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Quantum size effects in the optical properties of small metallic particles
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The electric-dipole susceptibility of small metal particles of characteristic dimension L
is calculated within the random-phase approximation on the assumption that

k~
' &&L && A,, where A, is the wavelength of the electromagnetic field and k~ the Fermi

wave vector for bulk metal. Electron scattering is introduced in a number-conserving re-

laxation time approximation, and the optical conductivity of a single particle and the ab-

sorption coefficient for a suspension of such particles are determined. The matrix ele-

ments for cubical particles are sufficiently tractable that the evolution of the optical prop-
erties with particle size may be followed down to a metal-insulator transition demonstrat-

ed to occur for particle dimensions {-1/k~) consistent with the Ioffe-Regel localization
criterion. The far-infrared absorption coefficient is found to diverge as the ciitical parti-
cle size is approached. The surface plasmon is monotonically red-shifted and consider-

ably broadened by Landau damping. Criteria for observing the discrete optical structure
in small metallic particles are presented.

I. INTRODUCTION

Optical measurements have traditionally been
one of the most direct techniques for observing the
properties of matter of small characteristic dimen-
sions. In this context the criterion for smallness is
clearly fixed by comparison with the wavelength A,

of incident light. Only fairly recently, however,
has it been possible to produce samples of small
particles (or small structures using, for example,
the techniques of semiconductor technology) which
are readily characterized and reasonably uniform in
size. Moreover, unusual behavior has been predict-
ed and/or observed for a whole host of thermo-
dynamic and transport properties whenever the
wavelength of the quantum excitations within such
a small particle becomes comparable to its physical
dimensions. '

We will confine our attention below to the opti-
cal properties of a simple model of a small metallic

particle system. In Sec. II we will briefly review

the classical predictions for the optical properties
of a dilute suspension of metallic spheres small in

comparison to the wavelength of incident light and
remark on the inadequacy of this treatment, partic-
ularly in the far infrared, in explaining experimen-
tal results. The motivation for considering quan-

tum size effects will be presented in Sec. III, in

Secs. IV and V a general random-phase approxi-
mation (RPA) calculation for the optical response

will be reviewed, and in Sec. VI and succeeding
sections the results of this formalism will be ap-
plied to a simple particle-in-a-box model for the
electrons in a small metal particle, with appropri-
ate simplifying approximations.

We will see that in order to make meaningful
comparisons between quantum size effect predic-
tions and experiment, the effects of electron
scattering must be carefully introduced. Further,
the distribution of particle sizes in real systems
must be taken into account. - For a narrow enough
distribution of particle size the absorption coeffi-
cient of the system should exhibit ripples corre-
sponding to smeared-out discrete level structure.
In addition, the familiar Mie sphere resonance will

be considerably broadened as a consequence of
Landau damping in the discrete system. We will

also see, however, that quantum electric dipole
contributions remain inadequate to explain the ob-
served magnitude of the far-infrared absorption
coefficient in such systems. This conclusion is
unaltered by inclusion of magnetic dipole (both
classical and semiclassical) effects.

II. CLASSICAL ELECTRODYNAMICS
OF A SUSPENSION OF SMALL METAL

SPHERES

The Mie solution for the scattering and diffrac-
tion of light by a single homogeneous sphere pro-
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vides a complete description of the "optical proper-
ties" of an isolated spherical particle characterized
by a dielectric function e(co). ' It is then a
straightforward matter to determine, at least in the
long-wavelength limit, the optical properties of a
dilute collection of such particles embedded in a
host medium (the usual experimental configura-
tion) via Larentz local-field arguments. In the Mie
treatment the total field outside a sphere is decom-
posed into the field of the incident electromagnetic
wave and the scattered field. The scattered fields,
in turn, for spheres of radius R very small in com-
parison to the wavelength of incident light, may be
expanded in electric and magnetic multipole fields,
each of an amplitude depending only on the parti-
cle size (through the dimensionless small paraineter
qR =2nR/A, ) and the dielectric constant of the
medium composing the sphere and the host medi-
um (assumed for convenience to be a vacuum).
For small enough spheres only the lowest mul-

tipoles will have physical importance; the scattered
fields at distances far from the sphere are those of
a point electric dipole of moment

e—1
po ——R

6+2

and a point magnetic dipole of moment

Rpo's =(qR) (e—1),
30

where we observe that the magnetic term is charac-
teristically reduce by the factor (qR), assumed

small. Pravided e is finite, the amplitude of the
(I + 1)st electric partial wave (i.e., of multipole in-

dex I) is af the same order of magnitude as that of
the Ith magnetic partial wave. On the other hand,
if

I
e

I
~ oo the electric and magnetic partial waves

of given I may be camparable. This observation
will become important below.

Standard arguments result in the well-known

isotropic Lorentz local-field result

4m Pf
1 — —a

3 0
where E is the applied field, for X identical entities
of polarizability a in a volume Q. Identifying, for
a composite medium,

D, =e,E, =E,+4rP, ,

where

N c N
P, =—aE) ———p,0 0

we find

F, =1+4m —a0
4m X

1 — —a
3 0

ar, using explicitly (1) for the polarizability of a
small sphere of dielectric constant e, we find,
rewriting slightly,

1+2Z'6=EMG
1 —Z'

where

(7)

Z =rI (e—1) .(qR)2

30

This expression (and the entire multipole expan-
sion) only makes sense in the context of small qR,
though qR does not actually appear in the electric
dipole result (7). If the quasistatic limit is defined
as

I I
q"R

I I
q'R

I I
qR I I «I

where q" and q' are the (in general complex) wave
vectors for propagation in the host and inclusion
materials, respectively, and q is the effective com-
posite propagation wave vector, then in the absence
of clustering of inclusions it may be shown that

e—1
Z ~ Ig

6+2

Here rI=(N/Q)(A/3)R is recognized as the
fraction of the composite sample volume occupied
by the small spheres. The subscript MG identifies
the well-known Maxwell-Garnett result, known

theoretically to be appropriate for the case of a di-
lute, random suspension of isolated metal spheres.
It is also known to be inadequate, however, when
the particles are no longer isolated from one anoth-
er, or when the host and inclusions enter on a to-
pologically similar footing. There are other ways
of deriving the Maxwell-Garnett result, but the one
above emphasizes that it is fundamentally a local-
field property and suggests directly the procedure
for the magnetic dipole case. The symmetry be-
tween e and p in Maxwell's equations means that
wherever the electric dipole mo'ment of a small

particle po' appears we may replace it by po ', the
corresponding magnetic term, in order to obtain
the composite magnetic permeability:

=1+2ZPc=PMG=
1
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the correct composite index of refraction for this
geometry is

&c =I:«Vbl'"= «—MGPMG}'" (9)

We shall be concerned in this section primarily
with the far-infrared (low-frequency) behavior of a
quantity of particular interest experimentally,
namely the absorption coefficient a, defined by the
attenuation of intensity I of an incident beam
through a sample of the composite via

oe (10)

Im(eMGiJ'MG} (11)
C

since the wave vector has the form q =(co/c)n,
It is customary to assume that the physical

properties of matter in a small metallic particle are

essentially identical to the bulk. We note, for in-

stance, that even a 50-A diameter Al sphere con-
tains about 4000 atoms. Much of the experimental
data available is for so-called simple metals, i.e.,
those well described at low frequencies by treating
the electrons as nearly free but nevertheless ex-

periencing collisions. We may therefore adopt a
Drude model as a reasonable basis for predicting
the classical optical properties of small metallic
particles, at least for frequencies below the thresh-
old for interband transitions. In the Drude model

2
COp

e(co }=eo-
N(CO+i IT)

(12)

where cd is the plasma frequency of the metal, de-

pending only on the average density of conduction
electrons and corrected with an optical effective
mass if interband effects are important. Here 1/r
is the mean scattering rate for these electrons, and

eo is the "core polarizability" of the otherwise inert
ions. For later comparison we note that the only
concession to the smul/ sphere size which is oc-
casionally made is to supplement the bulk scatter-
ing rate by a term representing (diffuse) surface
scattering, via the expression

1 1 ~s

eff fbulk

where us is the Fermi velocity (a reasonable esti-

where x is the depth into the sample. Evidently
for our assumed isotropic homogeneous composite
medium

a(co) = Im(ep),'
2N

C

mate of a conduction-electron speed} and R the
sphere radius (a reasonable guess as to the mean
distance traveled before a typical electron scatters
off the surface). The dielectric function in (12) is
then explicitly a function of size R. We will have
more to say about the simple additivity of these
processes later.

From (7)—(9) and (11), supplemented by a
choice for e(co), follow all of the optical properties
of the composite medium, at least in the quasistat-
ic limit where truncation of the Mie series makes
sense. For example, for small ri and to lowest or-
der in co we find

a(ei) = rishi 9 41rcTd+

4~0d. 10'' (14)

Here the first and second terms in the large
parentheses are the electric and magnetic dipole
contributions, respectively. The static conductivity
of the metal component (not the composite) is
given in the Drude model by

2
COp V

0'dc=
4m.

(We have also replaced q by co/c). As noted by
Tanner et al., Granqvist et al.,' and Stroud and

Pan, " the magnetic dipole (eddy current) term has
the same frequency dependence as the electric, but
rapidly dominates the electric absorption as the
particle size increases. As an example, we note
that for Al at room temperature the two terms are
equal in magnitude at R =.6 A, but by R =18 A
the magnetic term accounts for 90'I/Io of the total
absorption coefficient. If we include the surface
scattering correction (13), the corresponding figures
are 32 and 55 A.

The numerical predictions of Eq. (14) still fall a,

factor of 10 —10 below what is observed experi-
mentally. ' ' A number of mechanisms have been
proposed to explain this excess low-frequency ab-
sorption. These include absorption due to dielec-
tric losses in amorphous oxide coatings on long
chains and clumps of metallic particles, '3' ab-
sorption due to the clumping itself, ' ' and the
direct excitation of bulk phonons by the un-
screened applied field acting on surface ions. '

While the quadratic frequency dependence predict-
ed by (14) is in rough accord with experiment, al-

most all possible explanations give such a depen-
dence; even a.very different process, photon-
assisted electron hopping between small particles
would give rise to a dependence' '
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a(co) -ro ln
(const)

which does not depart radically from the leading
~ dependence. '

With this section as background we proceed in
Sec. III to a quantum mechanical treatment of the
problem, focusing our attention on the properties
of a single, isolated metallic particle.

III. QUANTUM SIZE EFFECTS

The possibility of quantum size effects in the
optical properties of small metallic particles has at-
tracted considerable theoretical attention. A
few remarks about why a quantum treatment will

be necessary, at least for small enough particles,
and what quahtative features we expect to emerge,
are appropriate.

First, within the single-particle approximation,
one could imagine solving for the eigenstates of
free electrons subject only to the constraint that
they remain within a finite volume. The energy
levels of such a small particle will then be discrete
and the small energy difference (the "gap") be-
tween the highest occupied level (the "Fermi lev-
el") and the lowest unoccupied level will mean
that, in principle, the particle as a whole will

behave as a large "atom." At zero frequency it
will assume the characteristics of an insulator.
The use of any bulk concept like a conductivity is

suspect, of course, when applied to a small enough
system. We will make our definition more precise
below, however.

In practice even a rather small particle
0

(R -20 A) has thousands of electrons and we will
assume that, as in the bulk, conduction electrons
scatter from impurities, and (at finite temperatures)
from phonons. (There is some evidence that the
metallic character of a small particle will persist
down to clusters of a few hundred atoms '; for ex-
tremely small particles we clearly expect a metal-

insulator transition to occur. We will have more
to say about this matter below. } Hence, unlike the
case for an atom, we qualitatively expect there to
remain at least some means of dissipation down to
low frequencies, with an associated finite dc "con-
ductivity. " This conductivity will in general be
much reduced with respect to the bulk metallic
value. An important consequence of a reduced dc
conductlvlty 18 an enhanced electric d1polc contr1-
bution to the far-infrared absorption coefficient

{14),which depends inversely on 0'~,.
In the treatment below our approach will be to

(i) calculate the polarizability a(q, co) for a general

bounded quantum system in the q =0 hmit within

an approximation of diagonal response, (ii) use the
relation bctwccn thc polarizability and dielectric
function to extract e(m), and {iii) introduce the ef-

fects of electron scattering in a locally number-

conserving relaxation time approximation in order
to make detailed predictions about the optical
properties and frequency-dependent conductivity of
small metallic particles. As usual in a single-

particle picture, the entities responsible for the pro-
cesses we will calculate will be assumed to be
quasi@articles. It is clear that such an interpreta-
tion is necessary, as it is in bulk metals, when we
observe that the Coulomb energy of two electrons
in a sphere of radius 8 -20 A is of order
ez/R =0.05 Ry. We will lump this energy togeth-
er with the large negative energy usually implicitly
assigned to jellium (in order to bind electrons
within a finite box) in the calculation to be present-

ed below.

IV. PORMAI ISM (REP. 32)

The Hamiltonian of a system of electrons
(charge —e) in the presence of a semiclassical elec-
tromagnetic field characterized by vector potential
A(r, t) and scalar potential P(r, t) is

H = p+ —A +V(P+P(r),1 e
2' C (16)

where V{I}is the potential in the absence of an
apphed field. If we are interested in optical prop-
erties we may neglect the term in A and treat the
terms linear in A as a perturbation. Wc are at li-
berty to select a gauge where P—=0. It is impor-
tant to observe that in a metallic system it is the
screened (not externally apphed) field to which the
independent electrons respond. In a linear-response
treatment, however, we may extract the quantity of
interest by forming the "ratio'" of response to driv-
ing field, so that we may simply reinterpret A(r, t)
as the effective local screened field which will,
however, no longer be purely transverse even if the
incident field is. We may then write

A2

H= +V(r) .+ (p.A+Ay) .
2Etl 27210
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where we regard Hi as a small perturbation on the
states

~
i & of Ho. We then calculate the current

induced by an applied electromagnetic field. Let P
be the density matrix appropriate to a system
described by a Hamiltonian H in thermal equilibri-

um, and defined by

p—= I exp[P(H )I—)]+1 I

for P=(ks T) '. For any eigenstate
~
i & of H

P~i&=I exp[P(s; —p)]+I I '~i&

(19)

where ~i & and
~ j& are eigenstates of Ho.

[Henceforth we will omit the —11, although for
choice of branch or contour co will always be as-

sumed to be (co+iri), until we discuss broadening
later. ] For Hi in (17) we select A(r, t) to be mono-
chromatic

A= Aoexp[i(q r tot—irt—t)] .

(1)
mc (C,J fau —i rt)—

where f; is the Fermi-Dirac occupation factor for
that state. For a statistical ensemble, then, the ex-
pectation value of an operator 0 is

XAO (i (e'q'p
~ j&

(26)

«&=TrIiW =X &i IP l j&&jIo Ii &

(20)

To linear order in an applied perturbation we

may write

A(0) A(i]P=P +P

where P' ' is the density matrix of the system
described by Ho and p'" is the perturbation in p
due to H~. In general p obeys the I.iouville equa-
tion

(21)

i% =[HP],8t

from which we may write

=[H ""']+[H ""']
a~

{22}

(23}

where we have (i) substituted (17) and (21) into

(22), (ii) subtracted the Liouville equation appropri-
ate to Hc alone from both sides, and (iii} neglected

the higher-order term [H»p' "]. Assuming

response at the same frequency as the perturbation,
taken to be exp[ i (ei+iil )t—] where exp(rit) adia-

batically switches on the perturbation from
t =—ao, we may evaluate the matrix element to
find

(27}

A A

p, —=p+ —A and n—=S(r —r) .
C

The expectation value of j is

j;„d{r, t) =Tr I p j I
A(]

Tr I
p(0) l +~(1) ~

(28)

j = [pS(r —F)+S(r—r)p]
2ptl (29)

ti) ~2
j = AS(r —r) .

NlC'

Lct s(J =8(—cj. Wc liow perform tl1c trace and
Fourier transform the resulting expression for the
total induced current in a volume 0 to obtain

The final term in large parentheses appears because
for our choice of gauge V A=i q A&0 in general.

%e may next compute the current induced by
the perturbation H&. The current operator is given
by

—e2- -+
j;nd(»t0)= Aogf;&i (

e' '
Qmc

, X ' [(i I
e" 'Ac P [ j&+-,'fig A()(i [e'~ '

[ j&]

y[(j (e '" 'p [i&——,i)ik(j(e '"'' )i&], (30)
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where "off-diagonal response, ". i.e., at wave vectors other than that of the applied field, is now evident.

We shall adopt the viewpoint that for dynamical effects in small particles it is the discreteness of the ener-

gy levels, and not the associated inhomogeneous charge distribution, which is important. We further note
that the scale of inhomogeneity of the electron density near a surface is of order I/kE, where kF is the Fer-
mi wave vector appropriate to the electron density'. Provided, therefore, that the characteristic dimensions

of the small particle are large in comparison to 1/kE, an approximation which takes the unperturbed elec-
ti'oillc systcln Rs Ilomog858ogs (although flllltc) sllould bc Rcccptablc. Th1s Rssuillcd honlogcllclty, 'togcthcf

with dchberate neglect of surface effects, will constitute our definition of an approximation known as diago
nal response. It asserts that the system responds only at the wave vector of the applied field. For atomic

systems, diagonal response is assumed almost without exception, ' '1' and corresponds to the use of the mul-

tipole expansion with a constant local 6eld, as discussed below.
With the approximation k=q in (30) we then find

j;„d(q,al) = A{q,al)
meO

'
f «q ) f&l Ic"'p

I j&+-,'&q&i Ic"'
1 j&] I

m 'CO li sgi—

&&{&jlc "'P Il'& ——,'~q&j lc-'+'"'ll&), (31)

where we have used g,f; =N, the total electron number. We recognize the first term as the "diamagnetic

current. " The physical picture we have in mind is an external transverse plane wave of wave vector g in-

cident on a particle small in comparison with the wavelength. For a small enough particle we may take the
0 llnllt to 611d

—c' N- c' (f fj.) -.—
lim j;„,(q,co)= A(ro) — ;-—g ' ' [A(r0) &1

f p f j&]&jfp fi&
0 mc 0 Qmlc

(32)

This limit, in which the momentum matrix ele-
ment alone survives, corresponds to the complete
neglect of the spatial variation of the electromag-
netic field across the region of interest. It is the
familiar (electric) dipole approximation. It neglects
the rapid oscillations of electrodynamic quantities
near the surface. In our gauge E{co)=(ice/c)A(co);
we will be interested in the transverse response of
the system to the transverse electric field of a»n-
cjdcnt light wave. In the long-wavelength limit

this is equivalent to the longitudinal response of
the system to a longitudinal field. ' ' By forming

the scalar product of j;„d and m(m) we may identi-

fy the optical conductivity

e N e~
o(co) =i

Qppl Q)

x X, ' ~ l&ilf~tj&l'
Ij fj

Using the general relation

«(r0) = 1+i4rrcr(cl )/ro (34)

me then have

2
Np

e(a))= 1-
N

(35)
(fi fi) I &' IPE 1

-j & I

QNl QP )) &jj

where p@ denotes the component of the momentum
operator along the applied field. We have also de-
fined u~ =4mc(N/ft)/m. '

This result is manifestly of the form of free-
electron behavior [the first term in {35)]plus
corrections falling off faster than 1/aP for high
&eqQcnclcs. 71M coiTcct1ons, dQc to the non-
translational invariance of the system, will vanish
for an infinite free-electron metal. It will be con-
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venient to rewrite (35) via a relabeling of the con-
tribution from the term fz, interchanging i and j
for this term we combine it with that from f; to
find

e(co}=1—
2

Np

N

S~e' f ej I &i
I px I j& I

'

EJ EJ

(36)

2
Np

N

see' . f; I pij. I'
1+ ~ Np ij E'j

+ ~ ~ ~

2

= feoI —
z

+0(co ) . (37)

In the theory of the optical properties of crystalline
metals ' ' one would normally identify eo as the
"core polarizability" of the metal and the terms in

large curly brackets as the optical effective mass
refiecting the presence of a periodic potential. At
all frequencies the contributions to e(co) may be
decomposed into "intraband" [the first two terms
in (37)j and "interband" {the rest). For a small

system with genuinely discrete levels we may prove
that there is no continuous (intraband) contribution

by demonstrating that the effective mass m/m~
vanishes; we use the well-known Thomas-Reiche-
Kuhn sum rule

2
pig

Ej

(38)

where i and j denote all the quantum numbers of a
system, and the matrix elements are summed over
all states j. Hence the quantity in square brackets
in (37) is [1 g,.f;/N =0"j, all—owing us to rewrite

was

We will be concerned with systems small enough

that the discreteness of the eigenvalues will be im-

portant. We may thus perform a low-frequency

expansion

srre'ri' f lpj I'
Qm, i eg&

&RPA= &+4~&RPA . (41)

With respect to the applied, external fje]dio
r

+ext +RP
4~1+ +RPA

so that the usual local-field correction must be
made. The polarizability of a uniform sphere of a
medium characterized by ERPA=E is thus

E' —1a=83
6'+ 2

(43)

In our context this mmns that one could pedo~
an RPA calculation for e of a system of planar
symmetry, exhibiting the appropriate bulk
plasmon, and merely by using the known classical
boundary conditions on the applied and local fields
(42), or the Mie theory result (7},be assured that
the surface plasmon will be recovered when the
denominator of (43) vanishes. This will be our ap-
proach below.

VI. THE PARTICLE-IN-A-CUBE MODEL

We are specifically interested in small metallic
particles; if we adopt the jellium model we may
select particle-in-a-box wave functions as reason-
able states

1/2
8 . max . nay . pmz

sin —sin sin
abc a b c

I m, n,p I =1,2,3, . . . (44)

electric dipole limit. A second trivial consequence
of (38) is the result

2
Np

lim e(co)=I—
N~ oo N

i.e., all electrons behave as free electrons for suffi-
ciently high frequencies.

Finally, it is important to remark that any
RPA-type calculation (such as the one here) gives
response to the loca/, i.e., screened, field

sn.e ft ~ IPrj I fi'

Qm "s (s n' c"o)"—-
EJ EJ EJ

(39) fP m ii pEi= 17 =+ +a2 b' c2

a well-known result. This derivation is given to
emphasize the fact that it results from a nontrivial
approximation, that of diagonal response in the

Here we have assumed the box to be rectangular,
of dimensions a )& b &(c; although the states for a
three-dimensional infinitely high spherical well
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may be explicitly written down in terms of spheri-
cal Bessel functions, ' their matrix elements are
very cumbersome to work with in general. These
would obviously be more appropriate to the experi-
mentally occurring collections of small roughly
spherical particles; our expectation is that the ener-

gy and general behavior of, for example, a cube (to
which we will specialize} and a sphere will differ
only by geometrical factors of the order of 1. We
will see this hope borne out several times below,
wherever analytic results for spheres exist for com-
parison.

Although we will be careful to show that with
the procedure to be followed below the detailed
shape of the particle will not much matter, we part
company with the arguments of Kubo ' that mi-
croscopic surface roughness will enormously reduce
the degeneracy of a level for a highly symmetrical
particle {for a sphere, the m degeneracy of a state
of given I; for a box, the degeneracy due to quan-
tum numbers for directions perpendicular to the
electric field). We will see below that the optical
features which emerge from our treatment will oc-
cur for energies of the order of the gap,
fico -ss /N'/ (where ss is the Fermi energy and N
the number of electrons in the particle}, not at the
enormously different value es/-N predicted by
Kubo. We shall see that in our model a careful ac-
counting of the degeneracy will give rise to, for ex-

ample, a metal-insulator transition for small

enough particle=a phenomenon not readily

predicted on the basis of the Kubo arguments.

We now take for convenience the applied and lo-

cal fields to lie in a direction x normal to one of
the box faces, such that the dimension along the

field is a. Then

l &c lt. 1 j& I'=

X[1—( —1) + ']5„„,5~~, , (45)

where
l j} is labeled by (m', n', p') As cc~.cc, cor-

oo f2 2 2 2

2m a
I

i
—(m, —m )e(m, m), —

a' 4 (46)

where we have (i) assumed a well-defined Ferini
level exists, of energy cF equal to the bulk metallic
value, {ii) assumed the zero-temperature (Heaviside

step function} form for the Fermi occupation fac-
tor for noninteracting electrons, and (iii) identified

1

m, =k~a/n; The factor of 4 comes from the re-

striction of (m, n,p). to positive integers,
We will refer to the geometrical entity corre-

sponding to the substitution (46) as a "cube." The
approximation preserves the important dependence
on discrete energies associated with quantum num-

bers parallel to the applied field. We will see

below how well the approximation fares. More-

over, it will be convenient for computational pur-

poses to quantize the particle dimension a in units

of n/ks Since thi.s quantity is typically -3 A
and authentically small particles usually have

a &20 A, this artifice is not expected to have signi-

ficant effects.
The approximations above result in enormous

simplification in (39). We find

responding to a bulk free-electron metal, the ma-

trix element vanishes, reflecting the fact that a free
electron cannot conserve momentum and energy by
absorbing a photon. For finite a the particle walls

break the translational invariance of free space.
The initial and final states in the electric dipole
limit must differ in parity.

To simplify the computation of e(c0) via (39) we

observe that the transverse quantum numbers (n,p)
and box dimensions are essentially irrelevant since

they uncouple from the strong frequency depen-
dence of e(co). Hence we take the dimensions b

and c to be large enough that the sums over (n,p)
may be replaced by integrcils In p. articular, we

make the substitution

4'& m C

~(x)=1+ — g m'(m, '— ') yuo vs=i ~ i (m' —m~)~[(m'~ mi)i xi] ' (47)

where

2@i a
mc

kFa
( =integer), (48}

and ao is the Bohr radius.
The behavior of (47) is evaluated in a straight-

forward manner in certain limits. In the limit of
high frequency [using the identities (A12} and
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(A23) of the Appendix]

Np
lim e(co)= I—

4m, 4m,

(49)

One of the prices we pay for the approximation
(46) is now evident: There is a very weak deviation

from the (correct} limiting behavior (40) or, alter-
natively, a weak violation of the f-sum rule. For
an Al sphere of 25-A radius (experimentally quite
small) a cube of equivalent volume has rn, =22, re-
sulting in about a 3% deviation from (40). {A

method for enforcing the sum rule has recently
been suggested by Cini. For the infinite potential
case [with the same approximation as embodied in
(46)] the variable m' is integrated (rather than
summed) and a cutoff is introduced whose purpose
is to ensure that the sum rule is exactly satisfied.
One result of this calculation is an oscillation in
the position of the surface plasmon with particle
size which iis superimposed on a general shift (to-
ward the blue) as particle size is reduced. Cini also
treats the finite-well case. )

For low frequencies, on the other hand, we find
(see the Appendix)

lim e(co)=ep+ O(pi2)
dp-+0

= &+ — 15m, S4-a n

ap 1536

S„=p-
m=i ~

iS2 +n'rn, (1—m, S2} +O(co~),
mc

(50}

For large m, these sums become asymptotic series
in I/m, and Bernouilli numbers; we find

kpap
lim [ lim[lime(q, co)] I =1+

Nl+~eo op~0 g~, 3K

=1+0.1061(kpap )
ap

(51)

In a calculation very similar to ours, but in the q
(rather than the co) domain, Cini and Ascarelli
found for cubes

'5

which is precisely of the form expected for an in-

sulating system, e.g., an intrinsic semiconductor.
It is quite instructive to compare our result (51)

with the well-known result of Gor'kov and Eliash-
berg, ' who found for large sphere radius

lim [lime'~"'"(eo)]
Nt& -+ oo Ci)—+0

=1+ (kpap}
5m ap

In terms of the equivalent volume sphere radius E
(which we will use below) the two results are

lim I lim[lime{q, co)] J =1+ — {kzap)
2 a

ttt&~ao g~ op~0 s ap
ep~

'"——1+0.2546(kpap)(R/ap)i,

ep" = 1+0.2757(kpap)(R/ap)2,
(55)

=1+0.1046{kFap)
ap

(52)

(53)

Since in general these limits are not interchange-
able, it is remarkable that they agree so well in this
case. We will see below that for large m, the gap
for our cubes, i.e., the energy of the lowest allowed
optical transition, is A-2'/m„so that our result
(51) may be rewritten

RCOp
Ep= I+

so that the geometrical distinction between a
sphere and a cube is indeed a factor O(1). From
the form of (54) it is clear that the polarizability of
a small sphere very rapidly approaches that of an
infinitely conducting sphere: 8 i [see Eq. (43)].

VII. QUASICONTINUOUS LIMIT

To anticipate some of the effects we expect to
emerge from a full calculation of e(co), and to
make contact with the work of Kawabata and
Kubo, ' we will consider a small particle yet with
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all dimensions large enough that sums may be re-

placed by integrals. %e mi11 also consider the case
of a thin slab —a box two of whose dimensions

(here those perpendicular to the applied field) are
infinite. To find the effective mass for a thin slab
of thickness a, for the discrete m case we must re-

evaluate (37). The approximation (46) becomes ex-

act for slabs, and using the same identities as be-

fore we find

3+ '

The hmit (40) is obeyed identically. Rather than

pursue further the discrete case, we replace the m

sums by integrals. Since in this context "cubes"
and "slabs" coincide, we find

2 2

c„(cl)=j—,+QPp

2Q0

2
{j 1 '~ ~ " dc'~c'

s Bp —E) c
IIAsi (u/ao) Jo 0 (c'—c)[(c'—c) —ji co']

where we have set (Irl /2m, ) (m III '/a2) =c (similarly for III') and observed th« thc av«age va»e of
[1 ( 1) + '] js one. The subscript qc denotes quasicontinuous, and m, is the elec«on mass
electron densjty of states form of tile 111'tcgl'allds ls cvldcllt; uslilg tllc ldclltltlcs

1
+in 5(z b)—

z —b

and thc dcfillltloll

Rco'(N)= Imc(co),

8 1 [f(Q)—e(1—Q)f( —Q)] R
H (a/uo) 0

f(x)= —1+—1 x
2 2

x &1 x
1

V'1+x+1
2 2 v'x

(V'1+x )I

For the limiting cases we find for cubes {in Ry/Ilj)

32 1 0.2162

156 Q'" Q'" *

O.4O53

(62)

while Kawabata and Kubo, performing the calcula-

tion for spheres, find

32 1 0.0657
R 5Ir Q Q

O 1643 (Q((1)

(63)

=—,uz/a =0.931uq/R

i.e., precisely the form of the "surface-scattering"

contrjbutjon to (13) above. Thus Reo'(co) behaves,

Once again we find differences only 0 (1) between

the behavior of a sphere and of a cube; our results

(60) and (62) agree with those of Ruppin and Ya-
tom for slabs.

The result (60) (though it is not satisfactory for
realistic purposes since it diverges for low frequen-

cies and neglects broadening) is a clear indication

of the essential 1/a dependence of small-particle

effects. More interestingly, we note that provided

1/~ ((co((cz/R, Re Ir{u) has the same form as

that arising from the Drude result {12),with

cube
1

(64)
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even in the absence of explicit sources of dissipa-
tion, as a bulk free-electron metal with a surface-
scattering rate (64). Since the Mie sphere reso-
nance roughly obeys the inequalities above we con-
clude (as do Kawabata and Kubo) that, because of
Landau damping of the surface-plasmon collective
excitation, ' the surface plasmon will acquire, even
in the absence of other means of damping, a width
given roughly by (64} above. We expect the more
complete discrete treatment below also to result in
such damping of the sphere resonance. We now
consider the procedure for introducing the effects
of an electronic lifetime into our result (47).

VIII. BROADENING

Because we have anticipated that the dc conduc-
tivity of a small metal particle will be reduced with
respect to the bulk value, it will be essential to in-
troduce broadening rather carefully. The usual
RPA prescription for introducing a finite relaxa-
tion time r is to replace the infinitesimal adiabatic
switching-on rate 1/ri [see (24) above] with the
mean scattering rate 1/~. As noted by Mernun
this replacement co +(co+-i/r) does not conserve
local electron number, i.e., the equation of con-
tinuity is locally violated. Mermin suggested a
method for free electrons which overcomes this
difficulty: We shall adapt it to the particle-in-a-
box states used above. The Mermin scheme may
be summarized as follows. (i) Introduce in the
density-matrix definition a local chemical potential
shift 5p{r) which provides the extra degree of free-
dom necessary to conserve particle number locally;
(ii) insert a corresponding (now l -dependent} term
in the equation of motion for P"' which relaxes it
to the local (rather than the uniform) equilibrium
distribution

plac = I exp[P(& —p —&u )]+1 I (65)

{iii) use the equation of continuity for the number
current to close the set of equations. We are in-
terested in the q =0 limit of the dielectric function
for small enough particles. In this limit the Mer-
min result may be written

Re e«~(co) =Re e(co)— Im e(co),
cor

Im e«(to) =Im e(to)

[Ree(co)—1],l

(66}

where the subscript corr means "corrected to be
number conserving, " and to=co+i /r Gari. k and
Ashcroft~6 have examined in detail the implica-
tions of the full number-conserving result in simple
crystalline metals. Generally, the explicit correc-
tions are small for bulk metals. This is so largely
for two reasons. (a) In genuine bulk metals there is
always a continuous Drude contribution (with an
effective mass) to e(co), and it has been long known
that the Drude dielectric function

2

eD d,(ro)=l- eos
(67

to co+2 T

[as distinct from the interband part of e(ol)] is
number conserving, i.e., (67} follows from (40) via
(66); (b} since the onset for bulk-metal interband
transitions coque typically occurs in the visible or ul-

traviolet, the quantity 1/(colas) is very small

[0(1%)since for a metal r-10 ' sec].
In our case—the far-infrared behavior of small

particle=there is no Drude term to swamp the
discrete frequency contributions to e, and co~ may
be 0 (1}.Thus a number-conserving relaxation
time approximation is important for obtaining
meaningful numerical results. If the prescription
for broadening (66) is applied to (47) we find

4
Re e(x) =1+

'4
2[+2 ( 2++2}][1 ( 1 )Itl +III ]gm(m, —m)

m=i m'=I

4
Illl e(x)=

where

r 4
I '

2 2 2
" m'[b, 2+(x2+I')][1—( —1) + ]

Ptl~ —Nl
Qo X m'=1

I

and

g3[(g2 x2+I 2)2+4 21 2]

E=Nl —Nl
&2 2
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a(co) = 1m[rosa(co)]'~
C

(71)

is shown in Fig. 2(a); very rapid oscillations on the
high-frequency side of the sphere resonance have
been suppressed for clarity. The classical bulk

Drude result is shown for comparison. The extent
to which the QSE absorption is enhanced in the
FIR is evident; also prominent are the broadened
discrete absorption peaks expected from (70) above.
A "knee" marking the onset of the particle-in-a-
box transitions at the threshold frequency

fico,
=(2m, +1)/m,

GF

(the most noticeable feature) occurs, however, at a

Al sphere volume fraction ri of 10%%uo with bulk re-

laxation time v; the absorption coefficient
frequency where a(co) is a factor —10~ smaller
than its peak (sphere resonance) value.

In Fig. 2(b) is shown an enlargement (on a linear
scale) of the behavior in the vicinity of the Mie
sphere resonance, occurring in the Maxwell-
Garnett approximation ai

1/2
(1—il )

N 3
sphere

Even using the bulk relaxation time, the sphere res-

onance is considerably broadened using the e(c0)
appropriate to the QSE. As mentioned in the con-
text of the quasicontinuous limit above, the
broadening occurs because of Landau damping of
the collective surface plasmon excitation, which
can decay into single-particle (particle-in-a-box)
transitions.

X. THE METAL-INSULATOR TRANSITION

The m' sum in (47) above may be performed analytically (see the Appendix) and we may write down as a
sum the dc conductivity of a single small cube; with the usual definition (59) we find

Re od, (QSE) 3+1/m,=1-
Re o s,(Drude) 4m,

48 ~ —z tanz, m even

+z cot z, m odd
Re m m, —mz X' (74)

where

'PPtlZ=
2

1 ——r

I

beyond the regime of validity of the semiclassical
treatment above, it should be remarked that for
m, =1, or k~a =m, the small metallic cube ceases
to be metallic since

(75)
Reod, (QSE,m, =1)=0 . (77)

Re o d, (QSE)
lim =1,

m, ~ Reod, (Drude)
(76)

i.e., the dc tails of the broadened discrete peaks in
Reer(co) for a finite system merge as the particle
grows larger and in such a way as to recover the
dc Drude conductivity.

Though we have deliberately excluded the case
m, =1 (i.e., particle dimensions —I/kF) as being

2
COp T

Reo d,(Drude) =
4m

As the particle size grows I [Eq. (69)] grows
also, so that roughly speaking, 6 + I =I in (68).
As a consequence we may show from the f-sum
rule that

kFL &2m, (78)

where I is the mean free path. If we crudely in-
terpret L as a characteristic small-particle dimen-
sion, we are led to consider this cessation of con-
ducting behavior as a metal-insulator transition of
the Ioffe-Regel sort.

Thus in order to avoid the consequences of the
2kF oscillations near the surface of a small particle

The condition m, =1 corresponds, of course, to a
very small particle. It is interesting to observe that
the Ioffe-Regel criterion for localization of elec-
trons in the presence of scattering, i.e., break-
down of the Boltzmann equation approach to con-
duction in a solid, is
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the dc conductivity as the small-particle dimension

approaches the critical value at which the metal-

insulator transition occurs. The ratio by which the
FIR absorption coefficient is enhanced is simply

1/Q [see (14) and (74)], as shown for Al in Fig. 3.
It would appear that for spheres of intermediate
size, such as occur experimentally, the full magni-
tude of the FIR absorption cannot be accounted
for by appeal to electric dipole quantum size ef-
fects alone. (See Note added in proof)

o- —I

0.7 0.8
t M/6Fermi

XI. OSSERUATION
OF QUANTUM SIZE EFFECTS

FIG. 2. (a) Frequency dependence of the absorption
coefficient a(co) for a composite consisting of 10/o
volume fraction g of Al small particles in air, using the
Maxwell-Garnett expression, Eq. (7) and the QSE 6((0),
Eq. (6S). The classical Drude result is also shown. (b)

Frequency dependence of the absorption coefficient in
the vicinity of the Mie sphere resonance (linear scale).

we must choose m, &&1:but this choice will also
ensure that we avoid the metal-insulator transition
as well. In this light the enhanced far-infrared
electric dipole absorption coefficient for small par-
ticles is a natural consequence of the reduction in

er (2m, +1)
a)r =

2m, (m ~) a
(79)

If there is some characteristic relaxation time r in
the electronic system (due to phonon scattering or

We have treated above the broadening of an in-

dividual peak in the discrete spectrum of a small

particle in the presence of scattering. There
remains the question of whether the discrete struc-
ture itself will be experimentally detectable. We
may establish a possible criterion by observing that
all of the prominent discrete transitions occur for
frequencies of order the gap
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impurities, for example) we require

(80)

plasmon itself is expected to depend weakly on
particle size. We may use (49) to estimate crudely
this size dependence, assuming the sphere reso-
nance occurs at high frequencies; we find

in order that the discrete spectrum manifest itself.
This criterion is precisely that the semiclassical
surface-scattering rate considerably exceed the bulk
scattering rate in (13). Inverting the logic, if (80)
is obeyed, the whole scheme for slightly modifying
the Drude model via (13) breaks down, and a treat-
ment such as the QSE approach above is re-
quired.

In this picture we do not expect temperature to
play a significant role in destroying the optical
structure of an ultrafine metal particle. Tempera-
ture effects presumably set in when, for large m,

(81)

or

R
ao (kiiT}(krao)

(82)

in terms of an equivalent volume sphere radius.
For Al at 300 K this critical R is about 1000 A, by
which point the damping factor I' for the discrete
levels is so large that no optical structure would in
any event be observable.

Small particles are commonly produced by con-
densation and coalescence of the metal in question
in the vapor phase; often a good representation of
the resulting particle size distribution is the "log
normal" form:

P(r) = 1 1 1 lnr/r
expr v2m Incr W21no.

(83)

where P(r)dr is the probability of finding a parti-
cle of radius between r and r +dr. Typically r
may be 30 A and a =1.4 for an experimental sam-

ple. Because the logarithm of the particle size is
distributed normally, the distribution is in principle
rather broad, and we expect most details of the
discrete optical structure to be smeared out unless
0 can be made close to unity. In any case an
enhanced far-infrared absorption coefficient will

persist, and the "knee" corresponding to absorption
at the "gap" [see Fig. 3(a)] may remain visible.

In the vicinity of the sphere resonance, however,
one continues to expect the broadening due to Lan-
dau damping discussed earlier. A distribution of
particle sizes will probably further broaden this
feature insofar as the position of the surface

QSE

N class spheres

1/2

(84)

Although this result should be regarded as approx-
imate only (it follows from an expression which
weakly violates the f-sum rule), it does reflect the
anticipated reduced ability of a bounded electron
gas to screen the externally applied field. For
m, =1, where the metal-insulator transition occurs,
there is no sphere resonance in this simple treat-
ment. When m, has reached 10, however, the QSE
result has attained 96% of the bulk Drude reso-
nance frequency, justifying our assumption that the
Mie resonance remains a high-frequency feature
even for very small metal particles. The prediction
of a shift to frequencies lower than bulk values is
in qualitative agreement with some experimental
results.

XII. MULTIPOLE EFFECTS

(85)

Expanding the exponential one first recovers the
electric dipole term (for q =-0}and then, to next
order in q, the electric quadrupole and magnetic di-
pole terms. '

It may be expected on the basis of the classical
treatment of optical absorption above that quan-
tum multipole effects might also be important. A
quantum multipole expansion, like its classical
counterpart, will take the form of an expansion in

powers of qa, where a is the characteristic small

dimension of the system. However, the general

q+0 electrodynamics of response to the self-

consistent field is fraught with difficulties because
the local field may no longer be taken as purely
transverse.

For an atomic system this question almost never

arises, and A is taken to be the vector potential of
the incident (transverse) light wave. Under these
assumptions, (36) becomes

2

e(co)=1-
N

Seed f ej ) (i ~e'''Pg (J} (
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The use of cubical box wave functions ceases to
be convenient when q+0 because the square
modulus of the matrix elements above fails to
decouple into pure multipole pieces. We may esti-
mate the effect of the magnetic dipole term in a
semiclassical way. Just as the fundamental quanti-

ty in the Mie expansion is the dielectric function
e(m), which enters in the specification of both elec-
tric and magnetic multipoles, we might expect that
the electric dipole RPA result for c(co), when sub-
stituted into the classical expression for the mag-
netic dipole term, may mimic the full quantum
magnetic dipole. contrtbution. Since ere have
discovered that the dc electric dipole conductivity
of a small particle is suppressed by a factor
0(10—100), Eq. (14) above suggests that quantum
size effects will merely push to larger particle sizes
the point at which magnetic dipole absorption mN
dominate dipole absorption.

The significant conclusions from the work
described above are not restricted to the particle-
in-a-box model. We observe that: (i) for compar-
ison bet%een theory and experiment it is important
to introduce electron lifetime effects rather careful-

ly; (ii) an enhanced FIR electric dipole absorption
coefficient for nmtal microparticles is a simple
harbinger of the metal-insulator transition general-

ly believed to occur for sizes I.-1/ks, (iii) some
of the width of the Mie sphere resonance is due to
Landau damping, itself a quantum size effect; and

(iv) it seems unlikely electric dipole or semiclassical

multipole contributions can account for the small

particle FIR absorption anomaly.
Two points in particular deserve further scru-

tiny. First, no rigorous justification for the use of
a Kubo gap -ss/N (as opposed to the geometrical
high-symmetry gap -sz/E'~ used here) has yet
been given for small partides. Second, the role of
quantum multipoles higher than tlm electric dipole
case considered here should be assessed with a view

to explaining the experimental excess far-infrared

absorption.

iilote added ltt p1'oof. Wc po1nt, out that a djvei-
gence of the level spacing at the Fermi level g(kz}
(Rn Rltcmatlvc lndlcatIon of a metal-Insulator tian
S1t1011) for particles sized 1/k& fogows generally
from thc usc of Dir1ehlct bolllidary condjtjons foI
fry el~trons in a container of reasonable shape.
An expression for the average mode density [H.
Baltes and E. Hilf, Spectra of Finite Systems (Bi-
bliographisches Institut, Mannheim, 1976},Secs.
V.3 and VI.2] for a cube of side I may be used to
extract 6(kF):

h(es) =1

1 t 3 3 2 3, cp/f —,n—x ——,nx +-,x+ ]

for x =ksl. /n. Forma. lly valid for large x, it has
been found numerically to represent well the aver-

age level spacing even for x & 1. The terms in

brackets correspond to volume, surface, edge, ver-

tex, etc., contributions. For x~ ao one recovers
the bulk value —, e~/¹ at x =1.04 (or

ksR/m =0.646) dE(k~) diverges. This is very close
to the value m, =ksa/m =1 found in the text for
"cubes"; a similar calculation for i},(k~) for spheres
yields kzR/m. =0.572 where 6 diverges.
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APPENDIX

In the absence of dissipation (i.e., r= oo }Eq. (36) of the text is, using the matrix element (45),

(a /ae) a & oo oo m ~ 2[1 ( 1)m+m')
'5

(m' — }[(m' ~ m 2)2—x2]
&I

where x =(Irito)/[(A /2m)(1r /a )] and f „s is the Fermi occupation factor for the state (m, n,p). The m'

suQl may be Written
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where

2[1 ( 1)m+m']
[S(m,x}—S(m, —x)],

, (m' —m')[(m' —m')' —x'] (A2}

co m 2[1 ( 1)m+™]
S(m,x)= g 2 2 2

, (m' —m )(rn' —m +x)

Now S is a function only of
i

m'
i

since ( —1) =(—1)™,so, writing m' =(m' rn —)+m in the
numerator of S and letting (m' —m) =p,

1
" [1—( —1P] 2

" [1—( —I )"]
2 [p(p+2rn)+x] ™„p(p+2m)[p(p+2m)+x]

Here p must be odd to contribute, so letting p =2k +1,

(A3)

(A4)

00
1

[(2k + 1)(2k +2m+ 1)+x]
+Pl 1 j,

„[(2k+1)(2k+1+2m)] [(2k+1)(2k+1+2m +x)]

(A5)

Now we use the familiar theorem from complex analysis that for a well-enough behaved function F(x}
00 m

F(n) = ~g Re—s[F(z)cot nz].
n= —00 k=1

where the Iak]k &
are the poles of F The F'.s above are quite simple. After some effort we fmd

' 1/2

S(m, x)=— (cote.z& —cote.z2),
4 x

(A6)

(A7)

where

—(1+m)+(m —x)'r —(1+m) —(m —x)'
Z1—

2
j Z2

2

Hence

(A8)

S(m, x)—S(rn, —x)= '

1——(u tan u +u tan v) (m even)

1+ (u cot u + u cot u) (m odd)
(A9)

where

u= —(m +x), v= —(m —x)2 1/2 ~ 2 1/2

2 2
(A10)

t

We may also expand out directly the m' sum for
small x, identifying

Static dielectric constant

We may perform an expansion in small x of
S(m,x)—S(m, —x} to find, after much labor, for
m odd or even

[S(m,x)—S(m, —x)]1

and

co ml 2[1 ( 1)m+m ]
(m' —m ) 32m

m'2[1 ( 1)m+™]
(m' —m )

(A12)

1536m

(A13)

32m 1536m m 2

(Al 1)

In the text it is demonstrated in general that
m/m~ =0 for a genuinely discrete system. Hence
as co~0, using the substitution (46) in (Al)
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lim e(co) =ez——1+

where

15m, Se—,+n m, (1—m, S2)
ao 1536 m~

(A14)

1 ' 1s,=g „s,=g
m=1 m m=1 m

(A15)

which is Eq. (50}of the text.
For large m, the sums S2 and Sq are readily ex-

panded ogt5 3

l

Now

1

~'(&'+I') I'

I

otto
liHl Go= 1+

m -+op 3'' Qo

which is Eq. (51) of the text.

2

Stat jc conductivity

%bile it n1ay be easily shown that

1 1 1
S2 —— — + 2

— 3+
m, &m' 6mc

m' 1
Sg ——

3m~ 2m 3m

For large m, we find, with m, =kqtt /m',

(A16)

(A17)

and we may use (A12) to evaluate the I/hs piece.
The final term is of the form (A2) with x =i I".
Hence

=1—(3+1/m, )

4m,

sReg m(m, —m )
48

mc
r —z tanz, m evenX'
+~cot~, m odd

Reer(to=0)=lim Ime(to}
&~0 4s

1 E

ReE &=-
4m+

(A18) (I —iI /m )'~i.
2

we will use (68) directly. Using the units defined

there we find that

Q =Re oq,(QSE)/Re crt, (Drude)

This form for Q explicitly vanishes when m, =1.
The finite sum'

481' g m2(m, —mi)
mc m=i

n (n +1){2n+1)
k=~

{A23)

co m
~ 2[1 ( 1)m+m']

+3(+2+p2)
(A19)

is also useful in evaluating the effective mass and

the e(to~ac ) limit.
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