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With the use of the definition of the intrinsic coefficient of thermal expansion (ICTE}

Pe of a point defect, and in consideration of the Eshelby-calculated change in matrix

volume caused by the appearance of an inclusion as the inclusion's volume of formation,

the calculation of the ICTE of spherical, coherent inclusions is effected. It is found that

Pe/P, where P is the CTE of the matrix, can grow very large (I4/P » 1) as a direct re-

sult of the singular nature of the temperature derivative of the matrix-inclusion contact

stress for nearly equal values of the matrix and inclusion lattice parameters. It is precise-

ly in this domain that the tool presently used to treat the problem, linear elastic theory,

has its greatest validity. The model is applied to three real alloy systems, two of which,

Al-Ag, and Fe-Cu, contain Guinier-Preston zones, whereas the third, Ni-A1, contains y'

precipitates. Pd/P is found to be —5.2, + 150, and —18 for Al-Ag, Fe-Cu, and Ni-A1,

respectively. In addition, the easily measurable predicted isothermal change in matrix

volume caused by the precipitates in Al-Ag and Ni-Al indicates the important role that

dilatative properties can play in the experimental determination of precipitate-growth

kinetics. The present calculation shows that the absolute value of the ITCE of atomically

large, spherical, Eshelby-type coherent inclusions can, as for point defects, considerably

exceed that of the matrix, and under certain conditions can attain values that dwarf those

of point defects.

I. INTRODUCTION

It is reasonably safe to say that in recent years
both theory and experiment have shown that de-

fects, such as the vacancy' and impurity in me-

tallic systems, can sometimes possess strikingly
large intrinsic coefficients of thermal expansion:

~ Pd ~
/P&& 1, where Pd is the intrinsic coefficient

of thermal expansion (ICTE) associated with the
defect formation volume b.Vd [Pd =b V~ '(db, Vd/

BT)z], and P is the coefficient of thermal expan-
sion (CTE) of the matrix.

~ Pd /P
~

&& 1 for point
defects is more than a mere curiosity. Not only
does this condition have extremely interesting
consequences in the theory of Arrhenius-plot cur-
vature, but it represents, as well, an additional
parameter against which interatomic potentials in

alloys can be tested.
The question that naturally arises is whether

large ICTE's are to be expected for only defects of
strictly atomic dimensions (point defects), or
whether atomically large defects such as coherent

inclusions, can equaHy well exhibit such extraordi-
nary dilatative properties. We attempt to provide
an answer to this question in the present article by
calculating the ICTE of a spherical, coherent in-

clusion by means of linear elastic theory. In other
words, expressions are derived for Pd/P in the con-
text of Eshelby's model of a coherent inclusion.

In Eshelby's model it is assumed that the matrix
and inclusion are perfectly elastic, isotropic, con-
tinuous media described by different elastic con-
stants, lattice parameters, and, we might add, coef-
ficients of thermal expansion. The inclusion is the
result of some process that transforms a part of
the matrix into precipitated material. Thus, the
state of stress and strain of the system can be un-

derstood by cutting around the region which is to
transform and removing it from the matrix. After
the unconstrained transformation takes place (ac-
companied by a homogeneous deformation), sur-
face tractions are applied in order to restore the re-

gion to its original form, thus allowing it to be put
back in the hole in the matrix. It is welded to the
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matrix along the interface thus formed. In relax-

ing to its equilibrium configuration, the system
changes its volume by an amount 6 Vd, the forma-
tion volume of the defect, or coherent inclusion in
the present case. Since this sequence of operations
can be performed at any temperature T it is obvi-
ous that b, Vd =5Vd(T). Thus, Eshelby's formula-
tion of AVd is the starting point for the present
calculation.

The purpose of this paper, then, is to derive an
expression for 13&/P in terms of the various physi-
cal parameters that define the equilibrium state of
the matrix-inclusion system, and to see under what
conditions

~ pd lp
~

&y l. The impact of this in-

equality on measurable changes in the dilatative
properties of the matrix is subsequently explored
for three real systems in which spherical, coherent
precipitates form, and for which the data defining
the necessary physical parameters of the matrix
and inclusion are available. In particular, results

are presented for the alloys Al —4.5 at. % Ag and
Fe—1.1 at. % Cu, in which the precipitated
coherent inclusions are Guinier-Preston zones, and
for the alloy Ni —12.71 at. % Al, in which the
coherent inclusions are y' precipitates.

The calculation is developed for spherical,
coherent inclusions in order to avoid the attendant
complexity that would inevitably make the physics
less apparent for coherent precipitates of more
complicated shape (disks or plates, for instance).
As we shall see in Sec. IV A, it is precisely the
small difference in atomic volume between the ma-
trix and inclusion that is responsible for the spec-
tacular values of pdlp currently calculated. On
the other hand, it is generally acknowledged ' that
a small difference in volume, being equivalent to a
small strain energy, favors the formation of spheri-
cal precipitates. Thus, it is reasonably safe to say
that the orders of magnitude of some of the dilata-
tive properties currently calculated for spherical in-

clusions would probably change for disks or plates,
but this would obviously need to be confirmed at
some future time by the appropriate calculations.

II. THEORY

A. Eshelby's model of the coherent inclusion
and its extension to the
determination of Pd /P

Figure 1 shows the various physical and
geometrical parameters that define the matrix
(spherical hollow shell) and the inclusion (solid
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FIG. 1. The various physical and geometrical para-
meters defining the expanding Eshelby coherent inclu-
sion. The matrix is described by bulk (8) and shear (p)
moduli, coefficient of thermal expansion (p), elastic dis-
placement [u,(r)], and inner (a) and outer (R) radii.
The inclusion by bulk modulus (8'), coefficient of ther-
mal expansion (P'), elastic displacement [u„'(r)], and ra-
dius (a'). The matrix-inclusion interface by radius (b).

sphere). The unconstrained, post-transformation
radius of the inclusion is denoted by a', whereas its
pretransformation radius, or equivalently, the ra-
dius of the hole cut in the matrix, is denoted by a.
B and p are the bulk and shear moduli, respective-
ly, of the matrix, and B' is the bulk modulus of
the inclusion. The "expanding" version of the
Eshelby inclusion is obviously described, as well,
by the CTE's of the matrix (p) and the inclusion
(p').

After the inclusion is "welded" to the matrix the
interface assumes the "relaxed" position defined by
the radial distance r =b. Eshelby's method of cal-
culating the change in volume 6Vd of the system
due to this relaxation is extremely straightforward.
As the details are given elsewhere, ' suffice it to
say that because of the spherical symmetry, the
elastic displacement is a particularly simple func-
tion of r: u„(r)=fr +gr in the matrix and
u„'(r) =br in the inclusion. The constants f, g, h,
and b are then easily determined by means of the
boundary conditions: u, (a) =b —a, u„' (a') =b —a',
o (a)=o' (a'), and o. (R)=0. The third condi-
tion ensures that the interface is in equilibrium
under the action of the radial stresses in the matrix
(o. ) and the inclusion (o.' ), while the fourth con-
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dition ensures that the outer surface (r =R) is in a
stress-free state. Since b, Vd =4mR u, (R), Eshelby
then obtained (but in a different form) the follow-
ing expression for 6vd.

AVd =(4na /3)[(rI+ I)/8]cr~(a),

where

(~„(a)=38'(a'la 1)/—(8'rIIB+a'/a) (lb)

and ran=38/4p Sin.ce both the inclusion and ma-
trix are assumed to be isotropic in this model, p is
hereafter taken as the Voigt-averaged shear
modulus for simplicity. Now EVd is nothing more
than the formation volume of the inclusion, so that
differentiating Eq. (1) with respect to temperature
T at constant pressure we obtain the following,
sought-after expression for pd/p:

where

pdlp= I+p ' In[(g+ I)/8]+.p ' ino (a),
dT

approximation

p ] d
1 ( ) p ]8, ]dB' 1 1 p—'/p

dT dT 3 1 —a'/a

8' /88'rj/8+1 dT

(4)

p ' In[(g+1)8] —p ' 8
dT dT

8' /88'rI/8+1 dT

It is difficult, if not impossible, to further simplify
Eqs. (2) and (4) without loss of generality. This
becomes obvious when we estimate the order of
magnitude of each of the terms appearing in them.
Since, typically,

B 'dB/dT-p 'dp/dT- —100', 10 K

(Ref. 11) and p-50)&10 K ', ' then

dB'
P ' ln (a)=P ' 8'

dT dT
The remaining term,

~2 3 o

+ (1—P'/P)

1 1X, +
1 —a'/a 8'rIIB+a'/a

—1

8'rI/8+a'/a dT

(3)

Since the number of atoms is conserved during the
transformation that converts a part of the matrix
to inclusion, a and a' are proportional to the ma-
trix and inclusion lattice parameters, respectively.
Inasmuch as pd /p is a function of a'/a, a and a'
can be considered as lattice parameters for all in-
tents and purposes.

M(P'/P, a'/a) =—1 1 — '/P
3 1 —a'/a

can, on the other hand, assume a very wide range
of both positive and negative values. We notice
that M is the term that explicitly takes into ac-
count the "misfit" between the lattice parameter of
the inclusion and that of the matrix.

We can estimate a most probable lower bound
for M by assuming that the precipitate has the
same crystallographic structure as the matrix, but
at a slightly different composition. For simplicity,
consider a binary alloy for which the difference in
fractional solute concentration between the matrix
and precipitate is denoted by hC. Then,

~M ~;„- lim M
dC —+0

Under these conditions
B. Size of the various terms contributing to

Pd /P for real systems
1 —P'/P /].P/b, C

3 1 —a'/a Pb Vd/Q
' (5)

The maximum strain in the system occurs at the
matrix-inclusion interface, and is —

~

a —a
~

/a.
Pure metals and alloys typically have yield-point
strains —10 (Ref. 10) and r1-2," so that
(1—a'/a) ' &p (8'q/8 +a'/a) ', even for
8'/8 =0. Thus, Eq. (3) becomes, to a very good

where hp=p' —p, 0 is the average atomic volume
of the matrix and b, V~/Q=(3/bC)(a' —a)/a.
Typically, for dilute binary alloys,

~
gP/gC

~
7y 1() ~ K ].~ ~s

~

]I],Vg/II
~

1 for
substitutional impurities, ' Eq. (5) yields

~

M ~;„-l. In reality, M can easily dwarf this
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lower limit by at least an order of magnitude, as
will be seen in what follows.

num continuum. Within this context it can easily
be shown that

III CALCULATION OF pd /p FOR COHERENT
PRECIPITATES IN REAL SYSTEMS

A. Guinier-Preston zones

Let us first consider the case of coherent,
Guinier-Preston (GP) zones that precipitate in cer-
tain age-hardening alloys. For instance, in the al-

loy A1-4.5 at. % Ag, certain aging conditions can
give rise to GP zones in the form of silver spheres
embedded in a matrix containing no more than 1

at. % Ag. ' Inasmuch as the average diameter of
the GP zones is of the order of 70 A, we are justi-
fied in using the ordinary bulk properties of silver
to describe the zones. With regard to the matrix,
the situation is slightly more complicated in that
there are currently no published data available for
the CTE nor for the bulk and shear moduli of Al-1
at. % Ag. However, as the terms of Eqs. (2) and

(4) need only be estimated to the order of 10% for
the purposes of the present discussion, we can con-
sider the matrix to be composed of pure aluminum.
This can be justified by treating the silver atoms as
"Eshelby" inclusions embedded in a pure alumi-

Ap/phC =-68/BAC = 1 —B/8' Aa
a'/a —1 g5C '

(6)
where ~ and Ap are the changes in the bulk and
shear moduli, respectively, of the pure matrix
mused by the introduction of the fractional con-
centration of "atomic" inclusions AC. Using the
data of Table I in conjunction with Eq. (6), we find
that M280 K

——~300 K ——4.2)& 10 Mbar to much
better than 1%. Since b,a/ahC =b Vd /3Q, the
value of b,a/ahC=19&&10 /at. %%uomeasured 'at
300 K is used at 280 K as well: Even if b V~ were
to vary 100 times faster than 0 with temperature,
over a 20-K interval, ha/ab, C would change by no
more than 100135T/3=4. 5%%uo. Thus, since
~«B&t and dM/dT«dB~, ldT, B „„„
=BAt and (B 'dB/dT)m„„„=(B dB/dT)„(, to
a very good approximation. The same argument
and conclusion obviously hold for the shear
modulus p as we11.

The misfit term M can be evaluated exactly
since the lattice parameter and its variation with
temperature have been measured' for Al —1 at. %
Ag. Nevertheless, the measurements indicate that
amatlix aAt~ and Pmatlix I Ati to an excellen" ap

TABLE I. Reference data used in the present calculation.

System Components T B' B" pv'" P P' a
(K) (Mbar) (Mbar) (Mbar) (10 K ') (106 K ') (L)

a'

Al-Ag Al 280 0.7641
300 0.7609

0.2643
0.2613

4.0477'
4 0495'

Ag 280
300

1.0418
1.0378

57' 4.0846'
4.0862'

Fe-Cu Fe 280 1.6825
300 1.6799

0.9062
0.9023 2.8662'

CU 280
300

1.3753
1.3708 2.8690"

Ni-Al Ni-12 at. %%uoA1300
Ni3A1 300

41.4
29 4"

3.5465g

3.5649g

'Reference 11.
pv is the Voigt-averaged value of p: pv ——(c&~ —cl2+3c44)/5.

'Reference 12.
Reference 19.

'Reference 13.
a =ac„/2' since a-Fe is bcc and Cu is fcc.

~Reference 18.
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proximation for our purposes.
The data appearing in Table I are used to calcu-

late each of the terms appearing in Eqs. (2) and (4).
The results are shown in Table II. We notice,
referring to the last column, that Pd/P= —S.2.
Furthermore, since a'/a g 1, it can be seen from
Eqs. (la) and (lb) that EVd &0. Thus, as tempera-
ture increases, the GP-zone formation volume as-

tonishingly contracts about five times faster than
the matrix expands. The formation of GP zones,
in this case, decreases the apparent average lattice
anharmonicity of the system.

A much more startling case, however, involves
the Fe—1.1 at. %%uoCualloy . Unde rcertai naging
conditions the GP zones are composed of essen-
tially pure copper, and are spherical with an aver-
age diameter of about 100 A. Even though there
are currently no data available for the CTE and
the bulk and shear moduli of the Fe—1 at. % Cu
matrix, the same arguments, based on Eq. (6) and
the data of Table I, used for the Al —1 at. % Ag
system can again be invoked to show that
B „„„=BF„(B'dB/dT) „„„=(B'dB/dT)„„

A, ac„——2.8690 A (refer to the explanatory note in
Table I), I33F,

——34X10 K ', and I33c„——49X10
K ', we find that 1 —a'/a = —9.8&10 and
M =150. Table II clearly shows this to be the
dominant term in Eqs. (2) and (4): Pd/P= ISO.
Thus, as astounding as that would appear, the
volume of formation of the GP zone in Fe—1.1
at. %%uoCuexpand sabou t 150 time s faste r tha n the
matrix: The GP zone increases the apparent aver-
age lattice anharmonicity of the system.

B. y' precipitates

As a final example we consider the precipitation
hardenable Ni —12.71 at. % Al alloy. In this sys-

tern certain aging conditions' give rise to the ran-
dom nucleation of coherent, cuboid-shaped parti-
cles. These y'(Ni3A1) precipitates have a Cu3Au-
type ordered structure' and a lattice parameter
and elastic constants which are very closely equal
to those of the surrounding matrix. ' With B'=B
and IM'=p, Eqs. (2) and (4) can be considerably
simplified to yield the following expression for
Pg/P:

I3g/0= I + ——1 1 —P'/P
3 1 —a'/a (7)

For the alloy Ni —12.71 at. % Al, the data of Phil-
lips' indicate that 1 —a'/a ——5 &(10 at room
temperature. From the thermal expansion data of
Kornilov and Mints it is found that the room-
temperature CTE increases from 29.4g10 K
for Ni3Al to 41.4&10 K ' for Ni-12.71 at. %
Al. Thus, Eq. (7) yields P~/P= —18. Since
5 Vd & 0 [refer to Eq. (I)], the presence of the y'
precipitate decreases the apparent average lattice
anharmonicity of the alloy in an obviously ex-
tremely efficient way.

IV. DISCUSSION OF RESULTS

A. The singular nature of
the misfit term M

The various contributions to /3d/P appearing in
Table II for the three systems considered above in-
dicate that

~ Pd /13
~

&& I is a direct consequence of
~
M

~
&& 1. The precipitation-matrix misfit term

M can obviously acquire very large absolute values
for a'=a and P'&P.

It is obvious that this condition can be realized
in a binary alloy whose constituents have almost
identical atomic volumes and whose precipitated
phase is monatomic. When such a situation arises

TABLE II. Terms contributing to P&/P.

System +M Ewp' I —0'/0 1 —a '/a

Al —4.5 at. % Ag + 6.7 —2.8 —4.2
Fe—1.1 at. % Cu + 4.6 —4.8 —0.8

Ni —12.71 at. % Al

+ 0.16
—0.44
+ 0.29

—9.1X10-'
—9 8X10
—5.2X10-'

—5.9
+ 150
—19

—5.2
+ 150
—18

'E~ =P '—In[(g+ I )/B].dT
Ep=@ '(B' 'dB'/dT).

p
—1

'EMP =—
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it is extremely unlikely that p'= p, inasmuch as the
interatomic potential and its anharmonic com-
ponent vary considerably from one element to
another. Under these conditions the singularity
that appears in M as a'~a cannot be suppressed
by the finite difference that persists between p' and

P. Referring to Tables I and II, we notice that
such is the case for the Fe-Cu system, and to a
much lesser degree for the Al-Ag system.

As concerns the Ni-Al system, the large differ-
ences in composition ( —12 at. % Al) and degree of
order between the y' precipitate and the matrix
contribute to a relatively large value of M. It is by
no means simple, nor is it essential in the present
context to give a detailed explanation of this state
of events. However, we note in passing that, in

general, the CTE of an alloy changes much more
rapidly than the lattice parameter as the composi-
tion is varied. In Al —1.1 at. % Mg, for instance,
recent data indicate that dp/pdC=0. 74, whereas
da/adC=0. 12 in the range 100—200 K. This
means that p changes about 6 times faster than a
as the magnesium concentration is varied. As
shown in Table II, for the Ni-Al system,

~
(dP/P)/(da/a)

~

-50, indicating that the local
change in the degree of order is just, if not perhaps
more important than the local change in composi-
tion in determining M, and hence pd lp.

Again referring to Table II, for the three sys-
tems under consideration,

~

1 —p'/p
~

varies be-

tween relatively narrow limits, whereas
~

1 —a'/a
~

changes by an order of magnitude. Since
~

M
~

-5
for

~

1 —a'/a
~

—10, the condition a'=a is obvi-
ously not restrictive enough to ensure

~

M
~

&& l.
However, it would appear that for typical values of
p encountered for metals, and based on the present
results,

~

1 —a'/a
~

&2X10 would appear suffi-
cient to ensure

~

M ~, ~
Pd/P

~
&& l. It should be

emphasized that it is precisely in the domain where
linear elastic theory is valid (

~

1 —a'/a
~

&& 1) that
M, and hence Pd/P become singular.

As concerns the sign of pd/p, it is the same as
the sign of M for

~

M
~

&& 1. The sign of M, in
turn, depends on p'/p as well as a'/a. Thus, al-

though an inclusion may expand faster than its
surrounding matrix with increasing temperature
(p'/p& 1), pd/p can be negative as long as the lat-
tice parameter of the inclusion exceeds that of the
matrix (a'/a & 1). For

~

M
~

—1, no one term of
Eqs. (2) and (4), in general, dominates pd/p, so
that the sign of Pq/P is a complicated function of
all of the parameters describing the inclusion and
the matrix.

B Pq /P and observable effects

pd lp is only one of a number of factors control-
ling the physically sigmficant quantity 5p/p, the
fractional change in the CTE of the alloy caused
by the appearance of coherent inclusions
throughout its volume. In fact, it can easily be
shown that 5p/p is related to the normalized de-
fect CTE, p~/p, the normalized defect volume
6 Vd /Q, and the concentration C; of inclusions in
the following way:

or
5p/p=C; (&Vd/Q)(pd/p 1)—
5p/p=C;(b, Vd/Q}(pq/p) for pq/p»1

(8b)
Equation (8b) is obviously appropriate for the sys-
tems currently under consideration. Since AVd is
given by Eqs. (la) and (lb), the quantity 6V~/Q
appearing in Eq. (8b) is evaluated by replacing the
factor (4n/3)a of Eq. (la) by Q. With regard to
C;, depending on the alloy system being studied, it
is either taken directly from previous measure-
rnents or calculated from published data involving
the density of inclusions p; (inclusions per volume),
or equivalently the average inter-inclusion distance
S;, and the average diameter D; of the inclusions.
Thus~

5L =L05T5p/3 . (10)

Equations (8b), (lb), (9},and (10) are used to calcu-
late 5p/p from its various components, as well as
5L. The results are shown in Table III and are
based on the data appearing therein (columns 2—4)
as well as those of Table I. The values of 5L are
based on conservative values of Lo and 61:Lo ——4
cm and 5T =100 K (250 & T & 350 K}.

We notice that Fe-Cu has the largest value of
p~/p, yet the smallest value of 5p, hence 5L, of
the three systems considered. We see that this is
due to the cumulative effects of an extremely small
concentration of GP zones combined with a rela-
tively feeble value of b Vd/Q. As the overall preci-
sion in differential-length measurement by optical

Ci n.D; p; /6=(rr——/6)(D; /5; )

Ultimately, 5P/P is judged to be large or small
depending upon whether the change in length 6L
that it induces between a sample containing inclu-
sions and an inclusion-free dummy can be detected
for a reasonable change 6T of the sample-dummy
system temperature. If the sample and dummy
have the same initial length Lo, then
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TABLE III. Various parameters contributing to measurable thermal effects in alloy systems containing coherent in-

clusions.

System D;
(A.)

S; p;
(A.) (cm ') (pm)

Al-Ag 70' 2 X 10'

Fe-Cu 100" 1500

Ni-Al

36' 10-'
1.2X10-'
57y10 '

30y10-'
2.7 y, 10-'
15X10-'

—5.2
+ 150
—18

—6.7X10-'
+ 4.9X10-'
—1.6g 10-'

—4.5&&10 '
+1.7y10 '
—6.6X10-'

0.6
0.02

0.9

'Reference 23, p. 800.
~Reference 8.
'References 15 and 16.
5L based on a gauge length of 4 cm and a temperature excursion of 100 K centered at room temperature.

means is typically —10 pm, the change in CTE
due to the presence of the inclusions is barely

detectable in the case of Fe-Cu, whereas it is easily

measurable in the case of Al-Ag and Ni-A1.

C. AVER/'0 and growth kinetics

of coherent precipitates

The formation of coherent precipitates changes

the initial volume of the alloy by an amount

C;(t)b, Vq, where C;(t) is the volume fraction of in-

clusions resulting from growth during a time t at
an aging temperature TG. The associated change

in length 5LG(t) is given by

5LG(r) = [LGb, Vg( TG )/30( TG )]C;(t), (11)

where LG is the initial length of the alloy at the

temperature TG. Equation (11) obviously suggests

the possibility of determining the growth kinetics

of the precipitates through the measurement of
5LG(t), and hence C;(t).

Burke pointed out some years ago that dila-

tometry could be used to measure the kinetics of
phase transformations in metals. %e can use Eq.
(11) and the previously calculated quantities ap-

pearing in Table III to demonstrate the extremely

good sensitivity of this technique.
Reference to Table III shows that for Al-Ag and

Ni-A1, 5Lo( oo )-13 Ju, m for LG ——4 cm, so that

0&5LG(t) &13 pm for these two systems. The
resolution (-10 )u,m) afforded by optical-
interferornatric, differential-length measurement is

clearly more than sufficient to accurately deter-

mine 5LG (t) and d5LG(t)/dt during the precipita-
tion process. For precipitates having a definite,
time-independent composition, C;(t) is the only

time-dependent term on the right-hand side of Eq.

(11). This allows a relatively straightforward in-

terpretation of 5LG(t). Isothermal length measure-

ment, under these conditions, would then appear to

be an interesting complement to x-ray small-angle-

scattering and resistivity measurements whose in-

terpretation is relatively complicated, ' and to

direct measurements of precipitate growth parame-

ters by electron microscopy, whose realization is

not without considerable experimental effort. '

To the knowledge of this author, the one at-

tempt that appears in the literature to use length

measurements (but nondifferential) in this way was

made with respect to y precipitation in austenitic

stainless steels. Although the interpretation of the

results was not clear cut due to the complexity of

the alloy systems studied, it is nevertheless interest-

ing to note that the fractional length change

(-10 ) is the same order of magnitude as that

currently calculated (13 pm/4 cm —10 ) for Al-

Ag and Ni-A1.
A final word is in order concerning the possible

application of Eqs. (10) and (11) to the determina-

tion of the average diameter (D; ) of a precipitate.

For two samples of the same alloy having the same

value of C; but different values of (D; ), 5L and

5LG will be the same because A V~/0 is indepen-

dent of the absolute size of the precipitate [see Eq.
(I)]. Complementary information regarding p;
must obviously be available in order to say some-

thing about (D; ).

D. Similarities between dilative

properties of coherent inclusions

and atomic point defects

As mentioned in Sec. I, measured values of

~
P~/P ~

for vacancies and impurities in metals lie
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in the range 1 (
I P~/P I

(20. The present results
indicate that although (P~/P)c, can be positive or
negative for coherent inclusions (CI), just as for
point defects (PD),

I (P~/P)cq I
can, in contrast to

I (Pg/P)pD I, attain values as high as —150.
As it is well known that atomic point defects

have formation volumes tyically -0 and melting-
point concentrations —10, the present results for
spherical, coherent inclusions in Al-Ag and Ni-Al
indicate that (6Vg/Q)pD/(5 Vg/A)ct 50 and

(&& )ct/(C& )pD 50. This means that although
there are generally large differences between their
concentrations and formation volumes, both point
defects and inclusions generally produce about the
same fractional change in system volume:
(C;b Vg/Q)pD-(C;b, Vg/Q)c, -10

As concerns the concentration-normalized
change in the CTE 5P/C;, we notice from Table
III that although 5P for Fe-Cu is about 30 times
smaller than that for Al-Ag or Ni-Al, for all three
systems

I (5P/C;)c&
I
-1.2X10 K

Since, typically,

I (5P/C; )pD I
-7x 10

(see Sec. III), it would appear that to within a fac-
tor of 5, I

(5P/C')PD
I
—

I
(513/~i )ct I

Thus, it would seem reasonable to say that a1-

though point defects and coherent inclusions ap-
pear to differ radically with respect to their equili-
brium concentrations and formation volumes, the
measurable effects that they produce concerning
changes in system volume and CTE are about the
same.

V. CONCLUSIONS

The present model calculation of the ICTE P»
of spherical, coherent inclusions shows that

I 13~ I

can become very much greater than P of the ma-

trix as a direct result of the singular nature of the

temperature derivative of the matrix-inclusion con-
tact stress that varies as (1—a'/a) ' in the limit
a'/a ~1. It is precisely in this domain where
Pq//3 becomes singular that linear elastic theory is
valid as a tool for treating the problem.

Three real alloy systems in which spherical,
coherent precipitates form as a result of certain ag-
ing conditions are explored in the context of the
present ideas. In particular, associated with the
Guinier-Preston zones in Al-Ag and Fe-Cu, P~/P
is found to be —5.2 and + 150, respectively. In
the third system investigated, Ni-Al, in which y'
precipitates of ordered Ni3AI form, Pq/P= —18.
In spite of the enormous value of P~/P in Fe-Cu,
the changes induced in matrix volume and CTE by
the inclusion are the smallest of those calculated
for the systems considered, owing to the relatively
small zone-formation volume and concentration in
this system. On the other hand, the easily measur-
able value of these changes in Al-Ag and Ni-Al
signals the important role that dilatative properties
can play in the experimental determination of pre-
cipitate growth kinetics.

Finally, the present calculation shows that the
absolute value of the ICTE of atomically large,
spherical, Eshelby-type coherent inclusions can, as
for point defects, considerably exceed that of the
matrix, and under certain conditions can even at-
tain values that dwarf those of point defects.
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