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The system consisting of a hemispheroidal bump protruding from a dielectric half-

space possesses surface electromagnetic resonances whose resonant frequencies are a sensi-

tive function of the shape of the bump. The widths of the resonances are determined by

couplings to delocalized excitations such as surface plasmons, photons, and by resistive

losses due to inelastic electron scattering, in the case of electronic excitations, and surface

phonons, photons, and acoustic phonons in the case of ionic lattice excitations.

I. INTRODUCTION

The term "shape resonance" has usually been as-
sociated with the field of nuclear physics and
refers to the resonance brought about by the shape
of the nuclear potential function. In contrast, this
article refers to solid-state surface physics and is
concerned with resonances which owe their ex-
istence to the geometric shape of the surface.

The electrodynamic properties of surfaces with
"nontrivial" shapes has been of considerable in-

terest lately. It has been found that the optical
properties of molecules in the vicinity of rough
surfaces or surfaces deliberately prepared with un-

dulations or "posts" differ inarkedly from those of
isolated molecules or molecules near smooth flat
surfaces. Enhanced local optical fields are believed
to be responsible for a large part of the surface-
enhanced Raman scattering (SERS).' In addition,
observation of fluorescence anomalies and even

nonlinear phenomena at weak field strengthss lend
credence to the importance of enhanced local
fields. In this paper we will argue that the origin
of the strong local field is due to the excitation of
a surface electromagnetic shape resonance and our
goal will be to study its properties.

The model to be considered consists of a dielec-
tric half-space with a hemispheroidal protrusion.
The dielectric constant of the solid is e(to) and is,
in general, complex. Let the semiaxis of the pro-
trusion perpendicular to the plane be denoted by a
and the semiaxis in the surface plane (radius) be
denoted by b. The case a =b corresponds to a
hemispherical protrusion and has already been
studied by Serreman, and more recently by Rup-
pin, ' in the context of SERS. It is assumed that a
and b are sufficiently small compared with the

wavelength of light that retardation effects are
weak and may be taken into account perturbative-

ly.
In the zeroth order of approximation, where re-

tardation effects are completely neglected, the exci-
tation spectrum consists of a continuum of propa-
gating states and a discrete set of localized states.
The low-lying discrete states are characterized by
having large field amplitudes in the neighborhood
of the surface protrusion. The higher-lying

discrete states have significant field amplitude over

a localized region of the surface around the bump.
The discrete states are localized in that the field
amplitudes fall off to zero rapidly as the region
near the bump is left.

If we are talking about the electronic states of a
metal the discrete states are the "bump" plasma
oscillations. For an insulator or semiconductor
whose ions are vibrating the discrete states are the
"buinp" vibrations of the lattice.

In the case of electronic excitations the continu-
uin states of interest are of thro: types: the surface
plasmons, the photons, and the resistive-loss spec-
trum, consisting of phonons at low-momentum
transfer and, in addition, electron-hole pairs at
high-momentum transfers. A consideration of
these excitations has already been given in the con-
text of the SERS problem. It is important, how-

ever, to emphasize that in this paper we are consid-
ering the bare (but rough) surface without any
molecular adsorbate.

In the case of ionic excitation of an insulator or
semiconductor the continuum states of interest
consist of surface phonons, photons, and other
bulk phonons which may be excited through
anharmonic couplings. Naturally it is possible to
envisage more complicated situations where the
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phonons and plasmons must be jointly considered.
For clarity's sake let us focus our attention on,

the electronic excitation case. Let us further re-
strict our attention now to the case of surface
plasmons. At large wave vector parallel to the sur-
face k

~
~, the energy wave-vector dispersion curve

of the plasmon is basically flat (except for effects
due to nonlocality at very large k~~). At small
wave vector, retardation effects set in and the
dispersion curve falls towards zero. The energies
of the discrete states lie below the energy of the
surface plasmon in the large k~~ region. In the
small k

~~
domain, however, they will be degenerate

with some plasmon states. One is then faced with
a situation in which a discrete localized state is de-
generate with a continuum of delocalized states.
The electric dipole of the bump couples with the
electric field of the extended surface plasmon. The
localized state gets transformed into a resonance
and develops a finite lifetime because of the mutu-
al coupling. This is the prototype for the origin of
a resonance.

It should, perhaps, be pointed out that the cou-
pling to resistive losses causes a decay of even a lo-
calized state. It basically provides a decay channel
whereby the energy of the localized state can go
into Ohmic heating of the dielectric. Such energy
deposition is relatively short ranged and not severe-

ly sensitive to the surface shape. It differs from
decay into surface plasmons or photons, which

represent long-range energy deposition mecha-
nisms. The plasmon or photon may travel long
distances before an absorption process occurs. (In
the case of the photon, the light may even be
detected). Thus, although all three energy deposi-
tion processes will be studied, it is the latter two
that are of primary interest.

The paper is organized as follows. In Sec. II we
derive expressions for the resonance frequency as a
function of the shape of the bump. Section III
contains calculations of the decay rates into pho-
tons and surface plasmons. Finally in Sec. IV we

present our results and discussion.

above the surface, a, and the radius of the bump in
the plane of the surface, b I.n place of a and b it
is more convenient to introduce a scale-size param-
eter f=(a b—)'r and a shape parameter go
=a If. For the case where a & b, an appropriate
analytic continuation is implied. Our attention
will be limited to the case of axially symmetric
modes of excitation, although azimuthally excited
modes also exist. For the sake of generality we as-

sume for now that an external field Eo is applied
perpendicular to the surface.

The geometry of the problem is illustrated in

Fig. 1. Three regions are depicted: I, II, and III.
The potential in these three regions is expandable
in terms of Legendre functions of the first and
second kind, P„and Q„, respectively:

4i ——g A„P„(g)P„(rj), (2.1a)

@n=g Bn Q.(C)Pn(r)) EofP—i(k)Pi(r)»

(2.1b)

eni= y cgQN(g)Pg(g) ElfPI(0)P1(9) '

(2.1c)

The coefficients A„, B„,C„, and Ei are determined

by matching 4 at the surfaces and by matching
the normal component of the electric displacement
vector at the surfaces. The surfaces of interest are
defined by )=go for 0 & q & 1, g =0 for $0 & g & oo,
and (=go for —1 & i) &0. The last surface
corresponds to a fiduciary surface in the dielectric,
while the former two surfaces correspond to real
dielectric-vacuum boundaries. The following equa-
tions are obtained:

II. RESONANCE FREQUENCIES

To lowest order, the frequencies of the surface
shape resonances are determined by neglecting re-

tardation effects and solving Laplace's equation
subject to the appropriate boundary conditions.
This will be accomplished by working in prolate
spheroidal coordinates (g, ri, g). The geometry of
the bump is determined by the height of the bump
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FIG. 1. Schematic diagram of the solid-vacuum in-

terface.



gA„P„(g )P„(rJ)=QB,Q„(k)P,(rJ)

E—ofH'i (rJ»

e g A„P„' (k)P„(rJ)= g B„Q„'(k)P,(rJ )

—EofPi{rJ»

Q A„P„(k)P„(rJ)= g C„Q„(k)P,(rJ )

—EifPi(k)Pi(rJ»

g A„P„'(k)P„(rJ)= g C„Q„'(k)P,(rJ )

EifPi(—rJ»

gB Q {k)P (0}—EofPi(g)Pi(0)

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.6)

g[ eA„P„'{k) B,—Q„'(k)+Eof&, i]X„=0.

Introducing
0

Fj„= dye~ g P„q = —1 +"XJ„,

we may rewrite Eqs. (2.2c) and (2.2d) as

(2.7)

X[".P.{k} C.Q—.{k)+Eifk5. i]~Jn =o

XJ„——J drJPI(rJ)Pn(rJ) .

Values of Xj„have been tabulated by Berreman.
Likewise, from Eq. {2.2b) we find

=g C„Q„(g)P„(0)—EifPi(g)Pi(0), (2.2e)
(2.9)

g B.Qn(k)P'{o}—EofPi(k)Pl{0}

= eg C„Q„(g)P„'(0) eE,fP, (g)P',—(0) .

+[A.P.'(k) —C.Q;(k)+E,fb„,]~J„=0.

(2.10)

(2.2f) Since Eqs. (2.2e} and (2.2f) must be true for a con-
tinuous range of g, it follows that

Equations (2.2a) and (2.2b) hold for 0& rJ & 1 while
(2.2c) and (2.2d) hold for —1 & rJ &0. Equations
(2.2e) and (2.2f) are valid for g & k. Equations
(2.2a) —(2.2f) may be thought of as generalizations
of the corresponding equations derived by Berre-
man for the case of a hemispherical bump.

The coefficient 8~ is simply related to the elec-
tric dipole moment of the system. This is seen by
examimng the asymptotic potential in region II:

B„P„(0)=C„P„(0),

B„=C„, n =0, 2, 4, . . . .

B„P„'(0)=eCnPn'(0),

(2.11)

(2.12)

(2.13)

@n BiQi(k)Pi(rJ) —EoZ
g~ oo

Bif' Z——EOZ,
f 3

in which case we find the dipole to be

(23)
JBg Ecpg } n 1} 3} 5} n n n n (2.14)

E, =Eo/e . (2.15}

Finally the internal electric field Ei is given by

f2
p=

3
(2.4)

(2.5)

Let us proceed to obtain expressions for the vari-
ous expansion coefficients. Multiplying Eq. (2.2a)
by PJ(rJ ) and integrating over rJ from 0 to 1 gives

g[AnP. (k) Bn Qn(k)+E—ofks. i]&p =o

Noting that

C„=—,Bn[1+e '+( —1)"(1—e ')],

2 jn
Xjgg + Fjpg

2n +1
gives

(2.16)

(2.17)

2
J J 5 5AJPJ (k)=y [Bnan(k}XJn+Cn Qn(k) 1'Jn] fEOM J i E—ifk~j i— (2.18)
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and

2
J J~J~~(ko)=g[B.& 'Q'(ko)Xj»+C. Q»(ko)~1'] E—of& 'Xji E—if''Ji ~ (2.19)

From Eqs. (2.17), (2.18},and (2.19) we finally obtain

g TjnB„=RJ, (2.20)

where

TJ» =Xi. [Qn(ko)~j (ko) —e 'Q.'(go)&J(go)]

+n
+

2 [Q (k)~'Co) Q'(ko)~'(fo)1[1+& '+( —1}"(1—& '}]

(2.21)

RJ =EofkoI ~j (fo)X i [I ( I }'~—']—3e '5g—) I
—.

A formal solution for B„ is obtained in the form

B=T 'R,
denotes the inverse to the T matrix. The coefficients &J are then given by

J+2 g [B»Q»(go)Xg»+C»Q»(go)YJ»] fgoEoXJ)—+Eof~ 'go( —1}IXJ,

(2.22)

(2.23}

(2.24)

where B„and C„are given by Eqs. (2.23} and
(2.16). The natural oscillations of the system are
determined by the condition that a nonzero ampli-
tude exist even when Eo is zero. From Eqs. (2.20}
and (2.22) we see that this means when R/ =0
there still will be a nonvanishing set of B„. Thus,
the determinant of T must vanish and

Reh(co„)=0 . (2.26}

Then let us expand h(co} around the shape reso-
nance:

tively, if the imaginary part of e is small, one may

define the resonance frequencies by the condition

h(co) —=detT =0, (2.25) h(co) = b, (co„)

is the condition for a surface shape resonance. We
will denote the roots of this equation by co =co„.

Having obtained the resonance frequencies, let us

now calculate the decay rate for the excitation
disappearing into local (energy deposition} excita-
tions. In the case of electronic excitations these
are from inelastic electron scattering (resistive
losses). In the case of ionic excitations these are
low-frequency phonons. In either case the theory
will be cast in microscopic language and only the
dielectric constant will enter the formula:.

In calculating Eq. (2.25) cognizance must be tak-

en of the fact that e, and hence T, are complex
quantities. In principle the co„roots are complex
numbers. The real part of co„ is the resonance fre-

quency and the imaginary part is proportional to
the decay rate into "local" excitations. Alterna-

a~(~)

or

b, (co)=Red '(co„} co —co,

Imb, (co„}

Reh'(co„)

which we may interpret as

1
h(co) -co—co„+—I, ,

where I, is the desired decay rate

1mb, (co„)
I e=2

Re[c)b,(co, )/c)co, ]

(2.27)

(2.28)

(2.29)

(2.30)



SURFACE SHAPE RESONANCES 6285

This result was obtained previously in the context
of the optical properties of spheroidal particles,

In the following sections wc will need to know
the absolute magnitude of the dipole moment of a
surface shape resonance. In order to determine
this quantity it will be necessary to introduce a
normalization condition. This is found by noting
that the power delivered to "local" excitations is

0' @1 ~@1

90
(2.33)

where we have integrated by parts and employed
I.aplace's equation. The surfaces Si and Sq are
specified by

(2.31) Si: &=go 0&ii&1 0(&&21r (2.34a)

where %co, is the energy corresponding to one
quantum of bump excitation. The power may be
computed from the expression for Joule heating

(2.32)

Sz. (0&g(oo, i)t=0, 0(p(2m . (2.34b)

In Eq. (2.33), hg, and hv refer to the standard cur-

vilinear metric coefficients. The surface area ele-
ments are dS1 hv h~d——vd~ and dS2 hg h~d——/de.
I.etting

where 0. is thc conductivity of the solid and the in-

tegral extends over the entire solid. Thus,

I„„=Jd/Q—„(g)Q,(g),

we finally obtain, after some simphfication,

(2.35)

P, =ere f(go 1)g A„*A—„P„(go)P„'(go)X„„+erefg C„'C„P„(0)P„'(0)I„„. (2.36)

Equation (2.36), in conjunction with Eqs. (2.31)
and (2.30), will be used as a normalization condi-
tion to define the magnitudes of A„B„,and C„,
and of the dipole moment p. I „d(j.)=q —,q Im J 8—"e—2&1+ u du

whcrc 1

(3.1)

face the decay rate is given, in the dipole approxi-
mation, by

III. DECAY TO PHOTONS
AND SURFACE PLASMONS

Fili —ezl 1

eilz+ezl 1

(3.2)

%c have treated the spheroidal bump on a plane
as a dipole oscillating due to natural electronic
charge fluctuations in the system. The coupling of
the electric dipole above the surface to the deiocal-
ized surface-plasmon modes determines part of the
decay rate of the localized plasmon mode. Other
channels for decay obviously exist, however. One
such channel, that of local heating, was taken into
account in Scc. II. In this section wc study thc de-
cay into photons and surface plasmons. The prob-
lem of decay into photons has a long history dat-
ing back to Sommerfeld's study of a radiating di-
pole antenna on the earth's surface. More recently,
Chance, Prock, and Silbey have studied the radia-
tion properties of' a molecule near a surface. %c
shall apply their formalism to the problem of a
bump on a surface without a nearby molecule.

For a dipole oricntcd pcfpcndicular to thc inter-

I =—E
——uJ (3.3)

d=k, d, k, =—„nn, =~a, ,
C

I r.d
el 0

(3.5)

Here d is the distance of the dipole from the sur-
face, k

&
is the propagation vector in medium 1,

and ei and e2 are the dielectric functions of medi-
um 1 and 2, respectively. The radiative quantum
yield of the system, q, is the ratio of the radiative
decay rate to ihe total decay rate of the bump.
The hat on I'„d in Eq. (3.1) indicates that the de-

cay rate is normalized to that in the absence of the
surface. In our case ei ——1 and e2 ——e(co). Hence
ki rulc and carrying ou——t the integration yields
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e'/2 sin 8I „=I',', 1+—, I 18 I [(e +1)cos 8+(e—1)]cos(2k,dcos8)
(e—1)[(e+ 1)cos 8—1]

+ 2ecos8(sin28 —e)'~ sin(2kid cos8) j (3.6)

From the classical theory of radiation, the free radiative decay rate is

1.Bee IP I

rad =
3c

Combining Eqs. (3.6) and (3.7) and employing atomic units (e =fi=m =1), we find

(3.7)

I'„d= 1+—, d8 [(e +1)cos 8+@—1]cos d cos8
sin 8 2N

3c (e—1)[(e+1)cos~8 —1]

+ 2ecos8(sin 8—e)'~ sin d cos8
2co

C

At small distances, i.e., kid « 1, we write Eq. (3.8) approximately as

1+—, I d8 i [(e +1)cos 8+a—1]( p ~

'~' 3 ~~' sin'8

c ' 0 (e—1)[(@+1)cosi8 —1]

(3.8)

(3.9)

E„=gykak exp(ikx)+cc.
k

where ak is an annihilation operator, is

(3.10)

The integral is evaluated by numerical quadrature.
We now turn to the evaluation of the decay rate

into surface plasmons. As we mentioned earlier,
the degeneracy of the frequency co„with some
surface-plasmon frequency allows a decay channel
to open which damps out the local bump excita-
tions. The natural way to proceed is to write down
the surface-plasmon fields in quantized form, and
then couple them to the oscillations of the bump,
represented by the dipole moment p, perpendicular
to the surface. This dipole is responsible for "radi-
ation" of surface plasmons along the surface. In
order to write down the surface-plasmon fields, one
may compare the classical and quantum-mechan-
ical powers dissipated due to the coupling of an os-
cillating charge to a surface plasmon. Calculations
of the coupling constants in the electrostatic limit
have been given in the literature. A calculation
including the effects of retardation has been given
for the special case of an electron gas. '0 The gen-
eral expression for the coupling constant yk ap-
pearing in the quantized electric field expression

+ (1—e, )(kc)

X ( —1 —e,)'~'], (3.11)

4n
f p,

/

~s
c

( —e, )'

(-~,—I)'~'(1 -e, )

(3.12)

where we have set co, equal to the frequency of the

where A is the surface area, f, = (e, —1)/2e„and
e, =k [(co,/c) —k ] . '. However, a more general
derivation of the power emitted and the decay rate
into surface plasmons by a dipole oriented perpen-
dicular to the surface has been given by Philpott. "
A classical derivation of the same result is also in
existence in the literature. ' It involves only the
dielectric function of the protrusion plane system
and may be applied to more general situations in-
volving ionic excitations or many-body effects.
Here we use the expression for the sought after de-
cay rate from Ref. 11. Thus

r
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surface shape resonance.
Equation (3.12) represents the desired result —an

expression for the decay rate of the localized exci-
tation into delocalized surface plasmons. It may
be calculated in absolute terms since an expression

for p has already been given [see Eq. (2.4)].

IV. RESULTS AND DISCUSSION

In the previous sections we have derived formu-
las for the frequency of a surface shape resonance
and for its decay rate into various excitations of in-
terest. Before stating the results and discussing

them, let us consider the calculational procedure.
In our calculations we restricted our attention to

the case where Ime was sufficiently small to allow

it to be treated as a perturbation parameter. This
assumption is somewhat restrictive but is valid for
some metals, e.g., Ag, at optical frequencies. The
restriction may be lifted in a straightforward
manner, however.

The eigenfrequencies are determined as roots of
the determinant of the T matrix defined by Eq.
(2.21). In principle, the T matrix is of infinite di-
mension. In practice one truncates the size of the
matrix and checks for convergence of the roots as
the size is increased. The low-lying frequencies
converge rapidly while the higher frequencies con-
verge more slowly. A ten by ten matrix was used
in this numerical work. In determining the T ma-
trix only the real part of e was used.

The eigenvectors of the T matrix [see Eq. (2.20)
with RJ ——0] were obtained by solving the appropri-
ate set of linear equations and imposing the nor-
malization condition defined by Eqs. (2.30), (2.31),
and (2.36). Use was made of the following expan-
sion for the determinant of the T matrix for small

Ime:

optical radiation impinging on the surface. Anoth-
er is through the use of an incident electron or ion
beam. The excitation of the resonance may readily
be monitored through the secondary radiation that
is produced. In the case of charged projectiles it
may also be seen in the electron energy-loss spec-
trum.

One way of characterizing the shape resonance is
through the value of the real part of the dielectric
constant at the resonance frequency. In Table I
the low-lying azimuthally symmetric shape reso-
nances are studied as a function of the aspect ratio
of the bump, a/b Th.e lowest-lying resonance oc-
curs at a dielectric constant given by e„. The
first-excited state occurs at e„' and the second-
excited state (which is azimuthally symmetric) oc-
curs at e, . The excited states correspond to excita-
tions with nodes of potential on the solid's surface
while the ground state is nodeless. The general
trend is for e to get more negative as the aspect ra-
tio is increased. This is in qualitative agreement
with previous studies of isolated spheroids. The
magnitude of e, however, is less than that of the
corresponding isolated spheroid with the same as-

pect ratio. It should be emphasized that the num-

bers presented in Table I are universal numbers,
valid for any metal or dielectric.

The numbers in Table I are translated into fre-
quencies by using the optical data of the material
of interest. For Ag the optical constants of John-
son and Christy' were used to obtain the reso-
nance frequencies.

In Fig. 2 a plot is made of the resonant frequen-

cy as a function of aspect ratio for fixed a
(a =200ao). Two curves are shown: one for the
ground state and one for the first-excited state.

E'2

detT=(detTi) 1 i Tr(Ti —G)— (4.1) TABLE I. Dielectric constant of surface shape reso-
nances as a function of aspect ratio of bump.

where T, is the T matrix defined with real e and

GJ„=XJ„I
—Q„' (go)PJ (go) + —,( —1) +'[Q„(go)PJ (go)

(4.2)

The calculations reported here are for silver pro-
trusions sticking out of a silver metal half-space.
We will not be concerned with how the surface
shape resonance is excited, although a number of
methods come to mind. One is through the use of

a lb

1.2
1.5
1.8
2.0
2.5
3.0
3.5
4.0

—4.29
—5.64
—6.64
—7.35
—9.25

—11.3
—13.6
—15.9

—1.80
—2.85
—2.86
—2.97
—3.30
—3.72
—4.20
—4.75

—1.36
—1.80
—1.92
—2.04
—2.33
—2.61
—'2.89
—3.18
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2.5-

2.0-

00 l00 200 300 400
a (ao)

l.6
o/b

I

3.2 4.8

The data is for silver. As the aspect ratio is in-
creased in magnitude the frequencies of the excita-
tions fall off. The same figure shows the reso-
nance frequency for both the dipole and quadru-
pole resonance of isolated silver spheroid.

Figure 3 shows the magnitude of the dipole mo-

FIG. 2. Resonance energy as a function of the
spheroid aspect ratio, both for a hemispheroidal pro-
trusion from a smooth surface and for an isolated
spheroid. The ground states are labeled co, and co,,
respectively, for the hemispheroidal protrusion and the
isolated spheroid. The corresponding first excited states
are labeled co,

' and ~ . The curves are for silver.

FIG. 4. Magnitude of the electric dipole moment as a
function of semimajor axis a for fixed aspect ratio.
Data for the three most low-lying states are shown [la-
beled (0), (l), and (2)j. Here a/b =2.0. The resonance
energies are 2.71, 3.39, and 3.62 eV, respectively. The
dielectric constants are from Ref. 13.

ment of the system as a function of the aspect ra-
tio a/b for fixed a (a =200ao). The upper curve is
for the ground state and the lower curve is for the
first-excited state. It should be noted that the size
of the electric dipole moment is very large. This
follows from a comparison of the classical and
quantum expressions for dipole moments and di-

pole transition moments. In classical electro-

O. IO-

I.O-

I pl
(l0 ea )

0.05-

0.5-

o/b

FIG. 3. Magnitude of the electric dipole moment as a
function of the aspect ratio for a given value of a. The
ground state is labeled (0) and the first-excited state (1).

0 I

2 3 4
a/b

FIG. 5. Ratio of decay rate to resonance frequency

for three branches of decay: e stands for inelastic elec-

tron scattering, sp stands for surface-plasmon decay,

and rad stands for photon decay. The data is plotted as

a function of aspect ratio.
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0.4-

0.02-

0.2-

0 I- Q.OI-

IOO 200 500 400
0 {Oo)

FIG. 6. Same as Fig. 5 but plotted as a function of
semimajor axis size u. Note that I d/m„ is magnified

by a factor of 10. Here a/b =2.0 and the resonance

frequency for the lowest state is 2.71 eV.

Q
I

I

0/b

FIG. 8. Radiative yield vs aspect ratio for fixed a.

dynamics the polarizability of an object is propor-
tional to its volume. Thus, for example, for a
sphere a-u, where a is the radius. In the
quantum-mechanical expression for cc one has a
sum of terms of the form a-p~/b, co, where hco is
a frequency difference. Simply equating these ex-
pressions and letting a =200ao, M,co=3 eV gives
p-10 ceo, in agreement with the calculated mag-
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0,02-

0
0 IOO 200 300 400 500

o {oo)

FIG. 7. Radiative yield as a function of semimajor
axis for the ground (0) and first-excited states (1). Here
a/b =2.0. The resonance energies are 2.71 eV (Bio,) and
3.39 eV (fur,').

nitude.
Figure 4 shows the strength of the dipole grow-

ing as a function of axis size for fixed aspect ratio.
The three curves correspond to the three most
low-lying states. As the size of the bump in-

creases, one expects an increase in p according to
the arguments just given. The ground state, being
nodeless, would be expected to have the largest di-

pole. The presence of nodes in the excited states
causes some degree of cancellation with a subse-

quent reduction in dipole strength.
An examination of Fig. 4 shows the scaling

behavior p, -a' . Since the aspect ratio is fixed,
this also implies p-f' . From Eqs. (2.31) and
(2.36) it follows that the coefficients A„and 8„
scale as f ' . Equation (2.16) implies a similar
scaling for C„, so from Eq. (2A) we find p-f".

In Fig. 5 we consider the various damping rates,
expressed in units of the resonance frequency, for
the ground-state surface shape resonance, as a
function of aspect ratio for fixed a =200ao. As
the aspect ratio increases the decay rate to frequen-
cy ratio for electron collisions remains fairly con-
stant while that for surface plasmons or photons
falls off.

Figure 6 gives the same ratios as in Fig. 5, but
plotted as a function of the axis a for fixed aspect
ratio (a/b =2). It is seen that the radiation into
surface plasmons and photons grows substantially
with size, whereas the electron-hole rate remains
constant. For large sizes (a & 200ao), the long-
range energy deposition mechanisms dominate over
the electron-scattering mechanism and are the
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main source of the limited Q of the resonance.
Figure 7 shows a plot of the radiative yield of

the ground and first-excited state shape resonances
as a function of size for fixed aspect ratio. As one
might expect, the radiative yield grows with in-

creasing size. Figure 8 shows the same yield as a
function of aspect ratio for fixed a =200ao. The
falloff with increasing a/b is probably due to the
reduction in the volume of the bump, and hence of
the dipole moment.

In conclusion we have shown that a surface with

a protrusion possesses a set of shape resonances
whose frequencies and damping rates are deter-
mined solely by the geometric and dielectric prop-
erties of the system.
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