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We discuss the corrections required to incorporate into a rate-theoretic description of
diffusion the dynamical processes which cause diffusion jumps to occur prior to the ran-

domization of the system in its new configuration. A calculation is carried through in

detail for the case of immediate return jumps which occur prior to randomization. The
results establish that rate theory gives correct predictions at sufficiently low temperatures

in classical systems. We also discuss the limit in which the coupling between the migrat-

ing particle and the lattice is progressively weakened, as in some known cases of surface

diffusion. The available evidence favors a description in which dynamical events are bro-

ken by frequent, totally randomizing collisions.

I. INTRODUCTION

Within the limitations of classical statistical
mechanics the treatment known as "rate theory"
provides essentially exact prediction for the fre-

quency with which a system makes transitions
from one configuration to another. One need only
know the masses M~ of the N interacting particles
and their potential energy of interaction

V(r; r~) as a function of their coordinates r;,
together with the specification T,p of the tempera-
ture and pressure bath with which the ensemble

equilibrates. ' These serve to define 'precisely the
probability with which a point representing the
coordinates of all particles in the system is expect-
ed to pass between two arbitrarily connected neigh-

boring configurations, thereby providing a deter-

mination of the transition rate between them.
This transition rate is ordinarily incorporated

into simple models of behavior to describe bulk

properties of systems. ' In the case of vacancy dif-
fusion in solids, for example, the transition rate de-

fines "vacancy jump frequency. " It is presumed
that a specific vacancy jump is not influenced by
any memory of an earlier jump except, of course,
in the obvious way that the sequence of earlier

jumps determines which configuration the system
occupies. Unfortunately the assumption that suc-
cessive vacancy jumps are uncorrelated is not al-

ways justified, and the prediction of the theory

then falls into error.
The way is which the future behavior of a com-

plex system is determined by past events is not
very well understood at present. A classical system
is, of course, entirely deterministic; its future is
fully specified by the position it occupies in its
phase space at any instant of the past. In a com-
plex system, however, the future trajectories associ-
ated with neighboring initial positions in phase
space are found to depart from each other quite
radically after a long trajectory. 2 Any specific ran-
domizing perturbation, such as interaction with the
ambient photon field, for example, can therefore
make the long-time behavior truly stochastic.

Insofar as this problem of memory influences
the validity of rate theory, the only significant
question is how long the memory of prior events
lasts. If, for example, successive vacancy jumps
occur after a period so long that all memory of
former jumps is effectively lost, then current pro-
cedures that presume this randomization always
occurs are valid. If dynamical consequences of
earlier jumps remain important, however, their ef-
fects must be determined and appropriate correc-
tions introduced into the theory.

Our purpose in this paper is to propose a specif-
ic method to deal with the system memory, and
thereby, for the first time, to correct rate-theory
predictions for dynamical effects. The basis for
our proposal is derived from observations on com-
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puter dynamical investigations of the behavior in
systems of particle size X) 100 for which in-
creases of N have only minor effects. Clear evi-

dence appears to be available to estabhsh that the
memory can be extremely short, significantly less,
in fact, than the shortest vibrational period of any
particle, and that dynamical consequences of ear-
lier behavior are negligible beyond this time.
Corrections for dynamical behavior need be made

only for cases in which successive events are
separated by a time interval shorter than this brief

memory.
In what follows we first discuss the evidence

which justifies our proposal. In Sec. III we then

apply this method to an example which has been a
longstanding problem in diffusion —that of the
dynamical return jump. Finally, we make some
more speculative comments in Sec. IV about a cer-
tain regime of behavior in which the dynamical
events of interest here play an increasingly strong
role in determining the diffusive evolution of the
system. This relates to the eventual loss of any
useful role for rate theory as the randomization
process progicsslvcly weakens.

Computer simulations which display the
cooperative dynamics of many-particle systems can
give vivid insight into the system behavior. An
early example by Bennett drew attention to a
peculiarity of the vacancy jump process in solids.
Bennett's analysis showed that, in many trajectories
that result in a completed jump, the system ap-
pears to cross a (somewhat arbitrarily defined} crit-
ical jump condition several times before the jump
is completed. This feature has been reproduced in

a number of subsequent examinations of jump
dynamics. The behavior led one of us to suggest
that the multiple crossings resulted from dynami-

cal correlation effects, together with a less than op-
timum definition of the condition for jump com-
pletion. An important feature of the observations

is that multiple crossings take place during only a
brief period. This makes it appear very likely that
dynamical effects can be significant in the short
time regime, but gives no indication about the long
time randomization of the system.

Much clearer and more specific information has
come available recently through molecular dynam-
ics investigations of vacancy diffusion in Al and
Na by Da Fano and Jacucci. These calculations
clearly show multiple jump processes occurring at
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FIG, 1, Time delay between successive jumps of a
vacancy, according to DaFano and Jacucci (Ref. 6).
The figurc indicates by broken lines the separation of
double events into the exponential long-time behavior of
the randomized system and the short-time behavior due

to dynamical correlations.

high temperature such that the vacancy may be
displaced through two or more near-neighbor steps
in the course of one complex dynamical event.
Caution must be exercised in dealing with multiple
events in small systems where, of course, such pro-
cesses may occur as artifacts attributable to the
boundary conditions. In the examples of interest
here this is almost certainly not the case. In the
first place, a cell length of 12 atoms was employed,
so that two atoms moving in ihe cell remain a
fractionally small number. In addition, however,
the observed processes proved insensitive to the cell
size employed in the simulation, so that it appears
unlikely that boundary conditions could have been
involved in the occurrence of the multiple jumps.
We therefore proceed under the assumption that
these events are characteristic of large equilibrating
crystals. Analogous processes have, in any event,
been clearly identified in hard-disk and hard-sphere
crystal simulations. '

The analysis of multiple events in Ref. 6 is par-
ticularly useful because it allows one to deduce
coarse features of both the long- and short-time
characteristics of the system memory. An example
is given in Fig. 1. The figure shows for two-
particle processes the distribution of time lapses
from the occurrence of the first jump until the
second particle was observed to jump. The defini-
tion of jump instants used for this purpose was

only approximate, but was certainly serviceable in
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the present application.
Figure 1 shows that the evolution subsequent to

the first jump falls clearly into two regimes. These
have been emphasized by broken lines drawn in the
figure. At very short times there is an unusually

large density corresponding to events in which two
jumps occur within a period (5X10 ' sec, and
mainly &2X10 ' sec. We emphasize that this
extremely short time interval corresponds to only
-10%%uo of the Debye period. It is the time re-

0

quired for an Al atom to move —1 A at thermal
speeds of 2 X 105 cm/sec. There appears to be no
reasonable doubt that for processes in this short-
time peak the second event is a direct dynamical
consequence of the first. The system moves
through two successive jump conditions without
randomization.

The second important feature of the distribution
is that the processes occuring later than about
5 X 10 ' sec all conform exceptionally well to the
exponential decay which is fitted to the long-time
tail in the figure (broken line). The exponential de-

cay is, of course, characteristic of a system which
has lost its memory and hence, through the time
invariance of its decay probability, necessarily fol-
lows an exponential decay.

Taken together these two results indicate quite
strongly that the system is essentially randomized
within a small fraction of a Debye period. Ap-
parently a single interatomic collision in the excit-
ed complex can serve to randomize the events.
Consequently, the time evolution breaks into two
very well-separated regimes: (i) a short-time re-
gime of & 5 X 10 ' sec in which dynamical events

may be dominant, and (ii) a long-time regime for
t & 5&10 ' sec in which randomization is sensi-

bly complete and in which the exponential decay
signals the applicability of rate theory. Provided
that the mean jump time in the randomized system
is very much longer than 5&(10 ' sec, the dynam-
ical and random processes can thus be located in-

dependently.
Under the conditions of the computer simulation

these characteristics do not vary significantly with
temperature, although the proportions of processes
represented by dynamical and randomized categor-
ies of behavior do, of course, change. It is easy to
understand that dynamical processes can never ex-
tend over intervals longer than -10 ' sec. As
the temperature is lowered, the durations of the
rate-theory decay must become still more protract-
ed, and therefore the clear separation between
dynamical and randomized events never breaks

down for the typical bulk system under discussion
here. In point of fact, the chosen model example
is rather extreme in that the vacancy dwell time is
only -10 ' sec at high temperatures, which is
unusually short. It seems probable that since this
clear separation of dynamical and random events
holds even under these extreme circumstances, it
will prevail rather generally for all jump processes
in bulk solids.

While the existence of the separation is itself of
some consequence, the causes are also of specific
interest. As mentioned above, dynamical processes
can hardly last longer than the time to cross
several cells at thermal velocities, and therefore are
limited to the time scale of 10 ' sec or less. On
the other hand, the evidence of Fig. 1 suggests that
thermalization for the remaining trajectories sets in

rapidly with the first significant atom-atom col-
lisions in the excited complex. This again requires
a time of a fraction of a Debye period, which is
2X10 ' sec for Al. Provided, then, that the
mean jump time is very much longer than a frac-
tion of a Debye period, it follows that the two re-

gimes must necessarily appear distinct.

III. RETURN JUMPS

Given the reasons why rate-theoretic predictions
break down due to dynamical correlations among
successive jumps, the question remains how best to
use this understanding to correct the errors in
rate-theory predictions. We shall show here how
the dynamical processes may be predicted in
specific cases. The results of the calculations may
then be used to correct the basic predictions of dif-
fusion coefficients from rate theory, which hold
only when each event is followed by a total loss of
dynamical memory.

The example we choose is the return jump, to
which attention has been drawn in earlier work.
We shall treat the problem in terms of mass
weighted coordinates s; = r;QM, , with the corre-
sponding potential energy function V( s i

. s z).
As always the two relevant configurations A and 8
between which jumps take place correspond to
minima of V separated by a surface S which is the
locus of points on the potential ridge separating A

from 8. It cannot be expected in general that S is
planar. Therefore trajectories with high speed (and
hence little curvature) moving almost parallel to S
may possibly cut S twice (see Fig. 2) thereby giving
rise to return jumps. Our purpose is to derive an
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analytical expression for the return jump frequen-
cy. The answer will, of course, depend on geome-
trical properties of S which to the best of our
knowledge have not yet been calculated for any
model system. Numerical conclusions must there-
fore await future results. However, the principles
involved in this correction of rate theory can al-

ready be conveyed accurately, and this is our intent
in what follows.

Suppose that the distribution function may be
written P(d s/dt, x)P( s,x), with separable and
normalized velocity and space factors. The rate 8
at which representative points pass from A to 8 is
then

xxP ,x P(s, O) .
(1)

Here, for simplicity of notation we employ s to
span the 3N —1 dimensions in S, and x as the per-

pendicular to S; u is the unit distance.
The rate at which return jumps occur may be

calculated directly under a simplifying assumption
valid near T=O. We need to identify the behavior

FIG. 2. Schematic representation of a curved saddle
surface and the potential energy at neighboring points.
The location of a volume element at x, s is indicated, to-
gether with a trajectory which is parallel to S inside the
volume element. Return jumps occur when the radius
of curvature p( s,x) of the trajectory is greater than the
radius of curvature p, ( s ) of the saddle surface at the
same value of s, so that the trajectory cuts S twice.

of trajectories almost parallel with S, and with x
small, which may therefore cross S twice as speci-
fied above. Each such trajectory accounts for two
jump events in rate theory which are, in fact, im-
mediately cancelled by subsequent dynamical pro-
cesses. The factor of two arises from the two pos-
sible directions along the path.

Consider a trajectory with velocity s~~ passing
through the volume element at s,x of size
d s idx d (d s/dt)dx in phase space (we have here
made the factorization d s =d sids~~ with respect
to the direction of the chosen trajectory). Suffi-
ciently close to the saddle surface we can write the
potential at s,x as V= Vo( s ) ——,a( s )x because S
is a maximum of V along x. Clearly, the trajectory
has a radius of curvature p(s~~, s,x) given by the
usual expression,

s
~~

/p(s~~, s,x)=a( s )x,

with p(s~~, s,x) the curvature of the trajectory at
s,x in the direction parallel to s~~. The trajectory
will cut the surface S twice if p(s~~, s,x) &pp($~~, s ),
with po the analogous radius curvature of S. Con-
sequently, trajectories parallel to S at s,x will pro-
duce return jumps if

$(( )s~ =po($() s )a( s )x (3)

with $~ the minimum velocity at s,x along s~~ for
which return jumps are possible.

As po passes through ao to negative values all
return jumps cease within the present approxima-
tion. The formulas that follow concern only posi-
tive p, negative values being regarded as + 00.
The present formulation neglects changes of s

~~

caused by (VV)s+0, which produce changes in the
predictions that, from symmetry, must be of
second order in Vs V(and hence in T). Also, the
present treatment presumes that V varies quadrati-
cally with x within an energy -ktt T of its value of
x=0, and that no more than two crossings occur.
All these approximations are valid for T~O, and
all can be improved upon when V( s,x) is known

explicitly, if necessary by direct computer dynam-

ics methods.
In keeping with the discussion of Sec. II we treat

all such double intersections as trajectories which
have been included erroneously in the calculation
of the rate-theory jump rate R. We shall calculate
the total rate E.' at which these trajectories elim-
inate completed jumps, and employ R'/R as the
fraction of the rate theory jumps which correspond
to false events. The true jump rate is E. —R'.
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Returning to thc volume element at s,x we can
write the rate of return jumps through this volume

However, from geometrical considerations alone it
is clear that dx=slldsll/pll (see Fig. 2), with

(sll, s,x), and so we can' finally write

dR = P,O P( s,s)slid sd sidx
u dt'

(sll )s))) ) .

2 f d s f d . f dx(sll/pll)P($, 0)P(s,x)

f sds f d f dxxP, X P(s, O)

I

The integrals over s can be performed in part
by writing d(d s ldt)=s

ll dslldQ, with dQ an
angular element in the space of S, whence the ther-

*

mal average containing e ' d s becomes a 5
function of width (3N —1) '/ centered on

sll=(3N —1)kaT. Consequently the sll integral
has the value (3N —1)kIIT/pll fo
x&(3')' —1)kaT/apll and is otherwise zero. For
small x the variation of V with x may be neglected
and the x integral therefore amounts to a multiph-
cation by (3N —1)ka T/apl l. The remaining in-

tegrals are trivial; one thus finds

g' 2(3N —1) kaT
R (npI),„

in %'hlch

1

(ssp ),„ss(s))s (Q, s))sss
has the quantity (ap ) ' thermally averaged over
all the surface S and over all dirlx:tions contained
in S.

The physical meaning of this result is easily un-

derstood. The expected kinetic energy is such that
s /2=3Eka T/2, of which, however, only ks T/2
is associated with average motion along x. Trajec-
tories are therefore expected to cross S at an angle
-(3N) ' and thus to penetrate a distance x
given by

(p/~3M) =2px

or

x &p/6N

below a surface S of (positive) curvature p. But

the radius of the trg~ectory is p' sllhrxs and the
traja:tory is therefore trapped unless

x' &s /ap & 3Nks T/ap .

Equation (g) and (9) show that the ratio of un-

trapped to trapped trajectories is

gs &~ 18M'k&T

x ap'

whlcll aglees wltll Eq.' (6) wltlilil a trivial 1111111erl-

cal factor.
Equation (6) determines the frequency of dynam-

icaBy inevitable return jumps, which occur in addi-
tion to the appropriate random fraction of return
jumps predicted by rate theory. The identification
of dynamical events evidently does converge, be-
cause they are confined to small x. This is the
first time rate theory has been extended in this
manner. The presence of the factor T in Eq. (6)
establishes in a definitive way that rate theory
gives correct predictions in all classical systems at
sufficiently low temperatures, provided that the
system memory behaves as assumed.

The analytical expression for the return jump
rate obviously depends on the geometry of S Its.
numerical magnitude cannot be estimated accurate-
ly at present for real crystals, although return
jumps are certainly observed in dynamical simula-
tions of high temperature experiments. ' An illus-
trative calculation carried through in the Appendix
for a very simple model system suggests that re-
turn jumps may not be catastrophically numerous,
even at thc melting point, in most real materials.
Calculations on more reahstic models, now in pro-
gress in our- laboratories, have been undertaken to
resolve these questions in a definitive way.



In certain instances the diffusion jump is cou-
pled rather weakly to the lattice. This is notably
the case for superionic conductors, and in some
types of diffusion that occur on smooth crystal sur-
faces. ' In both cases the "activation energy" of
the diffusion process is small. Also important is
the fact that successive jumps may often take place
without intervening randomization. These are
events involving stmng dynamical correlations. In
what follows we discuss the way these processes
may be treated as the coupling is progressively
weakened.

Multiple jumps that occur when the mobile par-
ticle and the lattice remain strongly coupled can be
treated by the methods employed in Sec. III. In-
stead of the trajectory recutting the same saddle
surface, as in return jumps, it simply cuts two or
lllorc surfaces corresponding to succcssivc jUfilps.
Figure 3 shows, by way of example, six atomic
sites unoccupied by atoms labeled 1 —5, the fifth
site being vacant. A sketch of the correponding
crystal energy as a function of the coordinates
x2, xs,xq of atoms 2, 3, and 4 is also given in Fig.
3. Saddle sUffaccs foi' tllc succcsslvc jumps of
atoms 4, 3, and 2 are indicated as S4,S3,S2.
Dynamical trajectories for the single jump of atom
4, the double jump of atoms 4 and 3, and the triple
jump of atoms 4, 3, and 2 together are indicated
schematically be successively longer arrows in

Fig. 3.
Computer simulation experiments show that the

hopping transition may be separated into. the two
categories of randomized and direct processes, as
detailed in Sec. II. The frequency of direct pro-
cesses can be calculated from a knowledge of the
potential energy of the system as a function of
configuration (and, of course, the saddle surfaces
derived therefrom) in a manner directly analogous
to that em~ed in Sec, III for double cutting of a
single surface. One need only find. the thermal ex-
pectation rate of trajectories which cui the relevant
surfaces ln direct succession. These ln turn pro-
vide the required corrections to the single jump
rate-theory prediction.

Interesting questions of principle arise as the
couphng is weakened until the representative point
moves almost freely, among configurations. An ex-
cellent example is the case in which a surface ada-
tom slides almost freely on a relatively smooth,
close-packed surface. 9 Computer simulations'0

g O3 g~

PIG. 3. The upper figurc shows a row of atoms with
R vacant sltc«. T1M lov&r f1gufc 1ndlcRtcs schcIQatlcRlly
thc potcntlal cIMfgy contouf fo1 mot1OQ of atonls 2, 3,
Rnd 4, and the saddle surfaces S4,S3,S2 for successive
jumps of atoms 4, 3, and 2 into the vacancy. Progres-
sivity longer heavy arrows indicate the jump of atom 4
from the initial configuration, the double jump of atoms
4 and 3, and the triple jump of atoms 4, 3, and 2 in a
single dynamical event. It is possible in principle to cal-
culate tlM fate at wll1ch multiple cvcnts occur as ex-
plained in the text, and hence to correct errors in the
rate theory predictions. The possibility exists that single
saddle suffaccs can QMfgc, ovc1 some areas Rs 1nd1catcd
fof S4 and S3.

show that, at temperatures above those relevent to
mainly near-neighbor hopping, there is a regime in
which the diffusing particle rarely confines itself to
a near-neighbor jump alone. A variety of multi-
neighbor jumps and other extended, curved, flights
occurs instead. No conceptionaHy simple method
for describing diffusive motion in this latter regime
has previously been put forward. One-dimensional
models eIQploylng ideas about a perjodic one-
dimensional potential and "friction, " thmugh
Kr8mers s methods and the I angevin equation
have been used" to examine motion and identify a
"breakaway" regime in strong Acids. This is quite
analogous to treatment of dislocation breakaway
through pinning obstacles by Granato and co-



workers. "
It seems possible that the entropic factors associ-

ated with the high dimensionality of t4e real crys-
tal problem may confine the relevance of the one-
dimensional treatment to the quasi-one-dimensional
motions of dislocations. It is not clearly applicable
to adatom diffusion. Self-trapping of the mobile
particle depends on cooperative motion of other
atoms, and the efficiency of trapping is determined
as much by the volume of configuration space
available for trapping as by the depth of the trap.
In complete conformity with this observation,
computer simulations of surface diffusion in the
weakly coupled regime exhibit a remarkable simi-
larity to the ordinary hopping regime of strong
coupling. ' Figure 4 shows an example. The
correlations between motion into successive config-
urations once more separate into a direct, dynami-
cally correlated part and a randomized exponential
decay. The proportions and time scales of events
are, of course, rebalanced, but the physical distinc-
tion remains clear. Of greatest significance here is
the fact that the mobile particle does repeatedly
trap, randomize, and subsequently conform to an
exponential, rate-theory-like escape probability.

%e suggest here that this protracted trapping,
followed by temporally brief flights, provides the

appropriate conceptual simplification through
which the diffusion may be calculated and speci-
fied. A prediction of the diffusion coefficient
reduces to a calculation of the (rate-theory) detrap-
ping time, and of the thermal expectation of the
spectrum of random flights that the system takes
between trapping events. Taken together these two
properties determine the rate of which the mean
square displacement changes.

Note that. the consequences of this model may
differ radically from those of friction models. In
particular, if the cross section of trapping varies
only weakly with particle energy, it is to be expect-
ed that the regime of breakaway field-induced
motion is suppressed until the applied fields are
large enough to cause direct detrapping.
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APPENDIX
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To aid intuition and add concrete example to the
theory we present here a simple model and calcu-
late explicitly the shape of the saddle surface and
the effect of this shape on the isotrope effect and
the return jump rate. The model, shown in Fig.
5(a), is two dimensional and purely harmonic. It
has two "atoms, " 1 and 2, fixed by harmonic

i&X1

I
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l~
l

1

O 2 IO 20
time delay (psec)

FIG. 4. Time delay between successive jumps of an
adatom on a smooth surface according to de Lorenzi
et al. (Ref. 10). Note the quantitative similarity to Fig.
1, despite the prevalence of multiple jumps in the ada-
tom case. The existence of an exponential decay charac-
teristic of randomization is the most significant aspect
of this result.

ik XO

FIG. 5. The three-particle jump model employed in
the Appendix is shown in (a). The saddle-point configu-
ration and the coordinates used in the calculation are
shown in (b).
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springs to sites separated by a distance d, and a
third, mobile "atom" labeled 0 connected to the
other two by harmonic springs of unstretched

length d. All particles have the same mass M=1
and all springs have the same force constant k= l.
%hen the system is thermally excited the third
atom can make transition to the opposite side of

the other two. This thermal process is analyzed
here.

The saddle point s is easily, found to have atoms
1 and 2 located respectively at +3d/4 from atom 0
[see Fig. 5(b)]. In terms of coordinates x;, y; of
displacements from this configuration the potential
energy Vis given by

'2 '2 '2
6f 3d2V= xi+ +yi+ x2 — +y2+ ' xi —xo+ +(yi —yo)4 4 4

2
3d+ x2 —xo — +(y2 yo)—
4

I

]/2 '2

—d. (Al)
I

The orthonormal modes and eigenfrequencies about s are

iso
——(a/V2)(yi+yq) —(1—a )' yo, coo———V"2/3,

qi ——(I/v 2)(l —a )' (yi+y2)+ayo, oui =v'2/3,

(A2)

r)3 ———,(xi+x2) —( I/v 2)xo, co3——2[1+(1/V 2)],

r/g i (xi——+x2)+(1/v 2)xo, c04——2[1—(I/O 2)],

F15——(I/i/2)(xi —x2), co5 ——2,
with a =(1—v'2/3)/2. Mode i)o is the jump mode; its directional cosine squared with respect to the axis

rlo gives the isotope effect factor for T=O as

«= I —a =—,(1+&2/3)=0.908248. . .

for the jump process. The motion energy is

E~=d /8.
The shape of the saddle surface may be obtained with respect to the saddle plane rlo

——0 by substituting
the reciprocal equations y; =gja,zi)~ of Eqs. (A2) into the potential energy given by Eq. (Al), expanding

the function about rlo ——0, and finally determining i)o———(8V/Bilo)o/(B V/Bi) o)o. One finds to lowest order
the saddle surface

3

'go= ( 2 ) I Xi (ix20 ~roo)[&i292+(ix21 ~ ol)911 +» (~ io—~oo)[~r»rlz+(ixii +01)gil j (A3)
1/2 3 —1 3

and

Xi ——(x i
—xo+ 3d /4)'

X,=(x,—x, +3d/4)'

both reducing to (3d/4) in this first approxima-
tion. Terms quadratic in the g; vanish, as required
by the asymmetry of the jump in this simple exam-

ple, to leave only cubic and higher terms.
In this same approximation of the inverse. radius

p,
—. ' =(8'iso/&i), ')s/[1+(carlo/~rl; )s]'"

i'edllces to (i) rlo/Bilg )s. An evalllatloll of the coef-
ficients a,&

and a thermal average over rl i and i)2
with the Boltzmann weight

exp[ ——,(oPiili+cogr12)/kii T]

then provides the desired return jump rate in terms
of the n,z. The relevant coefficients are
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app ———(1—a ) = —all= —a21 p

2 1/2

ap ] =Q:W2a to
——v 2app

~)2= —~22= & &O2=O .

(A4)

By means of a numerical evaluation of the final
analytical result the fraction is finally obtained
from ((coop ) ') in the form

R'/R =4.63(ktt T/E )2 . (A5)

Note that the dimensionality factor 3X—1 in Eq.
(6) must be taken as 5 rather than 8 because
motion is permitted in only two space dimensions.

It is equally easy to find the temperature depen-
dence of the isotope effect factor a.= (cos 8), with
8 the angle between yo and go. ' A very direct cal-
culation leads to the result

tr=0. 908—0.133(kttT/E~) . (A6)

The results obtained from this simple model are
interesting and somewhat reassuring. The cubic
curvature of the surface with ri& is mild over the
range of thermal excursion even at high tempera-
tures. Many simple solids melt at a temperature
T~ such that E~/kit T~ =6. Equation (A6) then
indicates that ~ is changed by the coupling to this
single mode by only a few percent between T=O
and T =T . It is not clear at present whether this
is fortuitously small, but the indication is that very
large changes of tc with T are not to be expected,
in agreement with the experimental facts for real
crystals.

In keeping with the mild isotope effects indicat-
ed by Eqs. (A6}, Eq. (A5} suggests that most real
systems do not come close to the condition of a re-

turn jump catastrophe. At low temperature such
that E /kit T) 10, less than 5% of all jumps in

our simple model system suffer dynamically inevit-
able return jumps after brief crossings of the sad-
dlesurface; these occur even with the optimal
choice of surface geometry, and none of the return
processes would occur if, instead, the barrier actu-
ally contained a planar saddlesurface. In this re-

gime the Vineyard theory clearly makes physical
sense, and can be corrected in this simple way for
dynamical memory. Even at the typical melting
point T~=E~/6ktt the fraction of these return

jumps only rises to about 13%%uo. For this simple
model, then, conventional rate theory appears to
hold rather well at all reasonable temperatures for
an optimum choice of the saddle surface separating
the two configurations.

It is not, of course, assured that rate theory
proves equally successful in real solids; the out-
come must await detailed calculations for realistic
models. A change by a factor of 10 in the coeffi-
cient of T in Eq. (A6), or a factor of 3 reduction
of E, each lead to a catastrophe in which trajec-
tories with return jumps predominate, even for an
optimal choice of surface separating the two con-
figurations, and to a regime in which many trajec-
tories cross the surface several times. In this latter
regime the usefulness of rate theory is greatly re-
duced. The calculation in Refs. 3 and 4 shows
signs of such behavior in computer simulations. It
now appears very likely that this happens most
widely in nature for cases such as alkali metals and
superionic conductors which have ktt T/E small.
Detailed calculations now in progress will reveal
the extent to which these phenomena do occur in
solid materials.
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