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Physics of lattice relaxation at surfaces of simple metals
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The physics of the inward or outward relaxation of the first plane of ions at a metal

surface is explored by means of semi-self-consistent calculations for Al, Mg, and Na.
The adiabatic screening response of the electron density to a shift of the first lattice plane

drastically reduces the curvature of the potential in which this plane sits, and thus cannot
be ignored in any qualitatively correct theory of the equilibrium lattice configuration at
the surface. Because the electronic screening is nearly perfect, the calculated face-de-

pendent surface energies and work functions are nearly independent of small displace-
ments of the first lattice plane. Just as in the calculation of the bulk-longitudinal-phonon

frequencies, there is a delicate cancellation between Madelung forces which are treated ex-

actly and electronic forces which are approximated. Indeed a quantitatively correct
theory of the surface interplanar spacing must also be detailed enough to predict the
correct bulk-phonon frequencies.

I. INTRODUCTION

The first few lattice planes of ions at a metal
surface can relax inward or outward. For example,
the first interplanar spacing at the aluminum (111)
surface appears to be 2% greater than the bulk

spacing according to low-energy electron diffrac-
tion (LEED) measurements' [or 8% smaller ac-
cording to extended x-ray absorption fine struc-
ture (EXAFS)]. This spacing is calculable in prin-
ciple by direct minimization of the. surface energy.

%e present here a simple variational calculation
of surface lattice relaxation in Al, Mg, and Na.
Some of the results for Al were presented in an
earlier Letter. The calculation is not detailed
enough to predict lattice spacings accurately, but it
is sufficiently realistic to answer some questions
about the basic physics: (1) Which forces drive the
first lattice plane inward, and which outward? (2)
How important is the screening response of the
electron density to displacements of the first lattice
plane? (3) How strongly are surface energies and
work functions affected by lattice relaxation? (4)
What conditions are necessary for a calculation of
surface interplanar spacing to be qualitatively or
quantitatively correct?

II. DESCRIPTION OF THE MODEL

A. Energy functional

Bulk and surface energies of metals can be di-
vided into classical Madelung and electronic con-

tributions. The Madelung term is the electrostatic
energy of point ions neutralized by a uniform,
semi-infinite negative background filling the half-
space x &O. It is always treated exactly. The
layer-summation method was used to derive ex-
pressions for the Madelung or classical cleavage
contribution to the surface energy, including relax-
ation of the first lattice plane (Appendix A).
These expressions were also derived independently

by another group.
The electronic energy includes the energy of a

semi-infinite jellium plus discrete-lattice correc-
tions. The jellium is a system of valence electrons
neutralized by a uniform positive background fill-
ing the half-space x &0. Its energy functional in-
cludes kinetic, electrostatic, and exchange-corre-
lation terms. The jellium surface is transformed
into the real-metal surface by turning on an "exter-
nal" potential 5v (r), the discrete-lattice potential,
which is the difference beween the pseudopotentials
of the semi-infinite lattice and the electrostatic po-
tential of the semi-infinite uniform positive back-
ground. The electron density and energy are con-
structed from orbitals which are the eigenfunctions
of a self-consistent one-electron Hamiltonian. De-
tailed expressions for the energy functional have
been given elsewhere.

As in Ref. 8, we use the standard Ashcroft
empty-core pseudopotential. The pseudopotential
core radii r, are given in Table I, which also
displays the valence, crystal structure, and average
bulk electron density n =(4rrr, 13) ' a.u. Ex-
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TASI.E I. Inputs to the calculatioq are the valence z, crystal structure, and bulk in-

terelectron separation r, . The Ashcroft pseudopotential core radius r, is chosen to make the
calculated bulk-binding energy per electron e minimize at the observed value of r, . e'" ', the
value of e at the minimum, is in good agreement with the experimental bulk-binding energy
e"~'. (For hcp Mg, ~ra=1.62S.)
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change and correlation are treated in the local den-

sity approximation, using a parametrization of the
accurate electron-gas correlation energies of Ceper-
ley and Alder. A nonlocal correction of (1300
crg/cnl )/rg lias also been 1ncludcd 111 tllc surface
exchange-correlation energy. This expression,
which depends only on the bulk density n and not
on the surface density profile, summarizes the re-
sults of the density-fluctuation wave-vector inter-

polation method. '

As a test of the energy functional, the bulk
longitudinal-phonon frequencies of aluminum (Fig.
1) have been calculated, using the standard expres-
sion" to second order in the pseudopotential. The
Madelung energy, which is treated exactly, leads to
phonon frequenices much higher than experi-
ment. The electronic energy is treated approxi-
mately (Ashcroft pseudopotential, local density ex-

change correlation), and the approximation satis-

factorily cancels most of the Madelung contribu-
tion to the phonon frequencies, espo:ially at long
wavelengths (perfect screening). However, the pho-
non frequencies themselves, which are the residue
of this deHcate cancellation, are not spectacularly
accurate in comparison with experiment.

TABLE H. (»0),„ is the average of the discrete-

lattice potential over the volume of the semi-infinite sys-

tem, and C is the variational parameter of Eq. (2), for
an unrelaxed surface.

Metal
(»0).,

(CV)

8. Model density profile

The assumed position of the first lattice plane is

xi =(——,+A, )d,

where d is the bulk interplanar spacing and A, =O
for the unrelaxed lattice. For each choice of A, we
calculate the surface energy by substituting into the
energy functional the self-consistent electron densi-

ty profile of a jellium surface (with uniform posi-
tive background filling the half-space x & 0) per-
turbed by an external potential Vi . If Vi were the
discrete-lattice potential 5ui ( r), our calculation
would be fully self-consistent but difficult because
of the three-dimensional variation of the resulting

FIG. 1. Sulk-longitudinal-phonon frequencies of Al,
expressed in units of the Debye frequency ~~ ——S.16
y 10'3 rad/sec (8g) ——394 K). Dashed curves; calculated
using classical Madelung forces only (Ref. 11). Solid
curves: calculated using Madelung plus electronic forces
(Ashcroft pseudopotential, local density approximation).
Open circles: experiment (Ref. 11). a is the lattice con-
stant. The unpubhshed experimental results cited in
Ref. 11 were later published in Ref. 2S.
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electron density. We use instead the one-dimen-
sional potential

Vq(x) =C8( —x)+5vq(x) —5UO(x), (2

where 8( —x) is a step function which vanishes
outside the jellium surface and 5U~(x) is the planar
average of 5U~(r). The constant C is chosen to
minimize the surface energy of the unrelaxed sys-
tem, and mimics (5uo ),„, the average of 5UO(r)
over the volume of this semi-infinite system. We
checked that the minimizing value of C was nearly
independent of I,, in agreement with our physical
interpretation of it, and we have used the value for
A, =O (Table II) in the calculations presented here.

This model has been used with some success in
our earlier calculations ' of the surface energy,
electron density, and work function of the unre-
laxed surface. It yields a one-dimensional density
profile n (x), varying only in the direction perpen-
dicular to the surface and tending to a constant n

in the bulk, which has a reah'stic surface dipole

moment

f dx 4vre'x[n (x)—n8( —x}] (3)

(where the step function 8(y) equals 1 for positive
y and 0 for negative y). This is shown by a com-
parison' of measured work functions with work
functions calculated from the profile-sensitive
Koopmans-theorem expression, and by some more
direct experimental evidence. ' The choice C=O in
Eq. (2) would deliver the density profile of the un-
perturbed jellium surface, which usually does not
have a realistic dipole moment; this choice would
reduce our model to the one used in the pioneering
surface calculations of Lang and Kohn. '

For the relaxed surface, Eq. (2) includes the ion-
ic relaxation dipole. We have used the general ex-
pression for 5U~(x) described in Appendix A. For
small displacements of the first lattice plane
(

~

A,
~

&& 1), this expression reduces to the simple
result

1

0 (x & ——,d+r, )

5U~(x) —5UO(x) = 2ne nd A, ( —
z d r, &x & ——,d—+r, )

1

4rre nd A, (x & ——,d r, ) . —
(4)

Thus an inward displacement (A, &0) steps down
the potential twice: first at the outer edge of the
ion cores of the first lattice plane, and next at the
inner edge. The model allows the electron density
to respond self-consistently to this perturbation.

Our model assumes that the electron density in
the bulk is a constant n. In order to avoid spuri-
ous relaxations at the surface, the pseudopotential
core radius r, (Table I) has been adjusted so that
the bulk energy per electron, assuming a constant
bulk density, minimizes at the observed density n.
For aluminum this procedure' just recovers the
conventional value of r, . The value of this energy
at the minimum, the bulk binding energy, is in sa-
tisfactory agreement with experiment for all three
metals (Table I).

In any calculation of lattice relaxation, an im-
portant quantity is the curvature of the potential in
which the first lattice plane sits, i.e., the second
derivative of the surface energy o. with respect to
the displacement parameter A,. This curvature is
essentially a spring constant

d 0' d
g2 Q

I

where 00 is the volume per atom in the crystal, M
is the mass of an ion, and co is the frequency for
small vibrations of the first lattice plane, with the
other lattice planes clamped fast. A related quan-
tity is the curvature of the potential or vibration
frequency co for a similar lattice plane in the bulk.
The bulk e is just the average squared-longitu-
dinal-phonon frequency for wave vectors k normal
to the lattice plane of interest:

m'/d

co =—f dkco (k), (6)

as derived in Appendix B. Table III shows bulk
values of co calculated in three ways: (1) from the
classical Madelung approximation" to the phonon
frequencies (Fig. 1), which ignores the screening
response of the electrons to a lattice wave, (2) from
the Madelung plus self-consistent electronic ap-
proximation (Fig. 1},and (3) from our model (Ap-
pendix B). Methods (2) and (3) employ the same
energy functional, but (2) is fully self-consistent
while (3) uses our model for the electron density in
the bulk (uniform for a perfect lattice, with a self-
consistent response to the planar average of the
change in the discrete-lattice potential induced by a
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-Bulk N /cog (100) (110)

TABLE III. co /co~, a dimensionless measure of the
curvature of the potential in which a bulk lattice plane
sits, for three different lattice planes in aluminum. ~ is
the vibration frequency of one plane with the others
clamped fast, and co~ is the Debye frequency. The
Madelung approximation ignores the screening response
of the electrons, which is included either self-consis-
tently (with three-dimensional density variations) or via
our model (with one-dimensional density variations) in
the other two calculations.
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lattice-plane displacement). Since there is little de-
tailed agreement between methods (2) and (3), our
model cannot be relied on for quantitiative predic-
tion of surface lattice relaxation. However,
methods (2) and (3) agree qualitatively —both exhi-
bit a reduction of co due to electronic screening by
about an order of magnitude from its Madelung
value. Thus, our model is qualitatively correct: It
exhibits the important physics of screening.

III. RESULTS

A. Surface energies

Figures 2 —4 show the calculated surface ener-

gies cr as a function of the lattice displacement
parameter iL. Na and Mg display the same be-
havior found earlier for Al: The total surface en-

ergy o;„depends weakly on A,, although the indivi-
dual components of it have a strong A, dependence.

The classical Madelung energy 0.,~ shoes a
strong positive curvature d o,~/dA, . o,i tends to
drive the first lattice plane inward from its unre-
laxixl (A, =O) position. The minimum of od is close
to A, =O for the more densely packed crystal faces
[fcc (111),bcc (110), and hcp (0001)], but lies sub-
stantially further inward for the more loosely
packed faces. These exact results agree with earlier
conclusions based on an approximation to cr,~.

'

The strong positive curvature of od is mostly
cancelled by the strong negative curvature of the
electronic part of the surface energy, especially the
pseudopotential part

op, ——I dx[n (x) ne( —x)—]sui (x) . (7)

The curvatures of o,~
and o„,are expressed in

terms of co according to Eq. (5) in Table IV. The
same delicate cancellation due to screening was

found earlier in the bulk (Table III). Comparison
of Tables III and IV suggests that the first lattice
plane at the surface may have a higher vibration
frequency t0, and smaller zero-point motion than a
similar plane in the bulk, but this result could be
an artifact of the model.

The slopes dcrldl, of o,~
and o» also tend to

cancel. The pseudopotential energy op, usually
drives the first lattice plane outward from its unre-
laxed position. This result is easily understood:

I.et n (r) and o;„be the self consisten-t electron
density and surface energy. The force per unit
area on the first lattice plane at position xx,
—do„,/dxi, is given by the generalized Hell-
mann-Feynman theorem':
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FIG. 3 Same as Fig. 2 for Mg.

FIG. 2. Variation of the calculated total surface ener-

gy for Al (solid curves) with displacement of the first
lattice plane. Minima are indicated by downward-

pointing arrows. The classical cleavage (cl) or Madelung
and the pseudopotential plus repulsive (ps+ 8) com-
ponents of the total are shown as dashed curves; for
clarity the kinetic, electrostatic and exchange-correlation
components are not shown. The dotted curve is the to-
tal surface energy evaluated with a "frozen" electron
density profile (the one for A, =O).
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d d d d
rr„,= — o,~

— ox — dx [n (r)—ne( —x)] 5ui(r)
dXg dXg dXg dXg

where ( } indicates a planar average. The "repulsive" energy

an —— rre n—d(r, +xi.) B(r, +xi. ) (9)

is zero as long as the ion cores are confined to the half space x &0, which is usually the case. The last term
in Eq. (8) becomes in our model

d —d/2+r
—f dx[n (x)—ne( —x)] oui(x}= 2'—e nd f dx [n (x)—n]

dXg C

—d/2 —T

4'—e nd f dx[n(x) —n], (10)

where the right-hand side was obtained using Eq.
(4). (We are using the Hellmann-Feynman theorem

only for discussion, not for calculation. ) The first
term on the right-hand side of Eq. (10) is usually

an outward force (for all A, of interest) because
there is a deficiency of electrons over the first layer
of cores (Fig. 5). The second term is usually negli-

gible for A, =O because the density is bulk-like be-

hind the first layer of cores. For A, &0, the elec-
tron density builds up behind the first layer of
cores (Fig. 5), and this term becomes an inward

force which for very negative A, cancels most of the
outward force from the classical Madelung energy.

The surface energies calculated for Al, unlike

those calculated for Na, are strongly face depen-

dent, being about three times greater for the (110)
face than for the more close-packed (111)face.
The large surface energies calculated for the more
open faces of Al conflict both with experiment'
and with a recent calculation. ' The latter suggests
that they are an artifact of the one-dimensional ap-
proximation for the electron density. Certainly
these anomalously large surface energies cannot be
corrected by lattice relaxation.

Figures 2—4 also show the A, dependence of the
total surface energy which would be predicted by
the "frozen-profile" approximation, ' ' ' which
allows no electron density response to the shift of
the first lattice plane. Because this approximation
neglects screening, it grossly exaggerates the curva-
ture of the potential in which the first lattice plane
sits.

B. Electron density profiles

Figure 5 compares the electron density profile
for the unrelaxed surface to that for a hypothetical
inward displacement of the first lattice plane by

5% of the bulk interplanar spacing, for three faces
of Al. The screening response of the electron den-

sity is greatest for the (111)face, for two reasons:
This plane has the highest density of ions and also
moves farthest in a 5% contraction.

'

Figure 5 also shows the positions and sizes of
the ion cores in the unrelaxed lattice. The screen-

ing response of the electron density to an inward

displacement of the first lattice plane is simply to
transfer electron density from in front of to behind
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FIG. 4 Same as Fig. 2 for Na.
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Surface N /6)y (100) (11.0)

classical Madelung
total (model)

13.0
0.6

12.2
0.8
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1.2

TABLE IV. co /coD, a dimensionless measure of the
curvature of the potential in which the first lattice plane
sits, at three different surfaces of aluminum. co is the
vibrational frequency of this plane with the others
clamped fast, and ma is the Debye frequency. The
Madelung approximation ignores the screening response
of the electrons, which is included approximately in our
model.
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TABLE V. Face-dependent work functions calculated
from the ASCP expression Eq. (11), for the unrelaxed
Q, =O) surface and for a hypothetical inwRrd displace-
ment of the first lattice plane by 5% of the bulk inter-
planar spacing (A, =—0.05). The last column shows
what the work function for A, =—0.05 would be if the
electron density profile were "frozen, "Eq. (12).
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FIG. 5. Calculated electron density profiles foi three
Al surfaces. The solid curves are for the unrelaxed lat-
tice, with the position of the first lattice plane indicated
by a downward-pointing arrow. The dashed curves are
for a hypothetical inward relaxation of the first lattice
plane, by 5% of the bulk interplanar spacing, to a posi-
tion indicated by an upward-pointing arrow; note the
heaping up of electronic charge behind the cores of the
displaced lattice plane.

the full expression Eq. (11) for the unrelaxed sur-
face and for an assumed 5% contraction of the
first interplanar spacing. Within the numerical ac-
curacy of the calculation, the work function is
found to be independent of the lattice displacement
parameter A,, in accord with theoretical expecta;
tions. Thus, the screening of the ionic relaxation
dipole by the electrons is essentially perfect. But if
the electron density were "frozen" so that it could
not respond to the shift of the first lattice plane,
thc work function would dcpcINi st'05glg on A,

the first layer of ion cores. In an earlier Letter,
me showed how similar this is, both qualitatively
and quantitatively, to the linear response of a uni

form electron gas to the perturbation Eq. (4).

as shown in Table V.

IV. CONCI. USIGNS

(12)

C. Work functions

Within a restricted variational calculation such
as this one, work functions 8' can be calculated
IDost accurately by the change-in-self-consistcnt-
field'* (ESCF) expression':

where X is the surface charge density. A simpli-
fied version of Eq. (11) has been used to calculate
work functions for many simple metals, neglecting
lattice relaxation. 20

Table V shows work functions calculated from

%'e can now answer the questions raised in the
Introduction:

(1) When the first lattice plane sites at its unre-
laxed position, classical Madelung forces tend to
drive it inward while electronic forces, especially
those arising from the pseudopotential energy Eq.
(7), usually tend to drive it outward. These results
agree with those of other calculations. ' When the
first lattice plane is displaced far enough inward, .

these forces each reverse direction. For most dis-
placements of interest, there is a strong cancella-
tion between Madeiung and electronic forces.

(2) Of course the "initial forces of relaxation"
acting on the unrelaxed first lattice plane can be
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calculated neglecting the adiabatic screening
response of the electron density to a sluft of the
first lattice plane, according to the Hellmann-
Feynman theorem Eq. (8). However, the screening
response of the electron density drastically reduces
the first derivative of the force (second derivative
of the surface energy o«,) with respect to displace-
ment of the first lattice plane. Hence screening
crucially affects the equilibrium lattice configura-
tion at the surface.

(3) Because the electronic screening is nearly per-
fect, surface energies and work functions are al-
most independent of small displacements of the
first lattice plane. Calculations of these quantities
which assume an unrelaxed lattice should not be
affected by lattice relaxation.

(4) A qualitatiuely correct calculation of lattice
relaxation should include the screening response of
the electron density to displacements of the first
lattice plane. Calculations in which the electron
density profile is "frozen" ' ' ' have omitted
some qualitatively important physics, although
they have also contributed to our understanding of
the problem. (Of course, the authors of most of
these calculations acknowledged the possible im-
portance of the omitted physics of "screening. "}
The same may be said of calculations which allow
the electrons to respond to a shift of the first lat-
tice plane only in a limited way, ' ' which does
not permit wholesale transfer of electrons across
the first layer of cores as in Fig. 5. For example,
in a early calculation~ for Al we used not Eq. (2)
but Vi (x)=Ci,8( —x), where C~ was found by
minimization of the surface energy for each A,.
Like the "frozen-profile" method, this approach
grossly exaggerates the curvature of the potential
in which the first lattice plane sits. Only a few
previous calculations ' seem to have allowed for
the right qualitative screening.

A quantitatively correct calculation of inter-
planar spacings at the surface of a simple metal
must meet some very stringent conditions:

(a) It must include the variation of the electron
density in three dimensions, not just one. Such cal-
culations' ' ' have only recently been carried out
for the surface energy of the unrelaxed lattice.
Within the context of the present calculation, we

would have to re-introduce 5ui (r ) —Vi (x) as a
weak perturbation on our solution, carrying the
density to first order and the energy to second or-
der. If the half-space x ~0 is divided up into
prismatic unit cells around each ion, the main ef-
fect of 5ui(r) —Vi(x) should be to redistribute
the electron density inside each cell, especially by
driving electrons out of the cores and heaping
them up just outside the cores. This may contri-
bute an additional outward force on the first lattice
plane, as suggested by the Hellmann-Feynman
theorem, Eq: (8), and other arguments. ~'7 It may
also modify the curvature of the potential in which
the first lattice plane sits, as suggested by Table
III.

(b) The energy functional and method of calcula-
tion, when applied to the bulk crystal, must predict
both the measured equilibrium density and the
measured phonon frequencies. The former condi-
tion is necessary for the correct initial slope of o„,
versus A,, and the latter for the correct curvature.
We have emphasized the latter condition here,
since the former has been emphasized by oth-
ers ' ' who have pointed out that bulk pair po-
tentials, which omit volume-dependent energies are
inadequate for the surface relaxation problem.

(c) Multilayer relaxation was found to be impor-
tant for some metal surfaces in a recent "frozen
profile" calculation. Since the screening response
of the electrons should weaken both the disturbing
and restoring forces on the second and third lattice
planes, it remains to be seen if multilayer relaxa-
tion is also necessary for a quantitatively correct
calculation.

Very recently there appeared a calculation ' of
lattice relaxation at sodium surfaces which proper-
ly allows for both electronic screening and three-
dirnensional electron density variation.
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APPENDIX A: RELAXATION CONTRIBUTIONS TO CLASSICAL CLEAVAGE ENERGY
AND DISCRETE-I ATTICE POTENTIAL

General expressions for the relaxation contribution to the classical cleavage energy cr,~(A, ) were derived and
1 1

presented in Ref. 6. For all the surfaces considered here and for ——, ~ A, ~ —,, we have found the simpler re-
sult
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S,= ge "cos (k —1)(m ~n) . (A2)
k=t

Here d is the unrdaxed interpj. anar spacing, and
Nd is the stacking period. The sum in Eq. (Al)
ranges over all integers ln and n except those for
which g „=0. g, is the product of d with the
projection of a three-dimensional reciprocal-lattice
vector onto the plane of the surface. Table VI
shows all the relevant geo- metric information.

Flail), consldcr the planar-average c4screte-
lattice potential 5ui (x). Expressions for the unre-

laxed potential 5uo(x) have been given else-

where. ' The relaxation contribution
5ul (x)—5uo(x) is the sum of two pieces. The first
arises from point ions:

0 (x &a},

458 nd A, (b &x (a),(a b)—
4ne nd A(x&b), ,

where a and b are, respectively, the ~reater and
lesser of the numbers ——,d and (——, + A,)d. The
second piece, which arises from the short-range
repulsion in the core, is

uz(x —Ad) —uz(x), (A4)

where

x+-d ~)e«. —~x+-, d I).
(A5)

APPENDIX 8: VIBRATION FREQUENCY
OP ONE LATTICE PLANE IN THE BULK

u(1)=ux51 o.

The Kronecker delta may be constructed from
plane waves in the first Brillouin zone (BZ):

ik I„
51 0= ge

x k

d ("»~~
dk

rk, l
xe

Here we will calculate the vibration frequency co

of ollc lattice plailc 111 a blllk crystal, with tllc otll-
er planes clamped fast. I.et the lattice sites be
specified by position vectors 1, and let x be the nor-
mal to the lattice plane of interest (I» =0). Consid-
er all lfiflllltcsllllal dlsplaccllMflt of this plallc
Stone:

TABLE VI. Geometric information for the relaxation contribution to the cia,,sical

cleavage energy. u and c are conventional lattice constants.

4n [2(m'+n' —mn)]'~'
3

m [2(m1+n2)]'~1

—[2(m 2+2n 2) ]'~~
2

m[(m —n)2+2(m +n P]'~1

&m'+n')'~'

[2(m'+n—' mn)]'~'—
3

hcp [m'+(m —2n)'"]'"
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where d is the distance between neighboring planes
in the perfect crystal, and N, is the number of
such planes. The energy of this superposition of
longitudinal phonons, divided by the number of
ions in the plane, is just

BZ
5E= g —,Mco (k„)u

& k„'

——gbn(q)hu( —q),1 1

2 0 (85)

where hu(q) is the Fourier transform of bu(r)
and

perturbation of zero average value. ] The resulting

change in the electronic energy of the crystal (of
volume 0) is

d= —,Mu' —I dk co'(k„), (83)
IIp(q)

bn(q)= bu(q)
e(tl)

(86)

15E= —,MN u (84)

where to(ks ) is the frequency of a longitudinal
phonon of wave vector k,x, and M is the mass of
an ion. But by definition

is the linear response of the density. Expressions
for the noninteracting response function IIp and
dielectric function e in the local density approxi-
mation are given elsewhere. "

The square of the vibration frequency has classi-
cal Madelung and electronic terms:

Equations (83) and (84) imply Eq. (6), an exact re-
sult.

Now consider our model applied to this problem.
For the perfect crystal, the electrons are assumed
to have uniform density. The displacement, Eq.
(81), is assumed to produce an external perturba-
tion b,u(r) of the form of Eq. (4), with A, =uid.
[Without loss of generality, we will consider a lat-

tice plane in the center of a crystal, and add the
constant —2tre nd )i, to Eq. (4) in order to have a

2 2 2
N =N~~+N~ .

In our model, (85) and (86) imply that

Qp ~ IIp(k)
to, = f dk —

i
V(k)

iMad p

where Qo is the volume per ion and

V(k) = coskr, .4me nd

k

(87)
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