every cycle, i.e., only at
t =Sr. A point sometimes overlooked is this
trade-off of the loss of information about the state
of the system, at times other than multiples of the
period, in exchange for a simpler description of the
evolution operator. ' Note however, that often it
is exactly the extra information within the cycle
which causes the line broadening in the resulting
spectra.

The above arguments have two weaknesses
which should be kept distinct. Each could lead to
a failure of AHT. The first is the assumption that
H(t) exists for all t In .his original paper
Magnus' shows that although H(t) always exists
for t close enough to zero it is not necessarily glo-
bal. In fact for H(t) to be well defined for all t
rather stringent restrictions must be placed on
4 (t). Reference 12 contains a discussion of the
implications of this.

The second weakness has to do with the conver-

gence properties of the series expansion Eq. (3) of
H(t) Often . the rough criterion is used that, as
H'"'(t) contains n-fold products of 8 (t), and
whereas each integration produces a factor of v,
the relative size of the term goes like (Ref. 1 —3)
((P )'~ r)". Hence, the series should converge
for (,A )'~ r & 1. While this is a sometimes useful

guideline it is not rigorous and can be misleading.
Within this question of convergence lies the reason
for the failure of the AHT to correctly predict the
long-time decay observed in the pulse experiments.
We will return to this point later.

First we consider the existence of H(t) Equa-.
tion (2) can be thought of simply as a transforma-
tion of variables from U(t)~H(t). As such,
e ' '" should satisfy the differential Eq. (1). To
differentiate the exponential operator we make use
of a formula due to Wilcox

Next, Eq. (1) is specialized to the case where the
Hamiltonian is periodic, i.e., A (t +r)=P (t).
With this, the integration of Eq. (4) in the interval

[O,r] is the same as for [nr, (n +1)v]. Thus once
the solution is obtained for one cycle it can be ex-
tended to times X~ for lV =1,2. . . simply by set-
ting U(Nr) =

I exp[ —H(r)] J . In the literature,
H(v) is divided by r to provide a time-independent
effective Hamiltonian. The zeroth-order term,
H' '=(1/7)H' '(r), is called the average Hamiltoni-
an, while H'"=(I/r)H"'( )isrthe first-order
correction.

Though the effective Hamiltonian approach pro-

1
iuH e

—i—(1—u)Hd+

Let Eq. (5} be multiplied through from the right by
e' . The left-hand side of the result is by defini-
tion, i4 (t) Nex—t, the in. tegration is carried out
by first taking matrix elements of both sides of Eq.
(5) in the basis

~
P;) of the operator H(t). After

integrating over u, a system of nonlinear differen-
tial equations for the matrix elements of H(t) is
found
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exp[ i—(co; —coj.)]—1

l J

dH
X I J 0

dt

The initial condition is H (0)=0. Note that the
eigenvalues co; are defined by

H(&)
/
@;(&))=N;(&)

) @;(&)),

and are time dependent.
The criterion for a solution of Eq. (6) is as fol-

lows: If there exists a neighborhood of the point

[to,H(t)] at which

( I exp[ i (c—o; —ej )]—I ] /(co; —coj ) )

is continuously differentiable then there exists a
solution, satisfying the initial condition, for values

of r sufficiently close to to This. will not be sat-

isfied at those points where'

t =Xv. Hence, it would be advantageous to begin
from a more suitable point.

Given a periodic Hamiltonian with period w, a
group of symmetry operators RN, can be defined
which commute with P (t) and have the property
of transforming solutions at time t to those at time
r+Nr, i.e., H~, .U(t)+U(t+Nr). Hence,
U(t+Nr) and U(t) are both solutions of Eq. (1)
with the same initial condition and are therefore
related by a unitary transformation which itself
does not depend on time, thus

U(t+r) = U(r)e

The caret serves to distinguish the Floquet Harnil-

tonian from the effective Hamiltonian, H, obtained

via the Magnus expansion. Note that the order of
the operators in (8) is important. Reverse the or-

der and Eq. (1) will no longer be satisfied. From
Eq. (8) the evolution operator can be written in the
fo~17, 18,22

cog —coJ ——n27T, n =+1,+2, . . . . (7) U(r)=P(r)e '"', (9)

At such points a solution to Eq. (6) does not exist

and hence, the assumption of an exponential solu-

tion to Eq. (1}is not valid. When t =0, because

e"—1
lim =1,
x—+0 X

the convergence criterion is satisfied. Hence, there

is always a well-defined solution H(t), for times t
close enough to zero. Since 4 (t) is Hermitian, the
eigenvalues of H(t) are all purely real. Thus, ex-

cept in special circumstances, as t increases a value

t~,„ is reached for which Eq. (7) holds and there is

a singularity in H (t). Only for the trivial case
when dH(t)ldt commutes with H(t), or
equivalently when A (t} commutes with itself at
different times, is the solution to Eq. (6) global.

%e see from this that the existence problem a-

rises from the insistence that the solution take an

exponential form. This induces a transformation
of a linear system of differential equations into a
nonlinear system and admits the possibility of
singularities in the solution.

iA (r)P(r)+—iP(r)H,
dt

(10)

with P(0)=1. Unlike Eq. (6), encountered for the
exponential solution, this is a linear system. A
perturbation scheme is obtained by invoking the
following expansions:

P(t) =+A,"P„(r), (1 la)

with P(t) defined as P(t)=U(t)e' ' It is e.asily

verified that P(t) is periodic with period r. At
times„t =Nr, the propagator is thus U(Nr)
=e '. Exactly as propounded by the average
Harniltonian theory, the system, when observed

stroboscopically appears to evolve under a time-

independent Hamiltonian. However, thus far there

is no connection with the Magnus form usually

used.
To continue, substitute Eq. (9) into the

Schrodinger equation. This gives

H =+HAH„, (1 lb)

III. FI OQVET THEORY

The problem with the Magnus solution is that it
tries to impose a structure on the evolution opera-

tor which is too restrictive. On the other hand,

AHT makes use of it for the special case of
periodic Harniltonians and for the special times

and with the substitution A ~A.k . The factor k
has been introduced to keep track of the various

orders and is set to 1 in the end. Next, Eqs. (11a)
and (1 lb) are inserted into Eq. (10) and the coeffi-
cients of A,

" on each side compared. This yields

the main result
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n —1

Pk(t }Hn —k Hn
k=1

(12a)

are obtained which in many circumstances may be
simpler to use than the counterparts in Eq. (12).

For the present we examine Hz. First the term

P1(t)= g (1 e'"—"')Hk
k~O k~

H„=— 4 t' P„1 t'
'r

n —1

g Pk(t')H, k dt' .
k=1

(12b)

~(t)=gA e' (13a)

and

P„(t)=QP„, e' (13b)

in a Fourier series and define to=2m/r When'.
these are substituted into Eq. (12) the forms

The Hn are obtained with the additional require-
ment that each P„(t}be periodic with period r.
Note also the existence of the two zeroth-order
terms Po ——1 and Ho ——0.

A different perturbation solution has been given

by Barone, Narcowich, and Narcowich. ' That
version, however, results in a set of integral opera-
tor equations which are more difficult to solve
than the present equations. Our result is simpler
since, unlike Barone et al. ,

' we remove any large
static part of the Hamiltonian by transformation to
an interaction picture before proceeding with the
perturbation solution, Eq. (12).

A quick glance at Eq. (12) and a comparison
with Eq. (4) does not reveal much to support any
similarity to the Magnus expression. In fact, it is
not clear that H„ is even Hermitian for each order,
though the sum must be. We consider first the
n =1 case. Then, as the only lower order involved
is Po 1, Eq. (12b)——yields

H, =(I/r) f, 4 (t')dt' .

This is identical to the average Hamiltonian
H' '=(I/r)H' '(r) as given by Eq. (4a).

To facilitate the comparison of higher order
terms, expand

is determined, and the appropriate frequency com-
ponents are inserted into Eq. (14a). After a
straightforward calculation we arrive at

00

H2 g ( [~k ~ k]+—[~0 ~k]
k

(15)

i+ XkH—kt,
k

(16)

where the summation over k is from 1 to ~. At
t =r the periodicity condition ensures P(r) = 1,
whereby the two series are identical. 2' The factor
A, is used if necessary to ensure that H(t) will exist.
This will not change the form of any of the terms
in either series [for example, Eqs. (12b), (4a), etc.].
Thus, since the Floquet solution (9) is global, the
existence of the average Hamiltonian with the
form (4) or (12) is proved. With this, the corre-
spondence between the two series is

II =H'n-".
n (17)

If the expressions (13) are substituted into Eq. (4b)
and the integral evaluated over [O,r], a result ident-
ical to Eq. (15) is obtained for H"' Thus, . the two
expansions are equal for each of the first two ord-
ers.

The direct comparison of higher orders becomes
impossible rather quickly. Hence, a different ap-
proach is taken to show that the two series (1 lb)
and (3}are equal term by term for the case in
which the latter is evaluated at t =~. Under condi-
tions when the Floquet and exponential solutions
both exist they must be equal. Taking the loga-
rithm of each gives

i+A,"H'" —"(t)= ln gk P (t)
k k

n —1

Hn =g A —n Pn —l,a g Pk, oHn —k ~

a k=1

~ ~ 1 exp[i(a+p)o)—t] ~ PPnt=~~ ~a n —1,P
+ go (a+p)to

n~' ~ 1 —exp(i')t) p
k=1 ~0

(14a)

(14b)

It is interesting to compare the two forms.
First, the form of the nth-order term is more easily
obtained from the Floquet version than the
Magnus expansion. Once in hand, it is also more
easily evaluated by the former method. A second
point is that the expansion of P(t} is evaluated
concurrently with H. This can be used to follow
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the evolution of the system within each cycle.
Hence, the restriction of stroboscopic observation
necessary in the Magnus case no longer applies.
An interesting possibility is to sample fast, but at a
submultiple of v; say at ~/p. The data can then be
divided into two groups: the points at Xpv and
those within each cycle. The first group gives the
usual information obtained from the average Ham-
iltonian, while complementary information is ob-
tained from the second. In this way the extra in-
formation is decoupled rather than present as line
broadening.

IV. CONVERGENCE OF THE EFFECTIVE
HAMILTONIAN SERIES

Next, U(t) is determined by the method of Picard
approximations. A sequence of functions is de-
fined by

Up(t) =1,
(21)

The factor A, is introduced as an expansion param-
eter. Note that the iterative sequence (21) therefore
produces a power-series solution for U(t) in terms
of the parameter )I,. For the present discussion of
convergence, we take A, as a measure of the size of
the Hamiltonian; thus, ~~AN (t)~i=A, . By induc-

tion, the norms of the differences of successive
terms in (21) are

The expansion of P(t) and H given by Eqs. (1 la)
and (1 lb) constitute formal series solutions to the
differential equation (10) and the auxiliary condi-
tion that P(t) is periodic. The term "formal" sig-
nifies that these series satisfy the differential equa-
tion. However, it is still necessary to prove that
the series converge in order for them to equal the
actual unique solutions. The discussion of this
proceeds in three parts: The first part is devoted
to showing the convergence of the effective Hamil-
tonian in the mathematical sense. Part two eluci-
dates by example those conditions which must be
satisfied in order to truncate the series for P(t) and
H after the first few terms. For practical calcula-
tions this will be of the most interest. Finally, in

the last part an alternative expansion for P (t) and

H is given.
For any discussion of convergence, when the size

of succeeding terms is to be determined, the con-
cept of a norm must be introduced. Two examples
are the trace norm

/
fA //

=(TrA tA)'~

gnawn

/ [ U„(t)—U„ (it)/
i
( (22)

+[m .~pl)

2 (23)

for the propagator to second order. To make the
connection to the effective Hamiltonian series,

exp —irg i'„
1

is also expanded in a power series in terms of A, :

whereby (21) produces a convergent sequence for
the propagator U(t). The periodicity of the Ham-
iltonian is accounted for by expansion of 4 (t) into
a Fourier series as given by Eq. (13a). Evaluated
at t =~, this gives

U2(r) = 1 i AApr— ,

and the supremum norm

(x /xV+p (X
i
X )

(19)

exp —ir+A,"H„= 1 i l.rH, i A, r—H2—
1

(20)

At this point a particular formula for the norm
does not have to be chosen; it is only necessary to
know that a norm can be defined on the space of
operators which contains 4 (t)

The determination of the convergence of the
series (12a) and (12b) directly provides difficulties
because the two series are interdependent. A more
indirect method proceeds as follows: From Eq. (9)
and the periodicity of P(t), we have

U(r)=e

H i+ . (24)

Equating coefficients of A,
" in Eq. (24) and the

power series for U(r) then determines the various
terms H„. From Eqs. (23) and (24) it can be seen

easily that H~ and H2 are in fact given by 8 p and

Eq. (15), respectively. The convergence of U„(t)
implies, via Eq. (20), that the series for exp( iHr)—
converges. Thus, the power series H =pi" A,"H„
must also converge.

%e turn now to practical considerations of con-
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vergence to be applied to specific problems. The
discussion is pursued on a qualitative level. A
suitable norm must be chosen and the value A,

describing the size of the Hamiltonian determined.
Additionally, due to the difficulties in evaluating
the higher-order terms P„(t), it is desirable to trun-
cate the series after the first few terms; generally
two or three are kept.

The considerations which are important for the
rapid convergence of Eq. (11) can be motivated by
an example. Let 4 (t) be the Hamiltonian for a
spin in a static magnetic field with an rf field ap-
plied perpendicular to it:

4 (t)= coolg+—co(cos(cot +P)I„. (25)

App1ication of Eq. (14a) yields after some calcula-
tion

(26b)

2

N

2

+— (1——, cos2$)I, ,
APgN ) )

(26c)

for the first three terms of the effective Hamiltoni-
an. Note that the more conventional notation, H
is used here. From Eq. (18) the norms of these are
given by

I
coo

I I II. I I

sing III, II,

, '
cos'(()

I II„II'

2 4
' 1/2

+ — (1——,cos2$)2I II, I
lt

respectively. The single bars denote an absolute
value. Except for the trigonometric terms, the size
of the norm develops as a double power series in
(coo/co)" and (co~/co) . Therefore, in order that the
size of the terms decreases monotonically, it is re-
quired that Ico /co

I &1 and
I co, /co

I
&1. The im-

portant thing to notice from this is that Eq. (26)
will not converge rapidly at resonance or below,
i.e., with m &coo. As an aside, the I, term in H' '

is essentially the off-resonance Bloch-Siegert shift.
Although, in the present case it is obtained in the
lab frame, and hence, is only valid when co is above
resonance.

%e now make the situation more complicated by
adding a quadrupole term, R )&T20 (see Ref. 2, for
notation). The zeroth- and first-order terms are
corrected by adding to them R )~T2a and

t(co~R)a)/coslnkl 120,Ixl,
respectively. By applying the trace norm and fol-
lowing the reasoning used above, the conditions

I coo/co I & 1, I co~/co
I & 1, and

I
R)a/co I & 1 are

obtained for rapid convergence. However, due to
the lifting of the degeneracies by the quadrupole
interaction, the resonance frequencies are now at

c=oco+a3/7 6R)z(2m, +1),
with m, as the quantum number of the lower state.
For a spin system with large total spin angular
momentum the rapid convergence conditions can
easily be met, while at the same time there is a
resonance between two levels with large m, (e.g.,
I =10, &Fly

——9, and coo, co~, and R)a &co=coo+ 23.3
R fa). This leads to a contradiction as, physically,
we know that the field will cause transitions be-
tween the resonant levels. Also the previous
analysis, when applied to the pseudo-spin- —, system
consisting of only the two resonant levels, leads to
the conclusion that the effective Hamiltoman series
will not converge.

The problem stems from the oversimplifications
made above in conjunction with the use of the
trace norm. This norm is perfectly satisfactory
when applied to H" as required for n ~ 00. How-
ever, the drawback of the trace norm for determin-
ing if the series can be truncated is that it averages
out the structure of the operators in 4 (t) In.
essence, the condition

I
coo/co

I & 1, etc., ensures
only that the frequency of the field is above the
root mean square (rms) of the transition frequen-
cies. This deficiency leaves open the possibility of
resonances with those transition frequencies which
lie above the rms value.

The following conclusion can now be drawn: In
the collective picture of a dipole-coupled spin sys-
tem, the dipole Hamiltonian has the same structure
as the quadrupole interaction of the example
above. In addition the total spin angular momen-
tum quantum number for a macroscopic collection
of spins is very large. Though the lowest harmon-
ic of the rf field is chosen to be much larger than
(4 )'~, there are a few levels in the wings of the



P„(r')H]dr' .—

Note that here the P„(r) represent a sequence of
approximations to the solution P(r) and are not the
terms in a series expansion for P(r), as elsewhere

in this work. The nth-order approximation to 0„
is determined from the condition that P„(r)=1,
whereby

H„= I'„t t P t I„ t

By an inductive ploccduie lt can bc shown that ln
this case

IIP„(r)—P„,(r)ll & (29)

Because the right-hand side of (29) is the nth term
in a series which convcrges for all t, the sequence
(27) will converge to the solution of Eq. (10). It is

easily verified that in this case too, the lowest-
order term is the average Hamiltonian, H' '.
Higher-order terms are, however, more difficult to
calculate owing to the inverse required in Eq. (28).

dipole line which will be resonant with the driving
field. Absorption of energy by this small number
of levels will slowly heat the spina. Therefore, the
quasistationary magnetization will slowly decay.

In light of the above, a better norm would be the
supremum norm given by Eq. (19). An equivalent
version of this norm can be written as

I IA I I

=
I

A, ,„l, that is, the eigenvalue of A (r) with the
largest magnitude. This norm will ensure that the
frequency of the driving field is above any absorp-
tion frequencies of the physical system. An exam-

ple of a dipolar system for which this is true is the
usual truncated dipolar Hamiltonian in the rotating
frame. The oscillating terms in this reference
frame are at twice the Larmor frequency which is
well above the full width of the dipolar interaction.
%C can say that the art of the average Hamiltoni-
an theory is to find the right interaction frame in
which the series is convergent.

To conclude this section, a brief outline of an al-
ternate expansion of the Floquet solution is given.
The assumption is made that 4 (r) is bounded by a
constant I: that is, supll~(r)II=M, fo«&«r
The expansion consists of forming an iterative se-

quence of Placard approximations defined by

Po(1}=1,
P„+,(r) =1 1 I [Se—(r')P„(r')

V. APPLICATION TO THE PULSE
SPIN-LOCKING EXPERIMENT

%e now consider in detail the pulse spin-locking
experiment. Thc Hamiltonian in the rotating
frame is

P'g(r)= a)i(—t)I, +M, +H20 .
Thc pulse scqucncc 18 i'cprcscntcd by

coi(r) =8g 5(r —(2k —1)r)
k=1

(30)

g oo

1)neinstf~
2v.

(31)

where 8 is the flip angle of each pulse and 2r is
the period. S, is the resonance offset and H20 is
the truncated, homonuclear dipole Hamiltonian.
Note that in (31) the Fourier-series representation
of the pulse sequence is also given. The methods
of Sec. III are applied to calculate the effective
Hamiltonian to second order, giving

—
12

( [[I.Hzol»20]

—2ib, [Iy,H20]+5 I„)

—
12

(f[Hzo I.] I.]+~,}

(Note that H'"=0.)

The calculation can be done by various means:
(a) integration of (12), (b) use of the Fourier expan-
sion in (14), or (c) application of the Baker-
Campbell-Hausdorff theorem' to the evolution
operator over one cycle:

(32)

U(2~) = exp[ —i(H10+M, )r]exp(iN„ )

Xexp[ —i(Hio+dd, )r] . (33)

The evolution operator in (c) is obtained by piece-
wise integration of Eq. (1) from () to r, insertion of
the pulse, and iiltegratioii fiom r to 2r, As (32)
can be seen to be a power series in 8 and
(H &~+ b;)r, the usual convergence condition is just

I
()

I
&1 and

I
IH20+~II«1.

The initial density matrix after the m/2 prepara-
tion pulse is p(0}-1—p;c00I„. By the arguments
of spin thermodynamics, this will evolve to
p„-1—p„H. Conservation of energy yields

P„cooTrI„H
P; TrH'

~hereby the quasistationary magnetization is
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1+—Hi +—6
2 6

4 12 12

(34)

The definition

HI MI /3——=Tr(H2o )'/TrI,

llas bcc11 IIladc ill (34) with MI as tllc sccolld II10-

ment of the dipolar hne shape. In addition, we

have used the assumption of a Gaussian line shape
in Eq. (34) to write M4 ——27 HI where M4 is the
fourth moment.

Plots of M„/MI vs 8 are shown in Fig. l. The
comparison with the results of Refs. 6—9 is good.
Figure 2 shows the variation of M„/M; with de-

tuning. Qualitatively, the correct behavior is
predicted, though in this case there is disagreement
on some features with Refs. 7 and 9. These
features are not so evident in the experimental re-
sults so that the AHT result compares more
favorably with the latter than with the theory of
Ivanov et a/. The conclusion, though, is that
AHT can in fact be used to predict the quasista-
tionary state.

As noted above, the failure of the quasistation-

ary state to persist is due to the small number of
levels resonant with the pulses which can absorb
energy. The preceding treatment ignores this pos-
sibility and is therefore unable to account for the
decay. The number of such levels is just propor-
tional to g (m/r), where

is the absorption line shape. The prime indicates
that only those states which satisfy A,; —AJ =co, are
included.

To obtain an idea of the rate of absorption we

can apply the Fermi Golden Rule to Eq. (30). The
result for the rate lV is

(35)

where p(c0) is the density of transitions at frequen-

Q. Q--

Q

equi

0 7"

0 6"

0.5-
I
U

O. 4 ~ .

Q

0 2"

0. 1 -.

0.0
0.0 0. i I.Q

FIG. 1. Quasistationary magnetization vs pulse angle 8 for various values of r (in @sec}. The solid curve is from Eq.
(34). The dashed curve is obtained from Eq. (37) of Ref. 9 for comparison (Ref. 24) (parameters: Hl ——29500 rad/sec,
5=0).
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FIG. 2. Quasistationary magnetization vs detuning 5 for various values of 8 (in radians). The solid line is from Eq.
(34}. The dashed curve is obtained from Eq. (37) of Ref. 9 for comparison (parameters: Hl ——29500 rad/sec, x=10 sec).

cy co. By definition, the last two factors in (35) are
g(n/r), so that.

g(air) .8
27.

Qualitatively, this argument explains the observed

decay rate. ' Ivanov et al. improve on this ap-
proach by a complicated infinite series of unitary
transformations to an interaction frame in which
the application of the time-dependent perturbation
theory is more rigorous. However, a similar result
is obtained.

Let us proceed to see why the average Hamil-
tonian method works at all. Instead of taking the
collective approach, consider the sample to be an
ensemble of tightly coupled spins I. Then, for the
majority of spin pairs, the frequency of the driving
field is much higher than any possible transition
frequencies and the series of average Hamiltonian

plus first few correction terms converges rapidly.
For the very small number of spins which do not
obey the convergence criterion (32) is not a correct
representation of H. Consider, for the moment,
that there are no interactions between these two
groups of spins. The magnetization, because it is a
macroscopic observable, is an average over the en-

semble of spins. Therefore only a small fractional
error in M„/M; will be provided by the group of
spins for which H is incorrect. This is the reason
for the correct predictions of AHT in the short-

time regime. However, we must remember that
the two groups of spins defined above are actually

tightly coupled. Energy from the absorbing group
of spins will slowly leak through the remainder of
the spin system. In the long-time regime, then, the
system can be observed to evolve away from what
is predicted by the average Hamiltonian approach.

In principle, AHT can be used to predict the
correct final state, except that a better reference
frame is needed —one with irlr )

~

A, ,„~ . This is
what Suwelack and %augh' have attempted to do.
Their choice of interaction frame is an example of
the kind of subtle problem that can be encountered
in the use of AHT.

Starting with Eq. (30), except that they chose
5=0, the unitary transformation

p'(t) =exp[ i/(t)I, ]ex—p i I~—

~S lls 2 +20 ++ /8+22e

++3/gIId i2$(t)—
The Hz are the various spherical tensor com-

(36)

is made with the time-dependent rotation angle de-
fined as

p(t)= I [coI(t')—uii]dt',

and co i
——8/2r. The interaction-frame Hamiltonian

in this "switched" frame is
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ponents of the dipolar Hamiltonian. The zeroth-
order average Hamiltonian can be obtained from
either Eqs. (4a), (12},or (14) and is

(0) — & dH = —B)Ig ——,H2o

+v'3/8co(H22+H2 2) . (3'7a)

Here, co ——sin8/8 is the zero-frequency Fourier
component of exp[2ig(t)]. In Ref. 10 it is the co
term which leads to the 8 dependence of the
quasistationary magnetization.

Now, however, let us continue and consider the
first-order correction,

I

H"'= —,&3/8 1 — [Is,H22 —H2 2]+ v'3/8 1 — [H20»22 —H2 —2]8 s' — ~ 8 20& 22 2—2

2s1118 s1n28

g 20 22& 2—2 (37b)

Notice that the first term in H"' is really the same
"size" as H' '. In fact, it exactly cancels the co-
dependent term in H' ' leaving an effective
zeroth-order Hamiltonian

—(0) — dx
&elf =—~l~z+&2o ~

where H~2o is just the truncated dipole Hamilionian
rotated 90' about the y axis. In reality, even this is
not the correct zeroth-order expression, as con-
sideration of second and higher orders shows that
each will contain terms which look like "zeroth
order. " This difficulty arises because the choice of
interaction frame only partially removes the pulse
term in the Hamiltonian. The result is that the os-
cillating components of the interaction-frame
Hamiltonian will have the same frequency as the
eigenvalues of the rf term which are left in A s.

Next, we consider a method by which an average
Hamiltonian can be obtained for the case 8& 1.
Note that for Eq. (34} to hold, 8 must be less than
1. To do so we transform to the "toggling" frame
via

V(t) =exp[i/(t)Is]exp i I„—

I

frame Hamiltonian is not generally periodic. It is
so only when n8=m 2n, whereupon the period is
(m 2m/8)2r. Strictly, the AHT can only be ap-
plied in these instances. A Fourier expansion of
exp[imp(t)] shows that for

l
8

l
& m., there is no

zero-frequency component. Thus, H' ' is simply

(39a)

+ —.[H22»Z-2]) . (39b)

This will generally be valid in the regime
vr and I IH2o I l~(1 T"e i»tiai denstty

matrix has the form p(0) -1—P;cooI, . If only H' '

is considered, we note that there are two constants
of the motion: the energy and I,s Thus, the
equilibrium density matrix can be given the form'

To calculate H is not quite so simple. As the
details are not important to the present discussion,
only the result is given here:

H(1) 1+cos8 ($2I ig[H" I ])
4 sin8

+—cot8( —&3/8[H2o»22 —H2-2]d d d

4

P(t)= J e1)(t')dt'.

In this representation the interaction frame Hamil-
tonian is

Pss —1 &ss~oIs PssH . —

Equating the expectation values of I, and energy at
t =0 to those at equilibrium leads us to the quasi-
stationary magnetization M„/M; =1. This agrees
with Ivanov et ai. Again, there will be a few lev-
els which are resonant so that this quasistationary
state will decay.

2

+ g D2 0 0 Hst itssf(s)

—2
mO (38) VI. CONCLUSION

The D o are the VA'gner rotation matrices. Note
that, because of the function li(t), the interaction-

The main objective of this paper was to consider
the validity of the average Hamiltonian approach
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for solving the time-dependent Schrodinger equa-
tion. The existence of an average Hamiltonian in
the case where A (t) is periodic is a direct result of
the Floquet theorem. A source of difficulty arises
in providing a convergent solution to H. In this
connection the important result is the failure of the
perturbation expansion under conditions which al-
low resonances. This is well known in the case of
a two-level system driven by a resonant field; so
the transformation to the rotating frame is made.
It was less clear what to do for a system with a
large spread of transition frequencies. Those sys-
tems with large homonuclear dipole interactions
fall into this class. The rigorous result is that all

these transitions must lie below the oscillation fre-

quency of the time-dependent part of the Hamil-
tonian. This is not satisfied for the pulse spin-

locking experiment considered. However, this
poses no contradiction to the general validity of'

AHT. In this particular instance the requirements
for the convergence were not satisfied exactly. The
small number of offending levels in this experi-
ment forms a bottleneck for the absorption process,
thereby providing for a slow decay of the quasista-
tionary magnetization.

Finally we note that a crucial aspect which will

determine the success of the theory in a particular
application is the judicious choice of reference
frame in which to calculate the average Hamiltoni-
an.
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