
PHYSICAL REVIEW B VOLUME 25, NUMBER 10 15 MAY 1982

Mean-field theory of multilayer physisorption.
Adsorbate densities and surface potentials
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Haitree-Fock equations are derived for an inert gas adsorbed on a solid surface for the

case of highly mobile physisorption. The temperature and pressure dependence of the

coverage is calculated and ari effective coverage-dependent surface potential is derived.

Single-particle energies and wave functions for adsorbed particles are computed yielding

the coverage dependence of the adsorbate density profile and adlayer separations. Gas-

solid systems studied numerically are 3He on graphite, "He on graphite, and Ar on silver.

I. INTRODUCTION

A gas particle is said to physisorb onto the sur-

face of a solid if the net interaction between a gas

particle and the solid is accounted for by an effec-

tive wall or surface potential V, (r), the long-range

part of which is essentially the interaction energy

between the mutually induced fluctuating dipole

moments on the adsorbing gas particle and in the

solid. The strong short-range repulsion is largely

due to increasing charge fluctuations as the adsorb-

ing particle becomes confined close to the surface.

For an inert-gas atom at position r in front of a
molecular solid, V,(r ) is well approximated by'z

V, (r)=+V(r —r;),

where V(r —r;) is the two-body potential between

a gas particle at r and a constituent particle of the

solid at lattice site r;.
The surface potential V, (r) will typically de-

velop a number of bound states into which gas par-

ticles can be trapped to form the adsorbate. If,
due to the structure of the surface crystal plane,

V, (r) is strongly localized on specific adsorption
sites in the surface we speak of localized phy-
sisorption. In contrast, for mobile adsorption the
surface potential is treated as a function only of
the distance z above the uniform surface, V, ( r )—= V, (z), so that adsorbed particles can move more
or less unhindered along the surface.

At very low (submonolayer) coverages 8, defined
in this regime as the ratio of the number density of
adsorbed gas particles per unit surface area to the
maximum number density reached upon monolayer
completion, we may safely neglect the interactions

between the adparticles. However, as 8 ap-
proaches unity and the average separation of gas
particles in the adsorbate approaches that of a
liquid, their mutual interaction potential plays a
crucial role in ensuring saturation in a (mobile)
fluid adsorbate or causing crystallization in the ad-
sorbed film. Equilibrium theories accounting for
these effects have been developed in which it is

argued that the surface gives rise to an external po-
tential V, (r) which provides the basis for establish-

ing a quasi-two-dimensional adsorbed structure.
Once reduced to a two-dimensional problem, a viri-
al expansion can be used to include the effects of
adparticle-adparticle interactions at low coverage
(fluid regime). At near mono}ayer coverages,
strictly two-dimensional lattice models of, for ex-

ample, the Ising or Potts type can be employed
successfully to study phase transitions in films ad-
sorbed on surfaces. The ground-state properties
of completed monolayers as well as second- and
higher-order layers have been studied by describing
the quasi-two-dimensional nature of an adsorbed
layer as having a spatial (Gaussian, for example)
distribution normal to the surface. In particular,
such a distribution makes it possible to account for
the anomalously high density in an adsorbed heli-
um monolayer on graphite.

In two-dimensional theories of adsorbed films all

coupling associated with energy and particle ex-
change between the adsorbate and the gas phase is
suppressed. This may be quite appropriate for
such specific systems as helium adsorbing on
grafoil, where the distance between opposing sur-
faces in grafoil is much shorter than the mean free
path of helium away from the surface so that the
notion of a gas phase becomes irrelevant. For the
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study of adsorption and desorption kinetics at open
surfaces, however, the explicit coupling of the ad-

sorbate to the gas phase must form an integral part
of the theory. Thus, for example, in the study of
adsorption kinetics it is important to know what

changing environment additional particles arriving
from the gas phase will experience as the coverage
on the surface builds up. In a single-particle pic-
ture this necessitates the construction of an effec-
tive coverage-dependent surface potential given by

V (r,8)= V (r )+ VMF(r, 8),
where V, (r ) is the interaction (1) of a single gas
particle with the solid, referred to from now on as
the bare surface potential. VM„(r,8}is the poten-
tial arising from the mean field experienced by a
gas particle in the presence of all 6ther gas parti-
cles already in the surface region at a given cover-
age 8. Once this mean-field potential is deter-
mined it will be fairly straightforward to extend
our quantum-statistical theory of phonon-mediated
physisorption kinetics to non-negligible cover-
age. In a quantum-statistical theory the mean-field
potential VM„(r,8) may be determined by employ-
ing temperature-dependent Hartree-Pock theory.
Before this can be done two problems have to be
considered.

First, tile two-body lilteractloil V2( r ) between
the physisorbing (neutral) particles has a strong
short-range repulsive singularity so that Vq(r )-+ co

as
~

r
~
~0 (for example, as r ' in the l.ennard-

Jones potential), leading to an infinite Hartree-
Fock energy, a difficulty which must be avoided

by softening the core of the two-body potential. "
The second and more subtle problem concerns the
fact that the particle density in the adsorbate, say
around unit coverage, is of the order of that in
liquids, so that the two-body correlations, totally
neglected in a straightforward Hartree-Pock
theory, become very important. Both of these dif-
ficulties may be avoided simultaneously in a sys-
tematic way by extending the Hartree-Fock theory
to the Brueckner-Hartree-Fock (BHF} theory"'2 in
which the short-range singularity in V2 is removed
by partially including two-body correlations in the
construction of a E matrix.

In this paper we will employ the local density
approximation to the Brueckner-Hartree-Fock
theory. In the next section we review briefly the
construction of Brueckner's E matrix as the effec-
tive interaction between two fermionic gas particles
in the background of a many-body system. The
temperature-dependent Brueckner-Hartree-Pock

equations are next written down. If we restrict our
attention to highly mobile (i.e., fluid) adsorbates,
the problem is then reduced to a one-dimensional
one so that VMF(z, 8) can be identified as the aver-

age Hartrce-Pock potential.
In Scc. III we specify the bare surface potential

V, (z) and compute the effective soft core interac-
tion between (fermionic) gas particles starting from
Brueckner's K matrix. %e will see in the example
of 3He that it is the short-range repulsion between
He particles rather than the quantum (Fermi-

Dirac) statistics which determines their two-body
correlations and hence gives rise to an effective
soft-core potential, so that we can also argue for
the usefulness of such a simple (analytic) soft core
potential between adsorbing particles obeying
Bose-alnstej, n statistics.

In Sec. IV we outline the method used to cast
the Hartree-Fock equations into a set of finite
difference matrix equations and discuss the itera-
tive procedure employed to solve them. Section V
is then devoted to numerical results. In this paper
we present data on temperature-dependent single-
particle energies and wave functions of gas parti-
cles adsorbing onto a solid surface. We calculate
the temperature- and pressure-dependent coverage,
the mean position of the adlayers and the effective
coverage-dependent surface potential (2). The sys-
tems studied here are He on graphite, He on gra-
phite, and Ar on Ag. Detailed investigation of ad-
sorption isotherms, isosteric heats of adsorption,
differential entropies, etc., for these systems is

planned to be presented in a second paper of this
series, with a third one planned to be devoted to a
study of the adsorption and desorption kinetics at
non-negligible coverages.

II. THEORY

A. Brueckner-Hartree-Pock theory

The mean-field theory of multilayer physisorp-
tion is based on the many-body Hamiltonian

H=T+ V, + VI

where T is the kinetic energy of the N gas particles
of mass m, V, is the bare surface potential, and VI
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contains the two-body interactions between gas
particles. For neutral atoms or molecules the latter
will have a strong repulsive singularity at the ori-
gin which, in a Hartrce-Fock-type mean-field

theory, leads to an infinite contribution to the total
energy. This is so because in a mean-field theory
all correlations between particles are neglected. In
particular, it is the short-range correlations that
keep the particles apart and the energy finite. For
fermionic gas particles like He, Brueckner's theory
gives a prescription to partially incorporate two-

particle correlations into a mean-field theory by
constructing an effective two-body interaction,
called the E matrix, which takes the place of Vl in

the Hartree-Fock equations. We will see later on
that at typical temperatures and adsorbate densities
the theory can also be used in cases where the ad-

sorbing gas particles obey Bose-Einstein statistics,
basically because exchange contributions are negli-

gible. This statement is enhanced for heavier gas
particles for which the quantum statistics of the
particles become even less important. We will
therefore continue for now to develop our theory
for fermionic gas particles, our prototype system

being He adsorbing on graphite.
Brueckner's E matrix is defined by'

(4)

where 4(r i, r3) is a free two-particle state and

g(r„r2) is the fully correlated wave function for
two gas particles at positions r& and r"2, interacting
via Vz(r i, rz) in the background of the (N —2) oth-
cl' gRs particles. Tllc E matrix satisfies tllc
Brueckner integral equation

E= V2 —V2 —E,
e

Q being the Pauli exclusion operator and

where II c" is the Hamiltonian of the self-consis-
tent mean field and co is called the starting energy.
Replacing V3 in the total Hamiltonian (3) by the E
matrix, a variational calculation leads to the spin-
averaged temperature-dependent Brueckner-
Hartree-Fock equations'

2

7-, + V ( r i ) E-, g-,. ( —r 1) +.g n -, f d re r 3d rq|(*-, ( rz) ( r i, r 1 ~

E
~
r 3, r4)

X[(2s+1)p,. (r3)lj~j(r4) th) (r3)p, (r4)]=0,

where E-, and P-,. are the single-particle energies

and wave functions, respectively, and s is the spin.
The thermal occupation functions are given by

n,. =[exp(E, —p)+ I]

I

T=0 the Pauli exclusion operator Q allows only
unoccupied states above the Fermi level to appear
as intermediate states in (5). For T ~ 0 one might
then try to write

where p is the chemical potential per particle. Be-
cause we assume that the gas phase is very large
(infiiute), it controls p, in equilibrium. Thus if
away from the surface, the gas can be described sa-
tisfactorily by the ideal gas law, then

h I'
p=kgTln

(2 m) ~(k T) ~
9

where I' is the pressure in the gas phase.
Whereas the inclusion of temperature effects in

the Hartree-Fock equations (7) is well understood,
no extension of the E matrix theory to nonzero
temperatures has been given to our knowledge. At

We will, however, see below after we have invoked
several approximations in our theory, that such
considerations are less important.

In principle, one now seeks a self-consistent
solution to the nonlinear equations (7). However,
tllls requires R knowledge of tllc E matrix wllich,
in turn, depends on the single-particle energies E-,.
through the energy denominator (6). It seems im-
practicable to deal with this double self-consistency
problem numericaBy, and certain approximations
must be invoked as discussed in the next section.
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B. Haitree-Pock theory with a local effective interaction

To decouple the Brueckner self-consistency in (5) from the Hartree-Fock self-consistency in (7) one in-

vokes a local density approximation"' whereby Eq. (5) is solved in a fictitious infinite system at the (aver-

age) adsorbate density as determined by the solution of (7). Proceeding in the standard way we introduce re-

lative and center of mass coordinates in the K matrix and decompose it into partial wave contributions to
obtain"

(RIP
~

E
~ Rrs) =

s g(21+1)f k dk j((kR~P)Vz(Rrs)((((k, Rrs)P((R~P Rrs),
(2m. )

where R p
——r —rp, R =

~

R ~, and R =R/R. The Brueckner wave function u((k, R) satisfies the integral

equation

u((k, R)=j((kR)+ f R' dR'G((R, R')V(R')u((k, R')

with Green's function

G((R,R') = ——f k dk j((kRj)—((kR'), (12)

where j( is a spherical Bessel function. Equation (11) can be solved in various approximations as discussed

in Sec. III A so that (10) can be assumed to be known. It then remains to reduce (7) to a manageable prob-

lem, the outstanding difficulty being the appearance of multiple integrations involving the X matrix. Even

in the case of highly mobile adsorption, the simplifications afforded by the fact that V, (r } reduces to a
function of z only are not sufficient to allow a numerical solution of (7).' Our task is greatly simplified,

however, if we approximate the nonlocal E matrix by a local effective interaction, i.e., by writing

(r iE i
r')=V,«(r)5(r —r'),

vrhere obviously'2"7

Ve«(r)= f (r ~K
~

r ')dr '= —f r'zdr' f kidk sin(kr)Vz(r')uo(k, r') . (14)

Equations (7) then read

X [(2s+1)p-. (r)(((-. (r ') —l(-(r ') —l(-(r)lt -. (r ')]=0 . (15)

These are the standard Hartree-Fock equations for
particles obeying Fermi-Dirac statistics and in-

teracting via V,rr(r).

C. Reduction to one dimension
for mobile adsorption

Further simplifications in (15) can now be intro-
duced by considering the case of mobile adsorp-
tion. We reduce (15) to a one-dimensional problem

by considering gas-solid systems with a surface po-
tential

V, (r }=V, (z),

depending on the distance from the surface only.
The general case where V, ( r) is periodic along the
surface is treated in the Appendix. As long as the
adsorbate remains fluid, i.e., does not crystallize
into a two-dimensional structure, we can assume
that

(r)=1. '4-,. (z}e'.q (',

where I.z is the surface area, q =(q„,qz) is a
two-dimensional wave vector, r =(p,z), and

i = (q„,(I,i) with i enumerating the bound states

and the continuum. Inserting (17) into (15) and in-

tegrating out the lateral degrees of freedom we ob-

tain
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+V, (z) —E;(q) 4;(z, q)+ g 2
dq' exp P ej(q')+

2m dz', (2n. )'

X Jdz'@J(z', q') Jdp Vrf(z —z', p)[(2s+1)4;(z,q)4&(z', q')

+e "q
'-

q ' ~ 4;(z', q)4 (z, q')] =0, (18)

where

2

e;(q)=E-, —
2m

(19)

and the upper (lower) sign must be used if the gas
particles obey Bose-Einstein (Fermi-Dirac) statis-
tics.

The set of coupled nonlinear integro-differential
equations (18) determines the single-particle ener-

gies e;(q) and wave functions 4;(z, q) at a given
temperature T for each two-dimensional wave vec-
tor q. The latter appears explicitly only in the ex-
ponential factor exp[i(q' —q) p] in the exchange
term, which if small, would certainly justify the re-
placement of this exponential factor by unity. The
eigenvalues e; and eigenfunctions 4; would then be
independent of q, simplifying the task of solving
(18) tremendously. We introduce an approxima-
tion to this effect with the following qualitative
discussion of (18) and its solutions, anticipating
some of the insight we have gained from our nu-

merical work, a detailed discussion of which is
given in Sec. V.

At high temperature the system will exhibit low
coverage, and the energy of the lowest bound state

I

eo will be of the order of the (negative) heat of ad-
sorption, @0=—Q. With p given by (9) we quanti-
fy the term "high temperature" by insisting that

P(eo —p, }&& 1. In that case the thermal occupa-
tion functions in (18) can be approximated by the
classical Maxwell-Boltzmann distribution resulting
in a very small factor exp(Pp) multiplying the
Hartree-Fock terms. The gas particles then experi-
ence only the bare surface potential V, (z) with

their number density given by

p(r)= g le-;(r) l'e

where the sum over i includes bound states (BS)
only and po is the asymptotic density in the gas
phase far away from the solid. As we lower the
temperature, quantum statistics become relevant
for the bound state occupation functions and (20)
reads, using (17),

p(r) = g l li -, (r)
l Iexp[p(E-, —p)]+1]

i (BS)
(21)

If the eigenvalues e;(q ) of (18) were independent of q and T, then the density in the surface region would,
upon lowering T and thus raising p in (9), eventually exceed the density in a liquid and for Bose-Einstein
statistics, indeed, approach infinity. Thus the eigenvalues e;(q) must increase as temperature is lowered so
that (21) produces the correct adsorbate density. For gas particles obeying Bose-Einstein statistics this im-
plies that e;(q) )p. For fermionic gas particles such an argument would suggest that at low temperatures,
as the ith adlayer fills, we have e;(q ) (p. For either statistics we thus find e; of the order of JM. If this ar-
gument is correct then statistics are not very important and we would expect, for example, He and He to
adsorb in a similar fashion onto a given substrate. This, of course, would also imply that the exchange term
in (18) is not very important and approximating the exponential term exp[i(q' —q) p] in it by unity would
seem justified. This then decouples the equations (18) in q, making e; and 4; independent of q, so that we
can finally write for (18)
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$2 2

2 + V, (z) e—( 0;(z)+$ nj Idz" V(z —z')@)~(z')[(2g +1)4((z)4j(z')+0;(z')4 j(z)]=0,
z )

2 '2g + {2 } I 2 I d { pfa&+(Ag /2m)pj
8) 7l -+J 'iF Og Q'

=+{2Ir) 'mkg Togfi 2ln( 1+e (23)

V(z)=o'g Jdp V,II(z,p) .

{25)

Tile powers of the I'Rllge (Tg of tile two-body lnteI'Rctloll Vert(r ) have been jntroduced so Rs to render the oc-
cUpatloli fullctlolls nj djmeIlsjonlcss Rlld to ke'ep Qlllts of ellergy fol' the effective one-djmensjonal potentjal
V(z).

We call liow ldelltlfy tile Ineaii-field poteiltlal VMF(z, e). From (22) we see that jt recejves one contribu
tion from the Hartree term, namely

VMF'(z, 8)= g nj J dz'V(z —z')4j'( z')4 j(
z' },

where the coverage is given by

8= g8, = gn, /nj '".

The contribution of the exchange or Fock term in (22) to the mean-field potential is less straightforward due

to its nonlocality and state dependence, One option is to write the Pock term as
I' h

gnj Jdz'4j*(z')4((z')4~(z)4; '{z) 4;(z) (27)

which defines a local, state-dependent potential in the large parentheses. Its usefulness as an intuitive tool is

somewhat reduced by the fact that it is singular wherever 4;(z) has a zero. We therefore prefer to include

as part of the mean-field potential VMF(z, 8}the statistical average of the Fock term, 'I

VMF ——gnknj Jdz'V(z z')4j(z')@k—(z')@k(z)4)(z')/gni
~
@I(z)

~

2,

so that finally

V, (z,8)= Vg(z)+ VMp(z, 8)+VMF(z, 8}.

Numencal example of this coverage-dn endent sud'am potentl~ will b disCuss~ for vmous gm-solid sys
tens 111 Sec. V.

Let us note in closing that for light fermionic gas particles saturation in the adsorbate could also be
achieved via the q dependence of ej(q) arising from the full exchange term in (lg). lf at low temperature

ej(q) 's such that «r 0 &C~ ej{g)=ej(0)«j(I Rnd «r (1 &(f,j, &j(q) &&p then (8) behaves like a zero tem-

perature Fermi-Dirac distribution. Equation (23) then leads

21 [{1+ Pf&J(oi l4j)]/[( 1
—pfe/(0) —p+(1% ggj~ /2mjj)]0'g n +@ (30)
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which would lead at zero temperature to a two-

dimensional number density q,
'~' /2m in the jth ad-

layer.

III. SURFACE POTENTIAL AND EFFECTIVE
TWO-BODY POTENTIAL

Before we can proceed with a numerical solution
of the Hartree-Fock equations (22), we must speci-
fy the bare surface potential V, (z) and the effective
two-body interaction V(z) for specific gas-solid
systems. Starting with V, (z) we recall Eq. (1)
which says that for inert gas atoms like He, Ar,
Kr, etc., physisorbing on a molecular solid like
graphite V, (z) is the sum of pairwise I.ennard-
Jones type interactions. Such potentials have been
analyzed in great detail by Steele' with more recent
investigations particularly of the He-graphite sys-
tem by Cole and co-workers. If the two-body in-
teraction between a gas particle and a particle of
the solid can be adequately described by a Len-
nard-Jones potential

V(r) =4m, [(u, /r)" (o;/r)—6], (31)

where

g(n, x)= g (j+x)
j=o

(33)

is a Riemann g function. d, is the distance be-

tween crystal planes and n, =c,/a, is the average
lateral density of the basal plane whose two-
dimensional unit cell of area a, contains c, atoms.

Inert-gas atoms physisorbing on metal surfaces
interact predominantly with their image dipoles
produced as a result of the dielectric response of
the conduction electrons, and a collective rather
than pairwise summation of the net gas particle-
solid interaction is more appropriate. For gas-
metal systems with highly mobile physisorbed ad-
sorbates a simple one-dimensional Morse potential,

then for mobile adsorbates, we replace the sum in
(1) over atoms in a given crystal plane parallel to
the surface by an integration over a uniform plane
of the same average atom density and sum this la-
terally averaged potential over the crystal planes to
obtain the g potential,

V, (z) = 2~e, n6c, a, 'd-
)&[ ,'(o, /d,-) g(10,z/d, ) g(4, z/—d, )],

(32)

(34)

has been shown to be adequate. We will use both
potential models (32) and (34) in our numerical
work in Sec. V.

Turning our attention next to the effective two-

body interaction (24), we must solve (11) for I =0
to determine V,rr(r) in (14). For He at liquid
densities and at T=0 K, (11) has been solved by
gfstgaard' and by Ghassib, Ibarra and Irvine'9 in-

voking several approximations that had been
developed for nuclear matter. In the effective-
mass approximation one writes the energy denomi-
nator (6) in (12) as

e=e(k )=, k +2hkg —,ko
PtlNl Nl 0

(35)

with typical values for the effective masses rn' for
k & k/ and mo for k & ky, for the energy gap b,

and the starting momentum ko given by j6st-
gaard' at typical He densities. In evaluating (11)
we also used the reference spectrum method which

takes Q =1, an approximation that has proven very

reliable and expedient. "' A numerical example
of the effective potential (14) for a I.ennard-Jones

potential

V2(r) =4 e[z( zo/r)' (oz/r—) ] (36)

is given in Fig. 1(a). Important to note is the fact
that the repulsive core in V2 has been reduced sub-

stantially. Because He atoms cannot approach
each other much closer than crz, the short range

repulsion for r & oz should not contribute too
much to the ground-state energy as evaluated by a
Brueckner-Hartree-Fock theory.

Carrying out the lateral integration of V,rr(r) ac-
cording to (24), we derive from the result depicted
in Fig. 1(a) the effective one-dimensional interac-
tion V(z) as shown in Fig. 1(b). Because V(z)
represents the effective interaction between two
He layers of liquid density a distance z apart, it

must develop a repulsive barrier for z & &re so as to
prevent these layers from penetrating each other.
The height V(0) is found to vary more or less
linearly with the lateral density to account for the
fact that at higher densities, i.e., at shorter mean
separation between the particles, more of the repul-
sive core contributes to the total energy of the sys-
tem. In a completely self-consistent Brueckner-
Hartree-Fock theory V(z) would have to be deter-
mined at each density as calculated from the
Hartree-Fock equations (22). Since V(z) changes



(oj
for uo(k, r') =sin(kr') Eq. (14) is trivial, and (24)
gives the unscreened two-body interaction in one
dimension

V' '(z) =2mes[ —,(os/z)' —(mrs/z) ] . (37)

r (A)

%e then parametrize the screening by the short-
range correlations which render V(z =0) finite by
writing

V(z}=2ire z'

&( Iz'0+Aos exp[ —(z/z, } ]]
&& [—,(Os/z)' —(0's/z) ] .

The parameters zi and a are fairly well deter-
mined: zi is always close to the zero of the un-

screened potential V' '(z), and u is of order 10 to
15 so that the attractive well of (37) is not affected.
In the limit z—+0 (38) yields V(0) =4irEs/SA so
that A alone determines the finite barrier height
and is thus our only adjustable parameter.

I.et us finally note that for He below liquid
density the reference spectrum method, i.e., setting

Q =1 in (12), does not change Figs. 1(a) and 1(b)

qualitatively. This seems to imply that the two-

body correlations incorporated in the E matrix are
largely determined by the strong repulsion in V&

which, however, does not depend on the spin end
statistics of the interacting particles. It therefore
seems justified to use the phenomenological soft-
core potential (38) also for gas particles that obey
Bose-Einstein statistics.

IV. NUMERICAL METHOD

FIG. 1. (a) Effective two-body potential Vgf(r) be-

tween He particles calculated from (14) in the effective
mass approximation. Parameters taken from Ref. 15:
tn =1, mo ——2.5, LE=0.4, kf ——0.9 A, ko ——0.8kf,
p~/kz ——10.22 K, o~ =2.556 A. (b) One-dimensional ef-
fective hvo-body potential from (24) integrating V,g(r)
above.

little as a function of density apart from the linear

dependence of V(0), we prefer here to parametrize
V(z) in a reasonable way and keep V(0) as an in-

put parameter. Indeed, it is the only truly free
parameter in our theory. To arrive at a suitable

algebraic parametrization of V(z) we first note that

To obtain the self-consistent solution to the
Hartree-Fock equations (22} numerically, we en-

close the system in a finite one-dimensional box of
length I. and discretize the distance from the sur-

face wall according to z„=(n/No)1. , n =0, 1,
2, . . . , No. The dimension L of the box must be
sufficiently large to allow for the possible develop-
ment of several adsorbed layers and is thus

governed primarily by the range of the two-body
potential between the gas particles which plays the
dominant role in determining the interlayer spac-
ing. The number of points Eo and hence the di-

mension of the matrices involved in the calculation
must then be chosen sufficiently large to allow for
a precise computation of the wave functions.

The Hartree-Fock equations (22) are cast into a
set of finite-difference matrix equations. The dif-
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(Mn+ Ms+Mir+Mp+&; l)@;=0 (39)

ferential operator is written as a fifth-order differ-
ence operator using a five-point Lagrangian inter-
polation and the spatial integrals are approximated
by discrete sums. The resulting matrix equation
then reads

4;=(4;(z i ),4;(z2 ), . . . , 4'; (z)v ) ) .

The matrices arising from the differential operator,
the surface potential, and the Hartree and Pock po-
tentials, respectively, are defined by

I. S 4
MD(z, z„)=——,5 „+—,5 „+1——„5

~s(zm zn)=V. (zm)5 n (42)

M~(z, z„)=(2s +1)5 „g V(
~

z —z( ( ) g )TJ
~
@/(z() [ (43)

and

N

W,(z,z„)=+(i—5 „)V()z —z„()g)TJ4;(z )4,(z.). (44)

@(n) gc (n)+( l g)@(n —1)

(45)

with 4 (c)=4 (0) and e ")=e(c). The factor l(, is
chosen optBDally to ensure a fap1d monotoMc con-
vergence of the eigenvalues e;. After self-consis-
tency has been achieved, temperature is lowered or
pressure raised in suitable increments and the itera-
tive procedure is restarted with the previous self-
cons1stent wave functions and'energies used M cal-
culating the new matrices MH and M~.

Here, s is the spin of the gas particles, taken as 0
or —, with the respective plus or minus sign in (44)

for bosons and fermions and the appropriate tem-
perature-dependent occupation functions nz as
given in (23) or (30).

The self-consistent solutions of (39) are found by
an iterative procedure. It is initiated at high tem-

peratures where all ITJ- and thus the Hartree and
Pock matrices M~ and M~ are negligibly small.
The eigenvalues e; and eigenfunctions C); as de-

te11111ned by the su1face potential matrix Mg alolle

then provide good estimates to calculate MH and

M~ for the next diagonahzation of the complete
matrix equation (39). Before calculating M& and

Mz for subsequent iterations the following averag-

ing procedure is used:

V. NUMERICAI RESULTS

%e now proceed with the presentation and dis-
cussion of results on multilayer physisorption
based on a nuinerical solution of the Hartree-Pock
equations (22). The data will include the tempera-
ture and pressure dependence of eigenvalues e;,
wave functions 4;, adlayer separations, coverage,
and coverage-dependent surface potentials. The
calculations have been done for several gas-solid
systems: He-graphite, He-graphite, and Ar-Ag.

A. He-graphite

The bare surface potential V, (z) for the helium-
graphite system has been studied in detail by Cole
er al.l We adopt the form (32) with the following
parameters:

e, /kg ——16.23 K, o, =-2.74 A,

dg ——3.37 A, e, =2, a, =5.24 A .
The parameters of the Lennard-Jones He-He in-
teraction potential (36) are es/ks ——10.22 K and

o ——2.556 A. As discussed in Sec. III there is
some uncertainty as to the parameter A in (38) that
controls the strength of the soft-core repulsion. In
this paper we will examine its influence on the
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(z; }=fz
i @i(z)

i
dz (46)

depicted in the lowest panel of Fig. 2. Additional

mean-field results by studying two model systems
with all potential parameters fixed as above for the
He-C system but with A chosen so as to get two

qualitatively different adsorbate structures. An at-
tempt at a realistic description of the He-C system
at low coverage will be presented in the next paper
of this series where we will fix A by fitted adsorp-
tion isotherms, isosteric heat of adsorption, and en-

tropies to experimental data.
We begin with a model He-graphite system

with zo ——2.2 A, a=15,and A =0.3 so that
V(z =0)=—2V(z=z;„). We also used a cutoff
q,'J'=0. 58 A ' in (30}independent ofj to ensure
that the maximum adsorbate density is the experi-
mental one of 0.107 atoms/A . We present the
discussion of the formation of multilayered mobile
He physisorbed on graphite in a Gedanken experi-

ment in which, starting at high temperatures, we
lower the temperature at constant gas pressure,
fixed in the following example at 8=1.33 Pa. At
high temperature the Hartree-Fock terms in (22)
are negligible due to the smallness of the occupa-
tion factors nj Thus. isolated gas particles will
find themselves in the bare surface potential V, (z)
which develops five bound states. Lowering the
temperature to about 10 K we see in Fig. 2 that
the coverage 8 rises to about 0.1 of a monolayer,
all adparticles occupying the lowest bound state
with energy eo which has moved up slightly. At
T=8.5 K we find that eo ——

IM and 8-0.4. The
energy ei of the first excited state has by now
moved up considerably so that its occupation n I

remains negligible. With about half the monolayer
volume occupied by gas particles trapped into Ep,

the two-body repulsion starts to become important.
This causes eo to rise substantially as we further
lower T to about 6 K at which stage the first
monolayer is complete. Most adsorbates including
the He-C system at low temperature crystallize
into a two-dimensional solid before a monolayer is
completed. Keeping the ansatz (17) with a
momentum cutoff q, we imply that a summation
over the lattice sites in this first monolayer can
again be replaced by an integration over a uniform
plane of He. Using the theory in the Appendix
this approximation can readily be improved upon.
By now the wave functions of the higher-bound
states have been expelled from the immediate vi-

cinity of the surface as evidenced by the average
position

-50

-100-

1,5-

6I
10-

05-

Layer

6-
z.(A) 2 nd Layer

I

1 st Layer

r
I I

2 4 6 8 10 12 14 16
T (K)

FIG. 2. Single-particle energies e; from (22), coverage
e from (26), and mean adlayer positions (z; }from (46)
for a model of 'He on graphite for a weakly repulsive
two-body interaction (38) with z& ——2.2 A, A =0.3,
a=15 so that V(0)= —2V(z;„). P=1.33 Pa. For ad-
ditional parameters see text.

particles approaching from the gas phase now see a
new effective surface potential V, (z,8=1}consid-
erably modified from the bare surface potential de-

picted in Fig. 3(a} by the mean field VMi (z,8) due
to the particles already adsorbed in the monolayer,
as shown in Fig. 3(b). A definite repulsive barrier
appears at z =4.8 A to exclude particles from the
region of the filled monolayer. To illustrate this
point further we contrast in Figs. 3(a) and 3(b) the
lowest three (squared) wave functions at 8=0 and

1, respectively. Whereas
~

CIO(z)
~

remains rela-

tively unchanged,
~

@I(z)
~

changes dramatically,
its inner peak having diminished to negligible size
and its second one shifted out. Indeed, it appears
very much like the new "ground-state" wave func-
tion at the position where the second adlayer will

eventually form. Lowering the temperature below
3 K we see a similar development to that just
described with the ei level taking over the role of
the lowest bound state energy of interest and the ei
level representing the first excited state as far as
the formation of the second adlayer is concerned.
By the time the latter is nearing completion at
T ( 1 K, (zi }has moved out to about 10.2 A as
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FIG. 4. Perspective view of the effective surface po-
tential V,(z,e) for 'He on graphite with parameters as
in Fig. 2 from (29) plotted over the (z, e) plane. For
z~0, V, (z,e)~ 00. The plateau for small z is used to
indicate the distance from the wall.
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seen in the lower panel of Fig. 2.
~
4, (z)

~
has

narrowed considerably and the effective surface po-
tential develops three minima for the three ad-
layers separated by two repulsive barriers, as seen
in the lowest panel of Fig. 3. To obtain a complete
picture of the development of physisorbed multi-
layers we have prepared a series of three-dimen-
sional perspective views of the squared wave func-
tions and of the effective coverage-dependent sur-

2 4 6 8 10 12

z (A)

FIG. 3. Effective surface potentials V, (z,e) from (29)
and lowest three squared wave functions for He ad-
sorbed on graphite at three different coverages. Param-
eters as in Fig. 2.

face potential V, (z,8) as a function of z and 8. In
Fig. 4 we present a view of V, (z,8). It is impres-

sive to see how abruptly the repulsive barrier forms
in front of the first monolayer as 8 reaches unity.
The apparent kink in the bottom of the deepest
well closest to the wall is caused by the fact that
the coverage-dependent potential shallows slightly
with increasing 8 for submonolayer coverage,
abruptly stabilizing and leveling off as 8 reaches
unity with saturation of the first adsorbed layer;
the position of the lowest minimum in V, (z,8),
however, stays fixed at z;„=2.75 A. Figure 5

showing
~
40(z)

~

illustrates through its lack of
aberrant features that nothing much happens to the
position and shape of the wave function for parti-
cles in the first adlayer, the reason being that the
bare surface potential V, (z) is so much stronger
and deeper than the mean-field potential arising
from the rather weak He-He interaction. Figures 6
and 7 showing several views of

~

4~(z)
~

and

~

C&z(z) ~, respectively, demonstrate very clearly
how, as coverage builds up, the higher wave. func-
tions move out to form the second and, eventually,
the third adlayer. We now also see that the de-
crease in (z3 ) at T-7 K in the lowest panel of
Fig. 2 is due to a spreading out of

~
4z(z)

~

as

~
4~(z)

~

moves out.
To illustrate the role in our theory of the param-

eter determining the height of the soft-core repul-
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FIG. 5. Perspective view of
~
40(z)

~

2 over the (z, e)
plane for 3He on graphite with parameters as in Fig. 2.

sion in V(z) we choose, in a second example,
A =0.048 so that V(z =0)= —15V(z;„) substan-
tially higher, by a factor of 7.5, than in the previ-
Ous model system. Figure 8, which should be com-
pared to Fig. 2, shows the energies e;, the coverage,
and the mean positions {z;) of the lowest three
states in the surface potential. Some remarkable
qualitative differences can be observed between
Figs. 2 and 8. With such a stlong repulsion in
V(z) the lowest eigenvalue eo approaches the chem-
ical potential Lu (controlled by the gas phase)

around T-9 K and then follows it rather closely
even after crossing it at T-3 K. As a conse-

qucncc thc adsorbate Qcvcf fcachcs monolayer cov-

erage down to very low temperatures, so that in
this calculation we can remove the cutoff wave

number q,
'J' in (30) without affecting the result.

Also note that in this example the mean positions

(z; ) in the lowest panel of Fig. 8 rise monotonical-

ly.
In Fig. 9 we present two perspective views of the

effective coverage-dependent surface potential
V(z, e) as calculated from (29). Note that the
repulsive barrier separating the two minima for the
first and second adlayer raises smoothly from low

coverages and is substantially higher than the one
depicted in Fig. 4 for the softer two-body potential
V(z). In the present model

~
4o(z)

~
looks again

FIG. 6. Perspective views of
~
4~(z)

~

' over the (z,e)
plane for He on graphite with parameters as in Fig. 2.

very much like Fig. 5. However,
~
4~(z)

~
and

~
42(z) j, shown in Fig. 10, are rather more

dramatic than the corresponding Figs. 6 and 7 for
the previous example.

So far in our numerical examples we have totally
Ignored thc Brueckner self-collsistcncy requirement
in our theory which says that the effective two-

body interaction V(z) should be recalculated at
each adkorbate density. %e have indicated above
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FIG. 8. As Fig. 2 but with A =0.048 so that
V(0)= —15V(z;„) for solid lines. Dotted lines for a
model in which V(0)=0.2V(z;„) at 8=0 rising linearly
to V(0)= —15V(z;„)at e=1.

FIG. 7. Perspective views of
~
42(z)

~

2 over the (z,e)
plane for 'He on graphite with parameters as in Fig. 2.

Eq. (37) that a variation of the He density does
not affect the long-range attractive part of V(z)
significantly but causes the repulsion V(0) to in-

crease more or less linearly with density. We have
incorporated this dependence into the program by
varying V(0) linearly from a value V(0)
= —2V(z;„) at 8=0 to V(0)= —15V(z;„)at
8=1. The results are also shown in Fig. 8 as
dashed lines. With much less repulsion in particu-
lar at small coverages, all curves (energies, cover-
age, and mean positions) are somewhere between
the previous examples.

We have also checked the influence of the ex-
change term in (22). We found that for a strongly
repulsive V(z =0), dropping the exchange term
only changes the single-particle energies, the cover-
age, and the mean positions by a few percent. This
justifies a posteriori replacing the exponential fac-
tor in (18) by unity, and also gives us confidence to
do a calculation along similar lines for He adsorb-
ing on graphite.

The two model systems studied so far have been
chosen to demonstrate the range of qualitatively
different adsorbate structures as they are calculated
in mean field theory. To find a realistic descrip-
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FIG. 11. Single-particle energies ef from (22), cover-
age 8 from (26), and mean adlayer positions (z~ ) from
(46) for a model of He on graphite with a stfonglp
repulsive two-body interaction (38) with s~ ——2.2 A,
A =0.048, 0, =15 so that V(0)= —15V(s;„). P=1.33
Pa. For additional parameters see text.

»G 10 Pe~& «ive»ews «
I +i(z) I'and

I +~(z) I'
over the (s,8) plane for He on graphite with the
parameters of Figs. 8 and 9.

two-body interaction that leads for the model iHe-

graphite system to the set of dashed curves in Fig.
8. For the model Bose system the results are sum-
marized in Fig. 11. Compared to the fermionic
( He-graphite) system in Fig. 8 energies e; and
mean adlayer positions (z& ) vary much more
smoothly. In particular, note that all eI's must
remain larger than p to keep the Bose-Einstein oc-
cupation functions from becoming infinite. This is
in contrast to adsorbing fermiomc gas particles for
which the e&'s must actually cross the chemical po-
tential to get monolayer completion (see Fig. 2}.
This qualitative difference indeed shows up be-
tween the He-graphite and He-graphite systems
resulting in a different behavior of isosteric heat of
adsorption, isotherms, and the specific-heat contri-
bution from the excited states. For heavier adsor-
bate particles, on the other hand, the repulsion in

V(z} must be relatively large so that fermionic and
bosonic gas particles behave more alike, compare
Figs. 8 and 11 for model calculations.

Figures 12 and 13 show perspective views of the
coverage-dependent surface potential V, (z,o}and
of the (squared) wave functions

~
4i(z)

~
and

~
4z(z) ~, respe:tively, for the parameters of Fig.

11. They should be compared to Figs. 9 and 10
for the model He-graphite system. Again a fit to
experimental data on thermodynamic functions of
the He-C system will determine the parameter A.
This will be reported elsewhere.

C. Argon on silver

As a last example we study the adsorption of ar-
gon on silver. For the bare surface potential we
choose the Morse potential (34) with the following
parameters: Ue/kn ——430 K, y, '=0.59 A, and

zo ——0.59 A. The bare Ar-Ar interaction we as-
sume to be a I.ennard-Jones potential (36) with

eslks ——119.8 K and mrs 3 05 A. In——ad. dition, to
specify the effective one-dimensional soft-core po-
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0
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FIG. 12. See Fig. 4. Parameters as in Fig. 11.

tential (38) we choose z, =2.84 A, a=15, and
& =0.15 so that V(0)= —5V(z;„). Note that the
range of the Ar-Ar interaction is much larger than
the range of the bare surface potential, in constrast,

to the He-graphite system. In Fig. 14 we present
the numerical results on the single-particle ener-

gies, the coverage, and the mean positions of the
lowest three states as a function of temperature.
Our iterative method of solving the Hartree-Fock
equations only works up to a coverage of about
0.35. We find this quite satisfactory as argon will

quite likely not form a mobile fluid adsorbate for
much greater coverages. %hat is, indeed, even

more gratifying is the fact that the curves in Fig.
14 are the same within a few percent whether we

do the calculations for Ar obeying Bose-Einstein
statistics or Fermi-Dirac statistics.

Because the range of the Ar-Ar interaction is so
much larger than the range of the Ar-Ag surface
potential, the second adlayer will form very far
from the surface as evidenced by the increase of
(z2 ) from 0.68 A to 4.2 A for T & 15 K. This
feature is further dramatically illustrated in the
behavior of the wave functions in Fig. 15. The ef-

fective coverage-dependent surface potential for the
Ar-Ag system is finally given in Fig. 16.

VI. CONCLUDING REMARKS

We have developed a mean-field theory for the
physisorption of a mobile fluid adsorbate on a
solid surface for non-negligible coverages where
atom-atom interactions within the adsorbate be-
come important. A reduction to a one-dimensional

problem and a few controllable approximations
have allowed us to derive Hartree-Fock equations
that can be solved numerically. In this paper we
have looked at some model systems and studied the
dependence of binding energies and wave functions
of the adsorbed particles on temperature, pressure
and thus on coverage. Adlayer positions were cal-
culated and an effective coverage-dependent sur-
face potential was determined. In the following

paper we intend to study the thermodynamics of
the adsorbate in realistic models for the He-C and
He-C systems by calculating from our mean-field

theory, adsorption isotherms, isosteric heats of ad-

sorption, differential entropies, and specific heats.
A third paper of this series is planned to be devot-
ed to the adsorption and desorption kinetics, for
which we will develop a master equation approach
extending the theory of Refs. 9 and 1D to non-

negligible coverages. One of the new features that
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(A 1).V,(r)= V, (p,z)= — u (s» =
g u», p p»»»~)»—

In this appendix we show how to reduce the
Hartree-Fock equations (15) to

perio icity of the surface potential V (r ) or
e su ace is essential. We write

FIG. 14. S'ingle-particle energies e. from

m A g. r potential parameters
where N is the
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number of atoms at 't'

the surface of area I. . Peri d', ' '
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that
eriodicity of u, implies
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2p

5.cg

FIG. 15. Wave functions
~
4,(z) ~ and

~

4 (z)
~

ofq z)
~

of first two excited states for the parameters of Fig. 14.

Vg(p+pm, z) = V, (p,z) .

Instead of (17) we write

f-,. (r)=P,.-(p,z)=L 'e'q ~u«(p, z),

(A2)

(A3)

where

(A4)u,. (p+pm, z) =u,. (p,z)

is periodic.
e expand V, and g-, in Fourier series in in-

verse two-dimensional lattice vectors g~
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v, (z, g)

nt surface otential for Ar-Ag.FIG. 16. Effective coverage-dependent su p

V, (p,z)= ge'g i'V'-, (z)
g

z) =I. 'e' q i' g e' g i' u,. -(q,z)
g

and insert (A5) and (A6) into (15). Multiplying
with appropriate factors exp(ig'p) and integrating
over p, we obtain after some algebra

(q. ) u. -(q;,z&)+ g V- (zi)u,.- - q;,z~jg l l g

z u ~ ~ ~ ~ (qi&z))+I ~ Pl~ qj(") (»+1) uzzu- qj zd - ( z )~2(g3—g|»|2 u - qj,z2)u;-, +gJ8~ Jg3

dz2u - (ql z2)le(q' qj'+g3 g~' »
0 2 Jg}

)u - - -(qJ») =0.X u ( qi~zlg uj, g + g 1
—g 3l g3 (A7)

(A8)

e(Q)=E"— Q .
2@i

(A9)

W,ri(Q, z) =fd pe' O ' i' V,rr(p, z)

is the two-dimensional Fourier transform of the ef-
fective two-body interaction between the gas parti-
c1es and

Note that even for a umform su ace pace otentj, al
= V' (z), (A'7} with g|—0 still allows the

form a lattice due to the two- y
teraction. We recover Eqs. (18) for a uniform a-
sorbate from y se(A7) b setting all inverse lattice vec-

tors equal to zero.
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