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Theory of the interfacial tension between liquid metals
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We present a method for calculating the interfacial tension between two immiscible

liquid metals with use of an ionic density-functional formalism in conjunction with pseu-

dopotential theory. The method is applied to Li~ „Na„at 452 K. The resulting tension

is found to be 10.5 dyn/cm, much smaller than the free-surface tensions of the consti-
0

tuents, and the width of the interfacial profile is calculated to be about 6.7 A.

The interfacial tension between immiscible met-
als is a parameter which plays a large role in many
metallurgical processes. ' It helps control the rate
of spinodal decomposition of immiscible metals,
for example, as was first emphasized by Cahn and
later discussed by Langer and co-workers. 3 Immis-
cible metals may also be quenched from the liquid
state to form technologically important composites.
The morphology of these composites depends
strongly on the interfacial tension. Moreover, be-

sides the free energy itself, the width of the inter-

face is of interest as a region over which the com-
position of the alloy changes substantially.

In this paper we present apparently the first mi-
croscopic calculation of the interfacial tension be-
tween two liquid metals. Our calculation is based
on the well-known ionic density-functional formal-
ism used previously to treat the free surface of a
liquid metal in equilibrium with its vapor, and

used here (in suitably generalized form) to treat
mixtures of liquid metals. The calculation allows
one to extract not only the interfacial tension but
also the thickness of the interface and the tempera-
ture dependence of the surface tension in a simple
manner. Since the density-functional forinalism in
our approximation makes use of bulk properties to
calculate surface ones, it may well be suited for
parametrization and extrapolation to as yet unmea-
sured interfaces. Finally, although this work is
directed towards liquid metals, it may help to esti-
mate the electronic part of the surface tension be-

tween solid intermetallics. (However, this tension
will also be substantially influenced by elastic ener-

gies arising from atomic size mismatch. )

The basis of our work is the following expres-
sion for the Helmholtz free energy E of an inhomo

geneous liquid alloy:

00 00 n
E[n i(z),n2(z), T]= f(n, (z),n2(z), T)dz+ g f K J(n i,n2, T} dz .

00
i,j =1,2 dz dz

AT
Ktj(ni, n2, T)= r C,J(r;T)d x,

0
(2)

CJ(r; T) being the Ornstein-Zernike direct correla-
tion functions of the alloy (i,j=1,2}. Equations
(1) and (2) are the generalization of the one-com-
ponent ionic density-functional theory used in Ref.
5, in the limit in which the partial densities are
slowly varying on a scale set by the range of Ctj.

Here n i(z) and n2(z) are the ionic number densities
of species 1 and 2 of the alloy at position z,
f{ni,n2, T } is the Helmholtz free-energy density of
a hypothetical alloy of densities n i and n2 at tem-

perature T, and the gradient coefficient Kt(n i,
n2, T ) is defined by

Note that the conduction electrons are not omitted
from (1) by considering the alloy to consist of two
components only; they are properly included within
the adiabatic approximation.

The interfacial tension r between two immiscible
phases A and 8, at pressure P and temperature T,
takes the following form:

—pj~) —p2~2+P d~

(3)
lj

Here p;(1= 1,2) is the chemical potential of the ith
alloy component, and P is the pressure, which by
the Gibbs-Duhem relation is the negative of the
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grand free energy Q per unit volume. In the limits
z =+ oo, the densities approach (niq, nest) and

n, ii, n zz}, respectively, these being partial densities
of the two immiscible alloy phases. Note that the
integrands in (3) vanish at z=+ oo, so that w is the
extra grand free energy per unit area required to
form an interface, consistent with its thermo-
dynamic definition. To apply (3} to the calculation
of the interfacial tension of a real alloy, one mini-
mizes (3) with respect to all possible surface pro-
files defined by the two partial densities. This pro-
cedure gives not only the surface tension but also
the density profile across the interface.

%e have tested the theory described above by

applying it to liquid Li and Na in equilibrium.
This is an alloy which has a miscibility gap, the
components being mutually soluble in all propor-
tions above T-590 K but phase-separating at
lower temperatures. Since this miscibility gap is
adequately described by the equilibrium theory of
homogeneous liquid alloys, 6 it is a natural choice
for testing a theory of interfacial tension.

The free-energy density and correlation functions
appearing in Eq. (1) and (2) were evaluated by
means of standard approximations in the theory of

.homogeneous liquid metals. For f (n i,nz, T } a
structural expansion was used, in which the
electron-ion interaction was included to second or-

der as described in Ref. 6. Structure-dependent
terms in the internal energy were evaluated using
Percus-Yevick structure factors for a mixture of
hard spheres of different diameters. The entropy
was taken to be that of a similar hard-sphere mix-

ture, as fitted by Carnahan and Starling to com-
puter simulations. The hard-sphere diameters 0 ~

and u2 were taken to be concentration-independent
and equal to the values shown in Table I. They
were chosen to satisfy the condition V;; (0;)
= —,ks T, where Vz is the standard screened in-

terionic pair potential for the ith species at its
equilibrium liquid density. This is a typical dis-
tance of closest approach that would be expected
of an ion with a kinetic energy , kz T. While a—

variational calculation performed at each concen-
tration and temperature would give a slightly more
accurate free energy, the present method is ade-
quate. Empty-core pseudopotentials were used for
simplicity and the Hartree terms in the free energy
were chosen to satisfy the zero-pressure require-
ment (BF/Bu}T——0 at the equilibrium atomic
volumes of the pure metals at melting (F being the
Helmholtz free energy per ion). The resulting
values of the various parameters used in the calcu-
lation are listed in Table I. Finally, for the corre-
lation functions, we used the approximation

CJ(r) =C&&'(r) for r &0,1,

C,J.(r}=—Vz(r)/ksT for r &cr,j,
where C~&'(r) is the Percus-Yevick hard-sphere
correlation function, V~&(r} is the (density-
dependent} screened interionic potential between
ions of species i and j as calculated using Hubbard
polarization corrections to Lindhard screening, and

0;, =(cr;+oj)/2
To calculate the surface tension, we minimized

(3}with respect to the one-parameter surface pro-
file defined by

X)+Xp X) —X2
x (z}= + tanh(Pz),

2 2

ni(z}=[1—x (z}]n(z),

n2(z) =x (z)n (z),

n(z)= Ix(z) U2+[1 —x(z))ui J

Ui and Uz being the atomic volume of components
1 and 2, respectively. This is the obvious generali-
zation of the hyperbolic tangent profile which is
the exact solution for interfaces described by free-
energy functionals of the Ginzburg-Landau form.
For the present functional it does not, of course,
provide an exact minimization, but it does ensure
that the atomic volume of the alloy is a linear
function of concentration (Vegard's law) as is ex-
perimentally well obeyed for alloys of alkali met-
als. '

TABLE I. Values of the various parameters used in evaluating v, All numbers are in
atomic units. 0 z; and 0N, are the hard-sphere diameters, r, ' and r,"' the empty-core radii,
ni.; and aN, the Hartree coefficients [as defined in Ashcroft and Stroud (Ref. 6), Eq. {4.2e)],
and v~; and v~, the equilibrium atomic volumes.

Li
C

Na
C Vgi vNa

5.11ao 5.795ao 1.4ap 1.69ap 10.94ap 17 94ap 151.69p 278a p
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With the choice (4), f g—,pi.n;+P becomes a
function of a single variable (total number density
n or, equivalently, concentration x of Na), and is
plotted in Fig. 1 at 452 K, slightly above the melt-

ing temperature of Li. The equilibrium concentra-
tions of the two coexisting phases at this tempera-
ture are calculated to be 15% and 85% Na, and
the height of the free-energy density barrier
separating the two phases is only 0.1 K/a. u.i).
Such an energy is certainly far smaller than accu-
racy of the pseudopotential method. But simple
estimates, based on the regular solution model,
show that when the mutual solubility of the alloy
constituents is —15%, the fry-energy barrier must
be only about 3%%uo of the heat of formation H of an
equiatomic alloy from its constituents. H is es-

timated by Hafner to be of order 5 K/a. u. ), and
so the barrier calculated here is not unreasonable.

The minimization with respect to P is readily
carried out with the help of a change of integration
variables from z to n, and the interfacial tension
and width are given by

dn, (5)
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FIG. 1. Excess grand free-energy density 0(x) as a
function of the concentration x of Na at T=452 K.
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Here n & and n & are the ionic number densities of
the two coexisting phases, «i and «2 are the

differences between the two corresponding partial-
number densities,

n={n&+n )/2

Q(n) =f—gp;n;+P .

Q(n) is to be coinputed at the density n which sa-
tisfies Vegard's law. In evaluating {5),we assumed,
purely for convenience, that K,rr(n) is density-
independent and equal to its value at n =n. The
resulting values for E,rr, a, b, r, and w =P ' are
listed in Table II, where we also list for compar-
ison the surface tensions of pure liquid Li and Na
at melting.

The results shown in Table II show some strik-
ing differences from the corresponding surface
behavior of pure metals. In particular, the interfa-
cial tension is about an order of magnitude lower,
although surface width w is about the same as the
corresponding calculated values for pure liquid
metals. These features may be understood from
the fact that an intermetallic interface is less
"abrupt, " with a more indistinct change of proper-
ties, than a metallic liquid-vapor boundary. Thus,
one expects in the former case to have a smaller
contribution from both the homogeneous and gra-
dient part of the free-energy (a and b, respectively).
[See Eq. (5).] This results in much smaller energy
but about the same profile width as in the pure
case.

The magnitude of both r and P depend sensitive-

ly on the height hf of the free-energy barrier
shown in Fig. 1. If we make the extremely over-

simplified approximation

Q(n) =6f(n &
—n )(n —n & )/(« /2)

the coefficient a can be calculated analytically
from (5). The result is a =2' =0.24 K/(a. u.),
within 30% of the value calculated by numerical
integration of the actual free-energy barrier. Also,
combining the first two equations of (5) gives

P~=2a -4b,f,
which provides a direct measure of the product of
the interfacial tension and the inverse-width

parameter P, independent of the difficult-to-
calculate gradient coefficient. While the free-

energy barrier cannot be directly measured, at low

temperatures it approaches the heat of formation

per unit volume of an equiatomic alloy, which can
be experimentally estimated by various means. '
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TABLE II. Values of,the various coefficients described in the text. a, b, and E,fq are defined in Eq. (5), g is the in-

terfacial tension in liquid Li~ „Na„at 452 K, w is the half-width of the interfacial profile, vN, and v.q; are the free-
surface tensions, and wN, and wI.; are the half-width of the pure liquid metals at melting (Ref. 5). The value in

parentheses for a is the number calculated using the approximation Q(n)=hf (n &
n—)(n n—& )/(l), n/2) .

&Na WNa Wg 1

0.17K/a p3

(0.24)
6.7E/ap 0.43' 10'

It.'ap5

10.5
dyn/cm

6.29ap 191 dyn/cm 398 dyn/cm 6.39ap 5.11ap

This simple estimate may be useful in obtaining re-

lationships between r and P in many binary sys-

tems, not just liquid metals.
The value of 10.5 dyn/cm cannot, at present, be

directly compared with experiment. We note, how-

ever, that the HgGa system has interfacial tension
of only 37 dyn/cm, far smaller than the free-
surface tensions of either component separately (by
a factor of around 20). Thus, the small value we
find for LisNai s is not unreasonable.

To conclude, we have carried out the first mi-

croscopic calculation of the interfacial tension be-
tween two immiscible liquid metals. The results
are of interest, not only in themselves, but also as a
guide to future experimental and theoretical studies
of interfaces, perhaps solid as well as liquid.

We are most grateful for valuable discussions
with Dr. D. M. Wood. This work was supported
in part by NSF Grant No. DMR 78-11770 and
No. 81-14842.

'Permanent address: Department of Physics, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213.

iSee, for example, J. W. Christian, The Theory of
Transforrnations in Metals and Alloys, 2nd ed. (Per-

gamon, Oxford, 1975).
2J. W. Cahn, Acta. Metall. P, 795 (1961).
J. S. Langer, Ann. Phys. (N.Y.) 65, 53 (1971);J S

Langer and M. Bar-on, ibid +8, 421. (1973).
4S. H. Gelles and A. J. Markworth, AIAA J. 16, 431

(1978).
5K. K. Mon and D. Stroud, Phys. Rev. Lett. 45, 817

(1980). For a review, see R. Evans, J. Phys. (Paris)
Colloq. +4, Cg-783 (1980).

sD. Stroud, Phys. Rev. B p, 4405 (1973); N. W. Ash-

croft and D. Stroud, in Solid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1978), Vol. 33, pp. 1 ff; J. H. Umar, A.
Meyer, M. Watabe, and W. H. Young, J. Phys. F 4,
1691 (1974).

7N. W. Ashcroft and D. C. Langreth, Phys. Rev. 156,
685 (1967); 159, 500 (1967).

sFor discussions of this rule, see, e.g., Theory ofAlloy
Phase Formation, edited by L. H. Bennett (The Metal-
lurgical Society—American Institute of Mining and
Metallurgical Engineers, Warrendale, PA, 1980).

9J. Hafner, Phys. Rev. A 16, 351 (1977).
~OR. J. Good, W. G. Givens, and S. C. Tucek, Adv.

Chem. Ser. +4, 211 (1963).


