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Fractional charge, a sharp quantum observable
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The magnitude of quantum fluctuations of the charge of a fractionally charged soliton
is calculated. The soliton charge operator is defined as Q, =Qf —(0

~ Qf ~
0), where Qf

is the integral of the charge-density operator sampled by a function f peaked at the posi-
tion of the soliton, and falling smoothly to zero on a scale I..

~
0}is the ground state of

the system in the absence of solitons. It is shown that the mean-square fluctuation of Q,
taken about its fractional average value Q, vanishes as 0(go/L) for L » go, where go is
the width of the soliton. Thus, as I.—+ 00, the soliton is an eigenfunction of the charge
operator with fractional eigenvalue. %e also show that the portion of the charge Auctua-

tions that are due to the sohton falls as exp( I./go) —as I.~ 00. Nonetheless, the charge
of the entire system, including all solitons, is integral.

I. INTRODUCTION

Recently, Su and Schrieffer' (SS) deduced that in
quasi-one-dimensional charge-density-wave (CDW)
systems of commensurability n =3, there exist soli-
ton excitations of charge Q, =+e/3, +2e/3, and

1+4e/3 and spin —,, 0, and 0, respectively. These
tively. These results are consistent with the fer-
mion number —, solitons discovered by Jaclow and
Rebbi for a one-dimensional Dirac field coupled
to a ip" bose field and with solitons having peculiar
charge-spin relations discovered by Su, Heeger, and
one of the present authors for the linear poly-
mer (CH)„an n=2 CDW system. For general
commensurability n, the simple counting argu-
ments of SS associate with a soliton a fractional
charge eN/n where N is the number of allowed
spin polarizations. While the expectation value of
the soliton charge was confirmed to be fractional
using charge conjugation arguments and by direct
calculation for the n =2 and n =3 cases, questions
have been raised as to whether the charge of a sol-
iton is in fact a sharp quantum observable. That
is, are the quantum fluctuations of the soliton
charge about its fractional average value vanishing-

ly small or is the fractional value Q, simply a
quantum average of several integer values? In the
latter case, each individual measurement of the
charge would yield an integer value, and only the
mean of these observed values would be fractional.
More precisely, one may ask if an operator Q, ex-
ists such that (1) the state ~s & containing a soliton
of fractional charge Q, is an eigenfunction of Q„

Q* I
s & =Q.

I
s &

and (2) the force F on the soliton due to a slowly

varying (screened) electric field, E, is

E,=Q,E. (1.2)

A central complication in answering this ques-
tion arises from the quantum fluctuations of the
band electrons measured over any finite length of
chain, whether or not the soliton is present. These
fluctllatloils are precisely ailalogolls to the vacllllili
fluctuations which complicate the definition of the
charge on an electron. As in that case, the charge
only has a well-defined value in the infinite-
wavelength limit.

We are thus led to define the charge Qf in a re-
gion sampled by a smoothly varying sampling
function f(x) of range L, for instance,

f(x)=e (1.3)

Qf= I p(x)f(x)dx,

where j(x) is the charge-density operator. In order
to show that the charge is a well-defined observ-
able, it is necessary to show that: (1) the expecta-
tion value of the charge, (s

~ Q, ~
s &, approaches a

unique hmit for large I. for any f(x) and (2) that
the quantum fluctuations of the charge,

l&Q)'= &s I t Q.)' Is &
—Hs I Q. I

s &f' (15)
vanish for large I.. The first property follows
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directly from results in Refs. 1 —3 where it is
shown that the charge associated with a soliton is
localized in a region of width 2', so that for

{s~gg ~s)=Q, +0(e '), (1.6)

II. QUANTUM FLUCTUATIONS OF
THE SOLITON CHARGE

In this section we consider a specific model
which allows us to calculate exphcit upper bounds
on the fluctuations of the soliton charge about its
expected value, Q, . We thus consider the continu-
um model of Takayama, Lin-l. iu, and Maki
(TLM) which represents a system with commen-
surability n=2. For simplicity we consider the

1

case of spinless electrons (%=1) so Q, =+—,e. The
electronic part of the Hamiltonian for the continu-
um model is

H = I dxPt(x} —ikrsrr,
Bx

+ h(x)cr„P(x), (2.1)

where P is a two-component spinor field corre-

where fo is the correlation length defined in the
next section. In Sec. II, two results concerning the
nature of the quantum fluctuations are obtained.
Firstly, it is shown that for any smoothly-varying

sampling function of range I., such as the one in
Eq. (1.3), the charge fluctuations vanish as

[5Q]' (Co/L»

as long as go «I « d, the sohton-antisoliton
spacing. It is only in this limit that a sharp quan-
tum number Q, can be defined. It is, however,
only in this hmit that the macroscopically observ-
able charge is defined. Secondly, it is shown that
the charge fluctuations which are due to the pres-
ence of the soliton (as distinct from the vacuum
fluctuations that are always present) fall off ex-

ponentially with 2/go. Specifically, one finds

[5Q.]'—[5Qo]'-e

where for a given sampling function, [5Q, ] and

[5Qo] are the mean-square charge fluctuation in
the presence and absence of a soliton, respectively.
Thus, we see that the fluctuations of the soliton
charge vanish exceedingly rapidly in the limit of
large I..

sponding to right-going and left-going waves near
the Fermi momentum, +ks. The perfectly dimer-
ized state has h(x}=ho while in the presence of a
soliton h(x) =hotanh(x/go) where fo=Ruslho. In
the following calculation we will adopt units
Pcs ——1. The model in (2.1) is unbounded below
unless a cutoff is introduced into the fermion spec-
trum. However, the charge fluctuations remain
finite in the limit that the cutoff goes to infinity,
so we will neglect the cutoff and compute the
charge fluctuations in this limit.

In the same spinor representation the charge
density operator is

P(x) =Pt(x)g(x) .

The charge operator, Qf, is then defined in terms
of P as in Eq. (1.4}. The mean-squared fluctuation
of the charge about its expectation value may be
computed in the ground state ~G ) according to

[5Q]'= X i«iQfl )i'.
@Qg

(2 2)

(2.3)

where

etkx
{x~ku)=

+2ekQ Qek+k—
(2.5)

Ikx '(/ ek +k
{xikc)=

+2ekQ Qek —k

(2.6)

ek is the one-particle excitation energy,

(2.7)

and Q is the total length of the chain. For large
Q, the sums in Eq. (2A) can be converted into in-
tegrals,

where
~
6) is the electronic ground state for a

given lattice configuration, h(x), and t ~
a) J is a

complete set of excited states. The advantage of
using the continuum model arises from the fact
that all the one-electron wave functions are known

(see Refs. 7 and 9), both in the case of a perfectly
dimerized chain and of a soliton-bearing chain.
Thus, an explicit expression for [5Q] can be writ-

ten in each ease. In the perfectly dimerized case,
b,(x)=ho, Eq. (2.5) can be written in terms of a
double sum over the occupied valence-band wave

functions, ~ku ), and the unoccupied conduction-
band wave functions ~k'c),

[5Qo]'= y g ( {ku ( Qf (
k'c)

(
', (2A

k k'
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[B(k,q) e—b+q ]
[5Qp]2= f

and

B(k,q) )eb —qi .
(2.8)

where B(k,q) =ek+qeb q
and F(k) is the Fourier

transform of f,
F(k)= f dx f(x)e'~. (2.9)

In the presence of a soliton, b,(x)=4ptanh(Iox),
an analogous expression for the charge fluctua-
tions, [5Q,],can be obtained from the known
one-electron states. There are two contributions to

[5']'=[5Qb]'+[5Qg]' (2.10)

where

2
b,oT(2q)

B(k,q)
(2.11)

T(k) = f dx ~ef'( )txhan(4 p)x, (2.12)

f'(x) is the derivative of f, while [5Qe] is given
by

[5Qe]'= f (2.13)

[5Qb] involves only band-to-band excitations, with
the midgap state associated with the soliton having
the same occupation in the excited state,

i
a), as

in the ground state, ~G ), and [5Qe]i only involves
excitations to and/or from the midgap state.

[5Qb] can be written as

Bk —e+
[5Q ]i I f dk f dq [ «q b+q ] p(2

2n 2n B(k,q)

It is then straightfarward to show that in the ab-
sence of a solitan,

[5Qo]'&
L ~o

I

(2.16)

where Ap is a number of arder unity, given by the
expression

Ap —— g' x (2.17)

Similarly, in the presence of a soliton,
'2

[5Q, ] & —Ai+ —Ai,
ko So

«

where

(2.18)

A2 —— —— g" x g' x (2.20)

Equations (2.16) and (2.18) show that the charge
fluctuations vanish in the limit of large L. Note
that this result depends critically on the existence
of a gap, since gp diverges as the gap goes to zero.
Indeed it is easy to show that for hp ——0 (a one-
dimensional metal) the charge fluctuations, [5Q~]i,
approach a constant value in the limit of large L,

2 i ——f [g'(x)]2[1+(7/2)sech'(hpLx)]
8

(2.19)

is equal to Ao plus higher-order terms in gp/L, and

where

S(k)= f dxe'~f'( )xs ehc(lL o)x. (2.14)

f (0) 1
[5Q ] = as Leo ~ {2.21)2m' 2'

B(k,q) &
( eb —q2

~

+452q /B (k,q),
B{k,q) & eq+q2, (2.15)

Note that we have not specified the occupancy of
the midgap state. This is because for the case we
are considering (n =2), the charge fluctuations are
the same whether the state is occupied or not.

We will now use Eqs. (2.8)—(2.14) to establish
the desired results. First we establish a rigorous
upper bound to the charge fluctuations. To do
this, we adopt a sampling function with a single
characteristic length, L, so that f(x)=g (x/L),
where g(0)=1 and g(x)~0 as x —++ oo. To estab-
lish an upper bound, we simplify the expression for
5Q by using the inequalities

The second result involves distinguishing the
part of the charge fluctuatians that are explicitly
due to the presence of the solitan from the fluctua-
tians that are present, even in the absence of a soli-
ton. Thus, as in Eq. (1.8), we are led to define

[~Q.]'=[5Q.I' —[5Qo]' (2.22)

f'(x) =Ii (x +L/2) —h (x L/2), —(2.23)

To simplify the computation of [EQ,] it is con-
venient to consider a sampling function, f(x), such
that f(x)=1 over a region of width L and then
falls to zero in a distance I. Specifically, we will
consider a function f(x) whose derivative is of the
form
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where k (x) is smooth and nonzero in a region of
width1about the origin and Jdxh(x)=1. We
would like to show that, for large L » go, I, EQ,
falls cxponciltially to zclo wltll iilcrcaslllg L.
There are two sorts of terms that appear in the in-

tegrand of the integral expression for h, Qg

localized gap state defined in Eq. (2.13}. For h (x)
given by Eq. (2.29), we can find [5Qg P explicitly:

-l~/2)0~

[5Qgl'=g
2 2m

[~Q,]'= I 2
[Ii(e}+Il(e}l.

I1 contains terms that are exponentially small for
all q since it contains terms proportional to
)S(2q) (

z defined in Eq. (2.13) and [ T(2q)
(
1,

T(k) = I dx e'~f'(x)[tanh(box) —rl(x)],

X &+0—0
I2

HI. CONCLUSION

(2.32)

(2.25)

where rl{x)=1 for x &0 and —1 for x &0. Be-
cause f'(x} is localized in the vicinity of x=+L/2,L/—T' is proportional to e and S is proportional

to e +a. Thus, the dominant contribution to Ii
comes from the term proportional to

~
S(2q)

~

'.
I2(q) contains terms that are not particularly
small, but are rapidly oscillating functions of q,

I( )= ~oP (2f} cos(4qL )

The definition of the charge of a soHton requires
care, slllcc as 111 qllalltulll flcld theory, two colllpll-
cations arise. First, the ground state of the system
in the absence of soHtons exhibits quantum vacu-
um fluctuations of the local charge which must be
subtracted when considering the fluctuations due
to the presence of a soliton. Secondly, the charge-
form factor of a soliton is spacially extended over
the width go of the soHton. As is conventional in

quantum fleld theory, it is useful to define the soli-

ton charge operator Q, as

1

—1 {q)sin{4qL), (2.26)

(3.1)Qs =Qf —&0 I Q/ I
0)

where ~0) is the ground state without solitons and

II(k)= Jd xe'~ (Iix), (2.27)
Qf= If(x)p(x)dx, (3.2)

Ii (x)=c ' /' /v rrl .
It is easy to see that

IdqIl(q)-c

(2.29}

(2.30)

which is much smaller than the terms from Ii.
We conclude that the dominant term in [EQC] is
the term proportional to ~S ~; that is to say

[5']'—[5Qo]'= [5Qg]'+ o «
+0(e 2L~/l2)- (2.31}

where [5Qg] is the charge fluctuations due to the

Bk —c'+ 1

~
dk f»,e —~~+a I „@8 (k,q)

Because of the rapid variation of Iz(q), the integral

of I2 is negligibly small. For instance, consider
the case in which

where P(x) is the linear charge density operator
and f(x) is a smoothly varying sampling function
centered on the soliton and falHng off on a scale L.
Q, is defined as the limit that L approaches infini-

ty, with L « d, the distance between solitons.
Thus, Q, samples the change in charge when a sol-

iton is created iri a given region of the system, with

vanishing contribution from other sohtons which

may be created in other regions.
We have shown that not only is the expectation

value of Q, fractional in the presence of a soliton,
but also that the change in the mean-square fluc-
tuation of Q, about its fractional mean vanishes as

—I./g()e as I.—+ w. Furthermore, the mean-square
vacuum fluctuations of Qf in the absence of the
sohton vanish as go/L as L~ ao. It follows that,
even if one does not remove the vacuum fluctua-
tion contribution, the mean-square fluctuations of
Q, about its mean vamshes as 1/kgL as L~ ao.
The soHton approaches an eigenstate of the charge
operator Q, as L~ ao as long as L is small com-
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pared to the spacing between solitons.
The remaining question is whether the operator

Q, couples to accessible external fields. Since the
coupling of the chain to a (screened) electric field
E(x) is

ing (screened) electric field E,

Fg(x) =QgE(x} .
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