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Universal behavior of exchange-correlation energy in electron-hole liquid
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Exchange-correlation energy of electron-hole liquid (EHL} is shown to be independent

of different band characteristics of semiconductors. A simple expression of e„,for EHL
in all semiconductors is given. In units of excitonic rydberg, e„,=(a+br, )/(e+dr, +r, ),
+here a =—4.8316, b =—5.0879, e =0.0152, and d =3.0426. Ground-state and thermo-

dynamic properties calculated with this expression are in good agreement with earlier
theoretical calculations and experimental results.

where tk is the noninteracting kinetic energy. The
exchange-correlation energy e„, is an integral of the

interaction energy over the interaction strength:

'dA,
(2)

Because exchange and correlation are parts of the
same interaction energy, they should be treated in

exactly the same model for the band structure of a
semiconductor. By this we mean that if, for exam-

ple, the conduction-band anisotropy is ignored in

correlation energy, it should also be left out in ex-

change. While band characteristics can greatly af-
fect exchange and correlation energies separately,

the effects on correlation are opposite to those on

exchange. In reduced units, the sum of exchange

and correlation energies is almost independent of

Exchange-correlation energy is a central quantity
in the determination of ground-state, thermo-

dynamic, and surface properties of electron-hole

liquid (EHL). The Hartree-Fock (HF) energy,
which is the expectation value of kinetic and po-
tential energies with respect to the Slater deter-

minant, can be exactly evaluated including such

diverse band-structure effects as the valley degen-

eracy, anisotropy of bands, valence-band couphng
and warping. ' In most semiconductors EHL is

not bound in HP approximation, and it is the
correlation contribution which makes EHI. a stable

phase. The complex band-structure effects are dif-

ficult to incorporate in the correlation energy, and

therefore it is usually evaluated in simplified

models of semiconductors where most of the
band-structure effects are ignored.

The ground-state energy for an uniform EHL
can be written as

band characteristics and it depends on r, alone. In
what follows we shall demonstrate that e„, is in-

sensitive to band parameters of semiconductors.

EFFECT OF VALLEY DEGENERACY

Consider EHI. in a semiconductor like Ge,
which has four conduction bands and two valence

bands, and is therefore denoted by Ge(4;2).s To
study the effect of valley degeneracy, we shall re-

place the four conduction bands by a variable

number v„and denote the new system by
Ge(v„'2). As regards the band structure of
Ge(v„2) the following simplifications are made:
The anisotropic conduction bands are replaced by

isotropic bands, and the valence bands are
represented by two identical, isotropic, degenerate
bands without valence-band coupling. ' In this
model of Ge(v„2), the exchange energy per e-h
pair is given in units of Ry by,

0.9163, +2
Pg

where 1 Ry=e /2', „,and a,„ is excitonic Bohr
radius. To investigate the effect of v, on exchange
and correlation it is essential that they are evaluat-

ed in exactly the same model of the band structure.
The correlation energy of EHL in Ge(v,',2} is
evaluated for a number of values of v, in fully
self-consistent (FSC) approximation. The depen-

dence of e», e„and e„, on v, at r, =1 is shown in

Fig. 1(a). While the magnitude of e„decreases
with v„ the magnitude of correlation energy in-

creases. The decrease in exchange is nearly the
same as the increase in correlation, and the sum e„,
is therefore nearly independent of v, . This near in-

dependence of e„, holds not just at r, =1, but for a
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FIG. 1. Variations of exchange energy e„, correlation
energy e„and their sum, e„„per e-h pair with (a) num-

ber of degenerate conduction bands v, (b) conduction-
band anisotropy g=m„/m, i, where m„and m, i are,
respectively, the transverse and longitudinal masses, and
(c) hole to electron mass ratio. The energies are mea-
sured ln units of excitonic rydberg, 1 Ry =8 /2KQe„s

where a is excitonic Bohr radius.

wide range of r, values. A simple explanation of
this is that the main contribution to e„, comes
from plasmons whose energy, fico~ =(12/r, )' Ry,
depends only on r, and not on the number of val-

leys in which electrons and holes reside. The weak
variation of e„, with v, is a general feature; to a
lesser degree it is also present in random-phase
(RPA) and Hubbard approximations (HA).

EFFECT OF ANISOTROPY

To study the effect of anisotropy, the conduction
bands in Ge(4;2) are taken to be ellipsoids with

varying ratio g, of transverse (m„) to longitudinal
masses (m,i) or electrons. The exchange energy
per e-h pa1r can be wr1tten as

[4—I/Iy(g )+2—I/I]
rg

(4)

again in units of Ry, where P(g, ) is a measure of
the effect of anisotropy. The correlation energy
of the system is evaluated in Hubbard approxima-
tloll. Flgllrc 1(b) shows tllc dcpclldcIlcc of e
and e„, on g, . The curves for e„and e, are nearly
straight lines except when g, is very small; close to
g, =0 the exchange and correlation energies exhibit
nearly equal but opposite curvatures, and the sum

e„, is therefore insensitiue to any uciriations in g, .
For anisotropic bands, the evaluation of e, in FSC
approximation is considerably more difficult than
1n Hubbard approximation.

To investigate the effect of electron-hole mass
ratio, consider a model system with a single isotro-
pic conduction band of mass m, and an isotropic
valence band of mass mz. The exchange energy is
IIldcpcIldcll't of tllc Illass ratio. Flgllrc 1(c) sllows
the dependence of e, in FSC approximation on the
ratio ms/m, at r, =1. Since e, is nearly flat and
the uanation in e„,is a result of uariation in e,
alone, the exchange and correlation energy mme is
flut too Tl.lc varlatloIl of owltl'l thc Inass latlo ls
substantially greater in RPA, 6

awhile in HA the
change in e, is less than RPA, but still greater
than FSC approximation.

Other band characteristics which affect exchange
and correlation are valence-band coupling (VBC)
and warping of hole bands. In Ge and Si, the ef-
fect of VBC on exchange energy is given by a
function g which has a value 1/2'/ =0.7937 when

the valence bands are represented by two identical,
isotropic, degenerate bands. In the presence of
VBC, the value of P in Ge(4;2) is 0.726.' In ex-
change energy the effect of VBC is therefore
equivalent to an increase in number of bands,
which increases the magnitude of e, . We therefore
feel that the sum of exchange and correlation will

be perhaps insensitive to valence-band coupling.
Carrying this argument to the case of valence-band

warping, we expect its effect on e and e, to be op-
posite and therefore the sum e„, will be a weak
function of warping.

It is worth reiterating that exchange and correla-
tion effects should be treated on equal footing; if a
certain band-structure effect is ignored in correla-
tion energy, it should also be excluded in exchange,
since the inclusion of a given band characteristic in
exchange is canceled to a large extent by the corre-
sponding contribution to correlation. In reduced
units the sum of exchange and correlation energies
is nearly free from the effects of band structure
and depends only on r, . Over a wide range of r,
values, e„, can be fitted to the following simple
form (in units of Ry):

a +br'
etc(&. )=

c+drg +rg

where a = —4.8316, b = —5.0879, c=0.0152, and
d =3.0426. A plot of e„, vs r, is shown in Fig. 2.
For comparison FSC values of e„, in Si(6;2),
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FIG. 2. Exchange-correlation energy e„, in units of

excitonic rydberg as a function of dimensionless variable

r, in Ge(4;2), Si(6;2), and the model system consisting of
a simple isotropic conduction band and an isotropic
valence band, The solid curve is the fit to e„,by the
expression given in the figure mth a =—4.8316,
b =—5.0879, e =0.0152, and d =3.0426.

Ge(4;2), and the model system are also shown in

Fig. 2. It is clear that the above expression pro-
vides an excellent fit to the numerical values of a„,
in ail systems. A simple expression like Eq. (5)
tremendously facilitates the evaluation of the ener-

getics of EHL Given e„„one needs only to evalu-

ate the noninteracting kinetic energy of EHL; the
ground-state, thermodynamic, and surface proper-
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The thermodynamic properties of EHL in the
plasma model" can be easily calculated using the
general expression expression for a„. In Ge, Si,
and several other systems we find that the coeffi-
cients of T in the low-temperature expansion of
density, chemical potential, and Fermi -energy are
in good agreement with experimental and earlier
theoretical results. 9 The evaluations of critical
density n, the temperature T, are also straightfor-
%vard.

The ratio of critical density to equilibrium densi-

ty at T =0 K can be written as

ties can then be calculated in a straightforward
manner.

In many systems the kinetic energy per e-h pair
can be written as a/r„where a contains band-
structure effects. Using e„, from Eq. (5), the total
energy in Ry per e-h pair can be written as

8+br'
+

r, c+dr, +r,
The minimum of e gives the ground-state energy

eo and the equilibrium ro in the liquid phase; the
binding energy of EHL is the difference between eo
and the excitonic binding energy.

The compressibility X can be easily obtained
from

TABLE I. Results for various properties of EHL in a number of semiconductors using the general expression of e„,
given in Eq. (5). Notations for different quantities are: equilibrium r, (ro), ground-state energy per e-h pair (eo), criti-
cal r, (r, ), critical temperature (Tc), compressibility (g), and coefficients of T terms in lour-temperature expansions of
density n, chemical potential p~, and Fermi energy EF. The coefficients 5n, 5p, and 5E~ are defined through n (T)
=n(0)[1—5nT'], IJ~(T)=IJr(0) 5&Ep(0)T, EF(—T)=Ei;(0)[1 5EFT ]. The—systems Ge(1;1) and Si(2;1) are high-
stress hmits of normal germanium [Ge(4;2)] and si1icon [Si(6;2)] when the stresses are along (111)and (100) direc-
tions, respectively. The results in GaP and SiC are calculated for taro situations. Because of camel's back (CB) struc-
ture in GaP, there are six occupied conduction bands if the Fermi energy is less than the height of CB. On the other
hand, if the Fermi energy exceeds the height of CB only three conduction bands are occupied. The tvvo limiting config-
urations in SiC are (i) there are tvro occupied valence bands a&hen spin-orbit coupling exceeds the whole Fermi energy,
and (ii) there are three occupied valence bands when the spin-orbit coupling is negligible.

System Sn

(meV)
5p

(meV) ~
5'

(meV)
x

(meV 'cm3)

Ge(1;1)
Qe(4;2)
Si(2;1)
Si(6;2)
GaP{3;2)
GaP{6;2)
SiC(3;2)
SiC(3;3)

1.62
0.57
1.67
0.84
1.00
0.90
0.98
0.76

2.95
6.07

13.96
22.49
25.14
27.16
40.14
42.58

2.80
0,97
2.88
1.44
1.72
1.54
1.68
1.30

3.75
8.71

18.31

,30.29
33.19
32.72
56.05
59.14

6.32
1.15
0.27
0.10
0.08
0.08
0.03
0.03

1.62
0.25
0.07
0.02
0.02
0.02
0.007
0.006

4.75
0.85
0.20
0.07
0.06
0.06
0.02
0.02

2.09' 1O-"
4.53' 1O-"
1.04' 1O-"
0.86' 1O-"
0.72' 1O-"
0.4SX 1O-"
0.16' 1O-"
O.9SX 1O-"
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n~ rp

no r,

3

[2@X,(r, ) 2r—,Fx',(r, )+r, e'„,'' (r, ) t .
20@„',(ro)

Equation (7) has no explicit dependence on band
parameters. Its solution is nearly a constant,
n, /no 0 20. T.his is in agreement with Hansel's
original observation and the scaling relation de-
rived by Reinecke and Ying. ' Furthermore, in
all the systems we have investigated using the gen-
eral form for e„„it is found that the ratio
eo/ka T ——9 "

In density-functional formalism the calculation
of surface properties also requires a knowledge of
exchange-correlation energy. A general expression
like Eq. (5) for e„, easily allows the inclusion of
exchange-correlation effects in local-density ap-
proximation. " ' Recently, Singwi and Tosi'
used the ideas of Kohn and Yaniv' to propose a
simple scaling relation for the surface energy,
namely cd-a, „where X is given by Eq. (7).

I

From the coefficient of T term in the low-
temperature expansion of surface energy, Singwi
and Tosi have obtained the critical temperature. It
should be recognized that the general expression
for e„, makes it easy to calculate many properties
of EHL in a variety of semiconductors.

We have evaluated various properties of EHL in
Ge(1;1), Ge(4;2), Si(6;2), GaP, and Sic using e„,
from Eq. (5). The results given in Table I are in
good agreement with experimental values. ' '
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