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We propose a new model frequency and wave-vector-dependent dielectric function for
systems with an energy gap in their electronic excitation spectrum. The function is
homogeneous, isotropic, and causal and satisfies two sum rules relating to particle-number
conservation. Moreover, it has an analytic representation, reduces to the Lindhard func-
tion in the limit of zero gap, and compares well numerically with the e(q,o) of Si from
band-structure calculations. With the model irreducible polarizability, we extend the
theory of Singwi et al. [Phys. Rev. B 1, 1044 (1970)] to obtain a one-parameter family of
exchange-correlation potentials appropriate for semiconductors and insulators. The ex-
istence of a band gap is found to enhance the exchange contributions but reduces the
correlation contributions to the exchange-correlation potentials resulting in an overall po-
tential which deepens as the average band gap of the system increases. A band calcula-
tion of silicon in the present theory shows a slight improvement of the band gaps over
previous work using the metallic exchange-correlation potential.

I. INTRODUCTION AND SUMMARY

The theorems of Hohenberg and Kohn,! and
Kohn and Sham? guarantee the existence of a
unique electron density functional with which the
ground-state exchange and correlation energy of
any system can be found. Unfortunately, their
proof is not constructive, and the functional
remains unknown. In most practical electronic-
structure calculations, the density functional is ap-
proximated by a local functional, namely, with the
exchange-correlation energy density replaced by
that of an electron gas with the same local density.
There have been attempts to go beyond the local-
density approximation, for example, the gradient
expansion”? and the weighted density approxima-
tion.> The former approach has not met with
great success, and the latter has yet to be tested for
band-structure calculations. There is no guarantee
of uniqueness or correctness for the exchange-
correlation functional derived from electron-gas
data when applied to another system.

In the theory of Singwi and co-workers*’
(SSTL), the electron-gas exchange-correlation po-
tential is tied intimately to its electronic excitation
spectrum through the irreducible polarizability and
the corresponding dielectric (Lindhard) function.®
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This electron-gas local-density functional has been
applied to metals and insulators alike, even though
their excitation spectra are quite different. In the
present work, we propose a new model dielectric
function which allows for the possibility of a gap
in the electronic excitation spectrum. The irreduci-
ble polarizability associated with the model dielec-
tric function is then used in the formulation of
SSTL to find an exchange-correlation potential for
semiconductors and insulators. The new potential
thus preserves the simplicity of a local-density
theory while incorporating an important feature of
the real systems in an approximate way.

The important parameter in the model dielectric
function and, hence, in the exchange-correlation
potential is A=Eg /Ep where E; is the average
band gap and Ef is the Fermi energy. We find
that, upon the introduction of a finite A, the ex-
change part of the exchange-correlation potential is
enhanced but the correlation part reduces slightly.
The overall result is an attractive potential which
deepens as A increases. In a specific application of
the new potential to Si (with A=0.4), the various
band gaps are found to be slightly wider (in closer
agreement with experiment) than the values ob-
tained from calculations using a potential extracted
from the electron-gas data. We expect this to be a
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general result arising from the deeper exchange-
correlation potential at the bond sites which would
lower the valence-band-state energies more than the
conduction-band-state energies.

The remainder of the paper is organized as fol-
lows: In Sec. II, we briefly review the electron-gas
theory. In Sec. III, the model dielectric function is
presented. In Sec. IV, we discuss the exchange and
correlation effects associated with this model sys-
tem, including an explicit exchange-correlation po-
tential. Finally, in Sec. V, the new potential is ap-
plied to the calculation of the band structure of Si.

II. ELECTRON-GAS THEORY OF SSTL

There have been many calculations of the
ground-state properties of the electron gas. Hedin
and Lundqvist’ have reviewed this work up to
1971. Gorobchenko and Maksimov® have present-
ed a more recent review. The work of Singwi and
co-workers*> has, however, remained a standard,
convenient approach for the derivation of an
exchange-correlation potential for electronic-
structure calculations of real materials.

In this section, we briefly review the formulation
of Singwi and co-workers. In both papers,*> the
dielectric function e(q,w) and the static structure
factor S(q) are determined self-consistently. The
structure factor is related to the pair correlation
function g (r) by

3 o
1—g(r)=?q§ fo gsin(gr)[1—-S(q))dq ,
(2.1)

where g is the Fermi wave vector of free particles
of given density, and 7 is the distance from a given
electron to a point in the electron gas. The
exchange-correlation hole about any point is thus
described in real space by 1—g(7) and in trans-
form space 1—S(q) with S(q) given by
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where n is the number density of electrons.

In obtaining the exchange-correlation energy of
an electron gas, the scheme of SSTL consists of
solving Eq. (2.2) along with the approximate ex-
pression

S(g)=

do, 2.2)
elq,w) ]

Qo(q’m)

1-G(q)Qo(q,0) ’ (2:3)

elgw)=1+

where
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and —q2Q,/4me? is the free-electron polarizability.
[In Ref. 4, e(q’) is omitted in Eq. (2.4).] The in-
teraction energy per particle (Coulomb energy asso-
ciated with the exchange-correlation hole) is
evaluated from

2
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where 7, is the electron-gas parameter. The
exchange-correlation energy per particle is found
via the relations

Eint(ez,rs )=_;— f
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Finally, the exchange-correlation potential which is
the functional derivative of the total exchange-
correlation energy is given by

_ (p(PE,[p(D])
B 8p(T)

where E, [p(T)] is the exchange-correlation energy
per particle for the charge distribution p(r). The
fundamental input in obtaining a metallic V. in
this scheme is the use of the Lindhard Q, in Eq.
(2.3).

2.7

Xc

III. MODEL DIELECTRIC FUNCTION

The exact many-body dielectric function gives a
detailed description of a system including both
ground-state and excited-state properties.” Formu-
las for the dielectric function of a crystal in the
self-consistent-field approximation (or random-
phase approximation) have been known for some
time.'°~!2 However, due to the large scale of the
computation involved, there are only a few self-
consistent-field calculations of the dielectric func-
tion for real materials.!*~'® Calculations beyond
the self-consistent-field approximation'® are even
more rare.

Model dielectric functions have been introduced
as a practical simplification. For metals, the elec-
tron gas serves as a model system. In particular,
the dielectric function in the self-consistent-field
approximation was found analytically by Lind-
hard.® Unfortunately, there is no correspondingly
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attractive model for semiconductors and insulators.
Penn!” proposed one model for a semiconductor by
extending the nearly-free-electron model isotropic-
ally in three dimensions. The Penn model dielec-
tric function'’~!° gives a reasonable description of
the static screening properties of semiconductors.
There are some frequency and wave-number-
dependent model dielectric functions. Milchev®
has proposed one and compiled references to
several others. These models are often derived
with ad hoc assumptions. Important sum rules
may be violated. Some are extremely simplified
such as the plasmon-pole model*! where the
plasmon and the particle-hole excitations are ap-
proximated simply with a plasmon contribution.

In this work, we propose a new model dielectric
function with both frequency and wave-vector
dependence. While we offer no derivation as in
some previous models, we will show that the new
model function has many desirable features includ-
ing causality (through the Kramers-Kronig rela-
tions), particle-number conservation (through two
sum rules), homogeneity, isotropy, and an analytic
representation. The imaginary part of the new
model dielectric function is defined by

el(q’w)sz(qsw—)y lwl Z}‘wF
2
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where Q =q /qr, and the positive quantity A is de-
fined as A’=A?—w?/w%. (Here gr and wy are the
Fermi wave vector and frequency of a noninteract-
ing electron gas of the same density.) The Kra-
mers-Kronig relation guarantees that €; > 1 for fre-
quencies below the gap. Hence, there can be no
plasmons in this frequency regime. In analogy
with Eq. (3.2), we derive the sum rule

© 1 1 2
fo Ime(q’w)codw——zmo . (3.4)

Also, from Eq. (3.3), the long-wavelength limit of
the dielectric function is simply

2

% (3.5)
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In Fig. 1, we compare our model dielectric func-
tion to the results of Walter and Cohen’s calcula-
tion of the dielectric function of silicon in the stat-
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where op=Er/#, 0> =0’ —(Awp)? with the sign
of w_ taken to be the same as the sign for w, and
€’ is the Lindhard dielectric function. This is a
two-parameter model. In addition to the electron-
gas parameter 7, the lowest excitation frequency
(or “gap”) is given by Awp=Eg /5 Obviously, if
A =0, the model function reduces to the Lindhard
function.

For the new function, we may immediately
derive the f-sum rule

fow &(g,0)w dm=%7rw§ (3.2)

by a change of variables and reference to the
corresponding property of the Lindhard function.
The Kramers-Kronig relation generates the real
part of the model dielectric function. By a similar
change of variables, we obtain the result for fre-
quencies above the gap. Below the gap, it is neces-
sary to compute a number of elementary integrals.
The result is

120-0? ]
A

, lo| <rop (3.3

I

ic limit'® and to the results of the Penn model.'®
We describe silicon in our model by the choice of
parameters ;=2.0 and A=0.4.. We choose r;
from the average density of the valence electrons in
silicon; A is obtained by matching to the static
long-wavelength dielectric constant using Eq. (3.5).
We feel that the agreement is quite good consider-
ing the simplicity of our model. Specifically, the

T T
2K, — Present model B
FA\\ = --- Walter and Cohen's result
F W'\ —— Srinivasan's result -

A\ (Penn model) _|

o .\~\
Silicon TSNS

a/a¢
FIG. 1. Static dielectric functions €(g,w=0) for Si
from three calculations.
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static limit of our dielectric function agrees more
closely with the realistic Walter and Cohen calcula-
tion'? than the Penn model.'® Further, the model
dielectric function is in semiquantitative agreement
with the frequency and wave-vector-dependent
dielectric function of Walter and Cohen.!*

IV. EXCHANGE-CORRELATION POTENTIAL

In this section, we follow the formulation given
in Sec. II using the model dielectric function to
determine a one-parameter family of local-density
exchange-correlation potentials. The heart of the
Singwi et al.’ calculation involves improving upon
the self-consistent-field description of the electron
gas by excluding the self-field of an electron in the
determination of the dielectric response in an ap-
proximate way. In the present work, we make the
ansatz that the model dielectric function describes
not the electron gas but rather some isotropic sem-
iconductor in the self-consistent-field approxima-
tion. The ansatz has some foundation because, as
seen in the preceding section, the model function
reduces to the Lindhard function (a self-
consistent-field approximation) in the limit of van-
ishing A and because of the reasonable agreement
with the detailed self-consistent-field calculation of
Walter and Cohen.!** In particular, we require
that the irreducible polarizability be given by

2
7(q,0)= —Zi:z'Qo(q"")

2
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We use the expression for Q, in lieu of its
electron-gas counterpart in Eq. (2.3). Our calcula-
tion proceeds identically to that of Singwi and co-
workers. We relate the exchange-correlation ener-
gy to the exchange-correlation potential with the
expression’

dE, (r,,\
Vx,;(r,,k)—_—.Exc(rs,M_i_L(rs__l ,
3 drg

4.2)
which is simply Eq. (2.7) for homogeneous sys-
tems. Moreover, for convenience in comparing our
result with previous work, we present the results in
terms of the parameter given by »
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The calculated a(r,,A) for selected values of 7, and

A are presented in Fig. 2.

From a scaling argument due to Slater,?* we
may generate the exchange part of the potential us-
ing Eq. (4.3) with a(r,,A) replaced by a(0,A).
Hence, from Fig. 2, we may study the values of
the exchange potential for the system by consider-
ing a(0,A) and the effect of correlation on the po-
tential by considering the deviations of a(r,,A)
from the exchange values. We find that the ex-
change potential deepens with increasing A whereas
the correlation potential weakens with increasing A.

We begin by considering the correlations. By
scaling, an increase in 7 is similar to an increase in
the strength of the electron-electron coupling con-
stant e2. Imagine a system changing adiabatically
under the influence of an increasing coupling con-
stant. The final ground state will admix with
some of the formerly unoccupied states. There-
fore, the noninteracting system will provide an in-
creasingly better description of the interacting sys-
tem if there are increasingly fewer low-lying quan-
tum states. In the present theory, this is the case
of finite A. Next, we turn to the exchange poten-
tials. In a real semiconductor, the presence of the
energy gaps is related to the external potential aris-
ing from the ion core. There is some occupancy of
plane waves with wave vectors larger than the Fer-
mi wave vector of the electron-gas system. Since
the size of the exchange hole is determined by the
shortest wavelengths among the occupied states,
one would expect exchange holes in semiconduct-
ors to be somewhat smaller than their metallic
counterparts. In Figs. 3 and 4, typical results for
the present model are shown. We present the
pair-correlation function in the combination

frir,M)=(gpr)[1—g(r;r,,A)] (4.4)
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FIG. 2. Calculated exchange-correlation coefficient
(see text) as a function of 7, and for selected A.
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FIG. 3. Pair correlation function for a model sem-

iconductor with r,=1.0 and A=0.4 in the combination
(grr)[1—g(n)].

for r,=1 and A=0.4 in Fig. 3 and the difference
functions f(r;rs,A)— f(r;r;,0) for A=0.4 and
r;=1.0 and r,=2.0 in Fig. 4. The difference func-
tion compares the present theory for the case of
finite A to the electron gas. The positive sign of
the difference function at small 7 reflects the de-
crease in the exchange-correlation hole radius at
finite A. The double-lobe structure occurs because
the exchange-correlation hole always contains one
electron.?* With the charge of the exchange-
correlation hole conserved, the smaller hole radius
results in a deeper exchange potential at larger A.

A previous work by Aymerich and Mula® used
the same approach as in this section but chose a
plasmon-pole dielectric function. In contrast to
our results, they find the exchange potential to be
independent of the gap parameter. However, be-
cause the plasmon-pole approximation is sensitively
dependent upon the choice of the plasmon disper-
sion coefficient, we feel that this approach is not
useful for model calculations of the exchange-
correlation potential.

For convenience, we have summarized our re-
sults in an interpolation formula for a(r;,A). The
data in Table I are polynomial coefficients in the

0.08 T T T
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0.02~ —
o]
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=
=
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9 -0.08 1 L |
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<
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0.02 - ﬂ
[o]
-0.02- -
-004- -
-0.06— —
-0.08! (b) 1 1 L
o] I 2 3 4

Qrr
FIG. 4. Calculated difference curves of
g2r}[1—g(r)] between an electron liquid and a model
semiconductor with A=0.4 at (a) r,=1.0 and (b)
rys=2.0.

expression
3 4

alrgM)=3 3 a,-jkirf. (4.5)

i=0j=0

These coefficients have no analytical significance
and merely represent the results of the present cal-
culation over the range r,=0—15 and A=0—1.4.
The fit is accurate to better than 0.001 on the aver-
age and better than 0.01 in the worst case.

V. APPLICATION TO SILICON

We have performed a calculation on the band
structure of silicon using the exchange-correlation
potential of the present theory with A=0.4 as well

TABLE 1. Polynomial coefficients for the interpolation Eq. (4.5). The polynomial is only
valid for the exchange-correlation potential in the range r, <15 and A < 1.4.

0 1

3 4

rS rS rS r!
Al 0.67470 0.070735 —0.008 9999 0.000 650 38 —0.000017 748
Al 0.15581 —0.068 905 0.0133638 —0.001 12043 0.000033 193
A 0.15946 0.015315 —0.006 3970 0.000 609 69 —0.000018 358
A —0.062 46 0.001 706 0.000 8765 —0.000092 46 0.000002 492
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TABLE II. Silicon energy eigenvalues in eV. (The I'ys, state is set at 0 eV.)

LAPW? A=0 A=0.4 Experiment®

r, —12.02 —11.94 —11.88 —12.540.7

| o 0.00 0.00 0.00 0
Tis,e 2.49 2.58 2.67 3.3-3.4
T 3.18 3.08 3.12 4.20

X, —7.84 —17.81 —17.78

X, —2.82 —2.84 —2.79 —2.5+0.3
Xy 0.55 0.75 0.90

L, —9.64 —9.57 —9.53 —9.3+0.4
L, —17.06 —6.92 —6.85 —6.8+0.2
Lo —1.16 —1.20 —1.18 —1.240.2
Ls, 1.40 1.55 1.64

L. 3.37 3.45 3.55 3.8,3.9

indirect 0.56 0.70 L11—1.17

gap

aReference 29.
YReference 30.

as for an electron-gas potential (A=0). The calcu-
lation used a norm-conserving pseudopotential®® in
the pseudopotential band-structure program
described in earlier work.?’ The pseudopotential
“quality parameter” r, was taken to be 0.75.2
Plane waves up to 11 Ry in energy were considered
which represent 169 plane waves at the zone center
and similar numbers throughout the zone. The
band structure was determined self-consistently to
0.01 eV using ten “special points”?® in the irreduci-
ble %th of the Brillouin zone.

Our results, along with a recent linearized aug-
mented plane-wave (LAPW) calculation of silicon
by Hamann?® and experiment results,*® are present-
ed in Table II. The agreement between the pseudo-
potential calculation with an electron-gas local
functional and the LAPW calculation is good. We
obtain differences of no more than 0.25 eV for
states up to 5 eV above the top of the conduction
band (I",s). The exchange-correlation potential of
the present theory produces a marginally (but con-
sistently) better band structure than using the
exchange-correlation potential derived from the

electron gas, However, the measured gaps are
excited-state properties of the systems, and our po-
tential is only for the ground state. Also, with
A=0.4, Si is a nearly-free-electron system. Wheth-
er or not the present theory could help resolve
some of the differences between experiment and
theory in wide gap materials such as solid xenon or
sodium chloride remains an open question.
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