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Vacuum states of the Korteweg —De Vries equation
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In this investigation we present a set of analytical solutions to the Korteweg —De Vries
equation via a Backlund transformation using a differential geometrical approach. Some
of these solutions are new and regular, while others are irregular. We have examined a
set of regular solutions and found that a parameter b, which may be called the "vacuum

parameter, " appears in the expression for the soliton velocity. In previous analyses, b has
been set to zero. With the proper choice of b in the one-soliton solutions, we have
demonstrated graphically that the velocity can be zero, positive, or negative. By ascribing
the soliton to different physical states corresponding to different values of the vacuum

parameter b, we are able to give an interpretation to explain some previous seemingly am-

biguous results relating velocity, amplitude, and width of a soliton. The physical and

mathematical meaning of b is discussed.

I. INTRODUCTION A. A set of analytical solutions

Using a differential geometrical approach, Loo
et al. ' arrived at a system of Backlund transforma-
tion of the Korteweg —de Vries (KdV) equation

Starting from the Backlund transformation for
u' in (2),

Q*=b

Qi+Q~+12QQx =0

Q*=b,
ue =u(x, t),
u* = —u (x,t) y2+A, , —

(2)

(4)

is a solution to the KdV equation. Substituting (7)
in (5) and (6), we obtain

y„= (y +2b ——A, ),
y, =4[(b+A, )(y +2b —A, )],

where b and A, are constants and the function y sa-

tisfies

which give

y, = —4(b+A, )y, . (10)

y„=—[2u (x, t}+y2—A,], (5)
The solution to (10}is obvious:

y, =4I [u (x, t)+A, ][2u (x, t}+y~—A]

+ —,u —u,y I, (6)

where

r =x 4(b +A, )t —x—o,

with the usual subscript notations to signify partial
derivatives. If u (x, t} is a solution to the KdV
equation, Eqs. (5) and (6) should be compatible.
Using Backlund transformations (4), (5), and (6),
the solution to the one-soliton case has been ob-
tained in Ref. 1. In this paper we shall continue
the work and obtain a set of analytical solutions to
the KdV equation and we shall discuss some new

features of the solutions.

indicating a propagating wave. We would note
that the propagating velocity is

u =4(b+A) . (12)

(y +2b —A)—
dr

where y, instead of being a function of x and t,

Only if b =0, the velocity becomes 4A, . Clearly,
from (8) we obtain the Riccati equation
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now is only a function of r. Using a process of
separation of variables, one has the solutions:

Case (A): b=0. We have

u*=O, (16a)
y =+v'l(, 2—b,
y=, A, —2b=0,1

r+C

(14a)

(14b)
2(x —xp)

(16b)

Ce (A,—2br) —(A, —2'')
y =v'A, —2b

C (k—2br)1/2 (g—2br)1/2

(14c)

where A, =O,
4CA,

up
v g(~ —4t)t,g —gp) —v P(& 4&) &p)

(Ce +e ' }
(16c)

u*=b,
u*=b— 1

A, =2b,
(x —12bt —xp)

(15a)

(15b)

where C is a constant.
From our Backlund transformation (4), we ob-

tain

u* =A, sech'[v )(,(x 4i,t ——x())], (17)

where A,+0. We shall only concentrate on solution
(16c).

Case (i): )(, & 0, propagation along positiue x
direction The. situation for which C =0 is obvi-
ous. If C=l,

u* =A, b —(1(,——2b)

[C (A, —2br))~~ —(A, —2br))~~]2

(k—2br))~i ( —A, —2br))~~]2
(15c)

which is the well-known one-soliton solution. If
C= —1,

u*= —A, csch [v A(x —4At —x())] .

If we substitute (15) into Eq. (1), we readily find
that these solutions satisfy the Kdv equation. We
would like to point out here that the Ricatti equa-
tion (13) may be solved by the transformation

where f=g(x, t). Now (13) reads

This solution is singular at

r =x —4it —xo ——0 .

The form of the solution for the range C & 0
(C &0) is the same as Eq. (17) [Eq. (18)].

Case (ii): A, & 0, propagating along negatiue x
direction. If C=O, u~=0. If C =+1,

u~= —k sec [k(x+4k t —x())], (19)

it~+(2u —A, )/=0 .

Using the above linearized equation, we can obtain
all the solutions presented in (14). We now

proceed to study the characteristics of our analyti-
cal solutions (15) under different special cases.

where k = —A,. Clearly, u*has a "period" m and
1 2

umax =
Case (B): b+0 We no.w consider the cases in

which A, —2b )0 and A, —2b &0.
Case (i): A, 2b&0. If C=—O, u'=b. If C=l,

u'b =b+(A, —2b) sech~t VA, 2b [x 4(b—+A, )t —xp]—I .

If C= —1,

u~ =b —(A, —2b) csch I V A2b [x —4(b , —+)(,)t —xp] } .

(20)

(21)

This is singular at r =0.
We would like to note that under case Bi, for

A,,+b &0, as )(,—2b & 0, we must have b &0,
A, & 2b, or b (0 and A, )—b. Under such a situa-
tion, the soliton propagates in the positive x direc-
tion. However, for )(,+b &0, namely b &0 and
2b & A, (—b, the solition propagates in the nega-
tive x direction.

Case (ii): A, —2b &0. We let A, —2b = —k, and

(Ceikr e ikr)2—
u~ =(A,—b) —(A, —2b} (22)

If C =0, u* =b, an obvious case. If C =1,
u~ =b —k sec~k[x+4(k 3b)t+xp] —(23)

If C= —1,

ub =b —k csc k[x+4(k 3b)t+xp] . (24)—
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Solutions (23) and (24) are periodic (with "periodi-
city" m.) and possess a series of singularities.

From (12) it is easy to see that for A, +b & 0, the
wave represented by (24) propagates in the positive
x direction. For A, +b &0, the wave propagates in

the negative x direction. The new forms of solu-

tion in case 8ii may be applicable to nonlinear

physical phenomena and will be published else-

where. In this paper we shall concentrate on a de-

tailed study of the meaning of solution u ~ =b,
which on first sight looks trivial. It will be shown

in the next section that in fact b represents the

vacuum state of the soliton and is an important
parameter to the solutions of the KdV equation.

II. INTERPRETATION OF THE
VACUUM STATE OF A SOI.ITON

In this section we shall study the special features
of the sets of solutions (15c}obtainable through a
Backlund transformation. In particular we take
the set of solutions [Eq. (20}]for a one-soliton as a
demonstration of the interesting characteristics we

have discovered.
For convenience in discussion we write the KdV

equation in the form

(25)u, +auu„+Pu =0,
leaving a and P as yet unspecified parameters.

Dropping the superscript ~ for convenience, Eq.
(20) may be written as

$ /2

u = &+use ch2
aA,

'

(26)

which is the mell-known one-soliton solution and

A, '= A, —2b. We shall proceed to discuss special
features of the solutions one by one, including our

interpretations.
(a) Previously, the amplitude of a KdV soliton is

taken to be proportional to its velocity, justified

by experimental results. It has been assumed

that the larger the amplitude, the faster the veloci-

ty of the soliton will be.
(b) The width of a KdV soliton is taken to be in-

versely proportional to the square root of its velo-

city; again this property agrees with some observa-

tions.
(c) The propagation of a KdV soliton is one-

directional, i.e., it cannot have negative velocity.
The theoretical deductions in (a)—(c) have been

obtained based implicitly on the assumption of the
invariance property of a Galilean transformation, i
which amounts to setting b =0 in Eq. (26). We
shall analyze such an assumption.

From (26), the soliton velocity is specified by

V O-A, +3b . (27)

We would, however, emphasize that as early as
1965, Zabusky and Kruskal had already shown
that the KdV solutions (26) for velocity, width,
and amplitude agree numerically with computer
experimental simulations only if b takes on values
which are not equal to zero. This property has
been checked further by Makino et al. recently.
They fed a sinusoidal wave into the KdV equation.
They have found that the number of solitons and
the recurrence time agree well with those expected
from the KdV equation. However, when they
studied the relation between amplitude, width, and
propagation velocity of the soliton as time evolves,

they found that properties (a)—(c) are violated.
We would like to remark that b has been set to
zero in their analysis. As will be shown later, set-
ting b =0 may be the main cause of such violation.
We would note also that in the treatment of Maki-
no et cl. a process of separation of variables has
been carried out for the two-dimensional problem
and the methodology of analysis is essentially the
same as that used in a one-dimensional problem.

In view of the previous result it appears that a
close examination of the physical meaning of "dif-
ferent b states" is essential. Considering that b

could take on nonzero values, we may offer the
following interpretations of different physical
states of a one-soliton system based on the solu-

tions of Eq. (26): The velocity u of a KdV soliton

does not depend only on the amplitude A,
' but de-

pends also on the parameter b. We would like to
name this parameter as the "vacuum parameter. "
Since u =b [namely Eq. (7)] is also a solution to
the KdV equation, u =b may be called the "vacu-
um state" of the equation. To illustrate the above
new idea, we plot in Fig. j. the temporal evolution
for solitons with different values of the vacuum
parameter b and the amplitude A, '. Thus Fig. 1(a}
represents the well-known situation where b =0.
When b takes a positive value (b =2), as in Fig.
1(b), the solitons still propagate along the positive
x axis but with a velocity different from that in

Fig. 1(a). In this situation the soliton with a larger
amplitude still travels faster. When b takes on a
negative value [e.g., b = —2, Fig. 1(c)] the solitons

can propagate along the negative x axis and the
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FIG. 1. Time evolution of one soliton at two instants [time t =0 (solid line), and t = —arbitrary unit (dotted line)]

along the x axis with amplitude A, '=A, —2b for the case where (a) vacuum parameter b =0, amplitude A, '=1,3 (A, =A, '),
(b) vacuum parameter b =2, amplitude A, '=1,3 (A, =5,7), (c) vacuum parameter b = —2, amplitude A, =1,3 (A, = —3, —1),
(d) stationary wave with vacuum parameter b = —2 and amplitude A.'=6 (A, =2).

soliton with a smaller amplitude can travel faster.
In Fig. 1(d) we can choose a set of values for A,

'

and b such that the propagation velocity is zero
(e.g., A, '=6, b = —2)—we have a stationary soliton.
In the simple case where u =b, b simply modu-
lates the velocity of the soliton(s).

We would like to remark also that for a fixed
coordinate system, for a system of "almost indivi-
dual" solitons which have almost identical shape
to that of a one-soliton solution (26), each one-

soliton may be associated to its own vacuum
parameter b if the same coordinate system is
chosen for the system. Under this situation, one
cannot in general find a Galilean transformation
such that all the b's can be taken to be zero. In
fact, in order to explain the relationship between
the amplitude, velocity, and width of a one-soliton
system obtained from computer simulation, dif-
ferent values of b (namely various values of u „)
were introduced by Zabusky.

The KdV equation is Galilean invariant. Solu-
tions obtained in this investigation through a
Backlund transformation are identical to that ob-
tained earlier using the Galilean-invariant property
of the KdV equation; in fact the above two
methods of analysis lead to the same family of
one-parameter solutions. However, previous
workers have taken the view that the Galilean in-
variance of the KdV equation amounts to con-
straining b to zero value, implying that b has no
physical meaning. Guided by the result of our
analysis, we are inclined to believe that due to the

nonlinearity of the KdV equation, the parameter b
is a physical observable. This feature is different
from the result obtained from physical phenomena
in the linearized regime. It is a pity that such a
nonlinear property in physics has not been pursued.
Perhaps people have paid too much attention to
the linear world.

Using this vacuum-state concept we may provide
an explanation to some apparently ambiguous re-
sults in the study of KdV solitons. For example,
Scott in his review writes: ".. . Figure 4 shows
the collision of two such solitons that are traveling
in opposite directions. However, in this case, the
ion-acoustic wave solitons should perhaps be
described by some other wave equation like the
Boussinesq equation which allows waves propagat-
ing in both directions rather than the KdV equa-
tion which allows only one-directional propaga-
tion" (see also the work of Ikezi et al. ). As
shown in our investigation, the KdV equation does
allow solitons traveling in opposite directions.

The recurrence property and the identity proper-
ty are two well-known nonlinear characteristics of
solitons. In the example given in this investiga-
tion, it appears that different vacuum states of that
nonlinear physical process have different effects on
the observable physical state. Is this property a
general feature of a nonlinear process? A more
thorough analysis has to be carried out in order to
obtain a decisive answer to the above question. If
the answer turns out to be positive, one can then
add the third general property to a soliton.
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III. CONCLUSION

In this investigation we have obtained a set of.
analytical solutions to the KdV equations. Some
of these represent propagating one-soliton regular
solutions along both the positive and negative x
directions. Some other solutions are irregular, in-

dicating singularity property. %e think that solu-
tions under case Bii are new.

To analyze these solutions, we have confined
ourselves in this paper to a close reexamination of
the one-parameter family of regular KdV solutions.
When we fix a certain Galilean coordinate system
for the soliton, different values of the vacuum

parameter b would lead to different propagation
velocity values. In fact the propagation velocity u

of a KdV soliton is a function of both the ampli-
tude Z and the parameter b: u ~ A'+3b. ,Previ-

ously, the parameter b has been assigned zero value

even under different physical situations. We would

emphasize that we think the vacuum parameter b

represents the particular physical state of the
soliton(s} and can take on nonzero values. With

proper choice of b the soliton can be stationary or

can propagate to positive or negative directions, as
illustrated in Fig. 1. As b can take on nonzero
values, the sign of the solution to u as given in (26}
may be positive or negative. The width D of one-

soliton is, however, not an explicit function of b:
D ~ 1/~A, '.

From the mathematical point of view, under
Galilean transformations we would obtain a one-

parameter family of solutions to the KdV equa-
tion. The parameter b has a definite meaning and
cannot be set arbitrarily to any particular value,
such as zero.

It appears then that with our interpretation of
the vacuum parameter and hence the vacuum state,
we may provide one logical explanation to some
seemingly ambiguous results relating velocity, am-
plitude, and width of a soliton. Our result suggests
that b may be a physical observable. Such a prop-
erty is basically contributed by the nonlinear term
of the KdV equation. It might be worthwhile to
explore further whether it is generally true that
different vacuum states of a nonlinear physical
process may have different effects on the observ-
able physical state.
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