
PHYSICAL REVIEW 8 VOLUME 25, NUMBER 10

Addendum to the lattice dynamics of y-Ce
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Inelastic neutron scattering techniques have been used to study the temperature depen-
dence of the dispersion curves of y-Ce. We find that the frequencies of all but the
T [111]branches exhibit normal temperature dependence. Close to the zone boundary the
frequencies of the T [111]branch, on the other hand, decrease with decreasing tempera-
ture, and at room temperature this branch exhibits a dip at the zone boundary. This
anomalous behavior may be related to the fcc~dhcp phase transition.

I. INTRODUCTION

The properties of cerium metal have been the
subject of many experimental and theoretical inves-
tigations. ' Of particular interest are the physical
properties of the fcc phase (y) which is stable at
room temperature and atmospheric pressure. The
y phase of cerium transforms under moderate pres-
sure (-8 kbar at 300 K) or upon cooling to low
temperatures ( & 100 K at 1 atm) to the fcc a
phase in which the cerium ions are in a mixed-
valence state. Furthermore, y-Ce transforms to the
dhcp phase below approximately 260 K at 1 atm.

In a previous paper (hereafter referred to as I),
published previously in this journal, we have re-
ported the results of an inelastic neutron scattering
study of the phonon dispersion curves of y-Ce
along the [100], [110],[111],and [Ogl] symmetry
directions. Comparison of the measured dispersion
curves with those of Th has indicated that the y-
Ce phonon frequencies are lower than one would
expect, this relative softening being more pro-
nounced for the T [111]branch. We therefore felt
that a study of the temperature dependence of the
phonon frequencies of y-Ce may provide additional
information regarding the lattice dynamics of this
phase and in this paper we present the results of
these experiments.

II. EXPERIMENTAL DETAILS

In the present experiment a single crystal of y-
Ce grown at the Ames Laboratory (for details see I

and Ref. 3) was mounted in a high-temperature
vacuum furnace positioned on the sample goniome-
ter of a triple-axis neutron spectrometer. At 87S
K the temperature was controlled to within a few
degrees and the vacuum was approximately 10
Torr.

The measurements were performed using a
triple-axis spectrometer at the 100-MW high flux
isotope reactor of the Dak Ridge National Labora-
tory. All data were collected using the constant Q
(where Q is the neutron scattering vector) mode of
operation and a fixed scattered-neutron energy of
3.6 THz. Pyrolytic graphite [reflecting from the
(002) planes] was used as both monochromator and
analyzer, and a pyrolytic graphite filter was placed
in the scattered beam to attenuate higher-order
contaminations. The collimation of the neutron
beam before and after the sample was 40' of arc.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

The T [111]branch of y-Ce has been studied in
considerable detail at room temperature and 875
K. The frequencies of a selected number of pho-
nons of the L[111],L[110],L[100], T [100],and
Tz[110]branches were also determined both at
room temperature and 875 K. In all cases the
room- and high-temperature data were collected
under identical experimental conditions. The mea-
sured phonon frequencies are listed in Table I and
the temperature dependence of the T [111]disper-
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TABLE I. Measured frequencies (THz) at 295 and 875 K of y-Ce.

Branch v (295) v (875) Branch v (295) % (875)

T [111]

L[111]

0.1

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.1

0.3
0.5

0.46+0.02
0.63+0.02
0.80+0.03
0.94+0.03
1.05+0.04
1.01+0.04
0.92+0.04
0.86+0.04
0.82+0.04
0.95+0.05
2.40+0.05
2.86+0.05

0.41+0.02
0.60+0.02
0.70+0.03
0.84+0.03
0.90+0.03
0.96+0.03
0.97+0.04
0,98+0.03
0.94+0.03
0.90+0.07
2.40+0.08
2.80+0.06

T [110] 0.15
0.4
0.8

L[110] 0.3
0.8

T [100] 0.4
0.8
1.0

L[100] 0.4
0.8
1.0

0.70+0.02
1.80+0.03
2.83+0,04
1.80+0.06
2.19+0.05
1.27+0.03
2.10+0.04
2.10+0.05
1.50+0.06
2.73+0.08
3.20+0.08

0.67+0.02
1.65+0.03
2.70+0.04
1.80+0.06
2.17+0.06
1.17+0.03
1.94+0.04
2.00+0.06
1.44+0.06
2.65+0.07
3.03+0.08
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FIG. 1. Temperature dependence of the TA[111]
branch of y-Ce. Some phonon frequencies (Ref. 5) for
fcc La at 660 K are also shown (triangles).

sion curve is shown in Fig. 1. The room-
temperature data are in good agreement with the
measurements reported in I.

It can be seen (see Table I) that the frequencies
of all but the T [111]branch of y-Ce decrease with
increasing temperature. This behavior is what one
would normally expect from the effect on the vi-

brational frequencies of the thermal expansion of
the lattice. The temperature dependence of the fre-
quencies of the T [111]branch of y-Ce is, on the
other hand, anomalous (see Fig. 1). Close to the
zone boundary the frequencies of this branch de-

crease with decreasing temperature and at room
temperature the T [111]branch exhibits a dip at
the zone boundary.

It is unlikely that the anomalous dispersion and
temperature dependence of the frequencies of the
T [111]branch of y-Ce are related to the mixed-
valence transition to the a phase. In fact, the

T [111]branch of fcc La, which does not undergo
a transition to a mixed-valence state, was found to
also exhibit similar dispersion (see Fig. 1) and tem-
perature dependence as the corresponding branch
of y-Ce. This is not surprising since La and Ce
have comparable masses and similar (Sd 6s ) outer
electronic configurations (of course La, unlike Ce,
does not have any 4f electrons); actually one would
expect nearly identical dispersion curves for these
two metals in the absence of any mixed-valence ef-
fects on the dispersion curves of Ce or pronounced
electron-phonon effects on those of superconduct-
ing La. Thus the anomalous dispersion and tem-
perature dependence exhibited by the T [111]
branch must be related to the common electronic
structure of these metals.

It is important to recall at this point that fcc Ce
and fcc La both undergo a transformation to the
dhcp phase (y-Ce at -260 K and P-La at -583
K); actually below the transformation temperature
the fcc and dhcp phases coexist in these metals.
The fcc—+dhcp phase transformation involves four
transverse waves propagating along the [111]direc-

1 1 1
tion with reduced wave vectors q of —,, —,, and —,.
It is natural therefore to assume that the anoma-
lous dispersion and temperature dependence of the
T [111]branch of y-Ce (and P-La) is related to the
fcc~dhcp phase transformation in this metal. A
similar conclusion has been reached by Pickett,
Freeman, and Koelling in their detailed theoretical
study of the eltx:tronic band structure of y-Ce and
p-La. In particular, Pickett, Freeman, and Koel-
ling found that the calculated generalized suscepti-
bility X(q) of La is remarkably large along the
[111]symmetry direction and exhibits peaks near
the wave vectors which are involved in the fcc
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dhcp phase transformation. A more fundamental
understanding of the relationship between the
anomalous dispersion and temperature dependence
of the T [111]branch of y-Ce, the electronic struc-
ture and the fcc~dhcp phase transformation can
only be obtained within the framework of the mi-
croscopic theories7 of lattice dynamics. Only re-

cently, calculations at finite temperatures using

these theories have been attempted. '

The Ames Laboratory is operated for the U. S.
Department of Energy by Iowa State University
under Contract No. 7405-Eng-82. This research
was supported by the Director for Energy
Research, Office of Basic Energy Sciences.

~For a comprehensive review of the properties of Ce, see
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