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Random superstructures
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Predictions of the densities of states are given for various forms of controlled random

disorder in artificial multilayered materials or superstructures.

I. INTRODUCTION

With the development of techniques' for fabri-
cating artificial, multilayered, periodic materials, it
is possible to study controlled randomness and its
effects on electronic states of matter. A hint of
the suitability of such superstructured materials for
randomness studies was contained in the early
work of Esaki and Tsu, but since then the greatest
experimental effort has been to remove randomness
from superstructures and to make the interfaces
between layers abrupt and atomically smooth.

Superstructures with two types of randomness
can be grown: randomly varying layer thicknesses
and random layer compositions. Both metallic and
semiconductor superstructures have been grown,
and the ideas of this paper will be applicable to ei-

ther; however, for definiteness we confine our at-
tention to superstructures composed of layered
semiconductors GaAs-A1~Ga~ „As, where the ran-
dom variables are the layer thicknesses d and alloy
compositions x. %e envision that the stochastic
variables d and x are determined by a random
number generator during the superstructure growth
process and that these quantities are preserved for
the analyses of data taken from the superstructured

sample.
The resulting disorder is controlled, finite in ex-

tent, and essentially one dimensional. Its con-
trolled nature is a valuable aid to understanding
random systems, because few such systems have
been fabricated before. Moreover, controlled-
disorder superlattices offer the possibility of study-

ing heretofore unimagined combinations of order
and disorder, such as periodically stacked alternat-

ing ordered and disordered arrays. The finiteness
of the artificially produced disorder offers oppor-

tunities to directly determine the extent of localiza-
tion of states and to study the impending onset of
Anderson localization as a function of increasing
size. One dimensional random systems are com-

paratively mell understood theoretically; numerous
models have been solved exactly and even more
have been thoroughly studied.

For electronic states in semiconductor super-
structures three theoretical regimes present them-

selves: the regime of localized deep-trap-like
states, the mixed regime of locahzed and extended

states, and the regime of extended states described

by effective-mass theory. The most interesting is
the one-band effective-mass theory of carrier
motion, which we shall consider. This regiroe has
two subregimes: the quantum mell limit in which
the effective-mass electron's de Broglie wavelength

is comparable mith or larger than typical super-
structure dimensions, and the classical limit in
which the electronic spectrum is characteristic of a
classical particle colliding with barriers. In this
paper we shall restrict our attention to the quan-
tum well limit. '

The standard theoretical questions to be
answered by any theory of disorder are as follows:
(i} What is the ensemble-averaged density of states
for the random system'? (ii} Are the band gaps of
the ordered structure preserved in spite of the dis-

oldcl ol annihilated by if? (iii) Call selected types
of disorder introduce gaps into a spectrum that
would otherwise be continuous'? (iv) To what ex-

tent does the disorder pr'oduce localized states, is
diffusion possible, and what is the transmission
coefficient for an electron in a random superstruc-
ture'? (v) What are the effects of "many body" in-

teractions betmeen electrons confined to adjacent
layers and can they produce one-dimensional
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quasi-phase-transitional Here we shall present
answers to the ftrst three questions; subsequent
vrork @nil deal vnth localization and phase transi-
tions.

In this paper we consider a random supcrlattice
in the quantum-well limit, show how its density of
states can be evaluated, and illustrate how the band
gaps dcpcnd on thc disorder.

Since the primary pufpose of thIS paper I«»1-
lustIate thc physics of falldo111 superstructures
take thc simplest possiMc model. For a pcfiodic
sllpcflattlcc 111 tllc z dlfcc'tlo11 (FIg. 1), 't11c HRI1111-

tonMQ is taken to be

The dispersion relation in this model is

E(k„,ky, Eg,; ) =R (k„+ky )I2m+E~;,

where E,; is the ith eigenvalue of H, .
With a random superstructure the matrix ele-

ments IV„and V„become random variables, with
distributions determined by the growth conditions.
The Appendix shows how these tight-binding ma-
trix elements are related to the well depths (i.e., al-
loy compositions) and thicknesses.

Writing the density of states

(4)

(5?

D(E)=X Ig y-S E
III (k„+ky)

2Mk,kE-
Rnd RssuIBIng cffcctlvc-111ass theory wIth a con
stant cffcctlvc llMss III throughout the superstfuc

wc f111d that tllc dcf1vattve of thc supeI-
stnlctll1'e densIty of states is proportional to a onc-
dimensional density of states p(E):

dE
=Cg 5(E—c, )=CZI~')s(E),

+ l a+1&&B l )1 *

and the (isotropic) one-band effective-mass approx-
imation is assumed vahd for the electronic motion
in the x and y dircc', tions. The energy 8 „ is the
energy of the single state' bound in the nth quan-
tum well, and is taken to be zero for the periodic
superlattice. The tunneling matrix dement V„
from the nth to the (n+1}st well can be evaluated
using the tunneling Hamiltonian formalism of Har-
deen, "Harrison, '-' Cohen et al. , ' and Prange'
(see the Appendix), and is a constant for the
periodic superlattice of Fig, 2.

hwe«C=(L/2ff) (2III fIfI ) and the sample size is
1. ~ An alternative method for determining the
ofic dlnlcns1011R1 dc1181ty of states p(E) is to apply a
strong magnetIC fIeld perpendicular to the superlat-
tIcc layers Rnd to condeIISC the transverse free-
electron motion into discrete I.andau levels.

For the special case of a periodic superstructure,
the cigenvalues are

where aI is the distance between the centers of ad-
jacent wells and E„ is taken to be zero for all n.

The densities of states are

D(E)= —sin —+——e(4V —E )
e J E fP

2V 2

(b)

FIG. 1. Schematic illustration of the variation of the
conduction-band edge Yvlth posltlon ln a perlodlc supeI'-
lattice (a) and in a random super-structure of the "dia-
toMic t~ (b) considered here. The dashed lines are
the energies 8 gg of bound states ln the (isolated) quan-
tum wells.

W W ~ IWWWNW j ~ IIIOWWW WWWI ~ ~ 1W 1 I~ WWp

FIG. 2. Schematic illustration of the tight-binding
model obtained for a random superstructure such as
that in Fig. 1. (See Appendix. )
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where 8{x)is the unit step function. (See Fig. 3
for A=0 8.) Near the top and the bottom of the
band for p(E), the spectrum exhibits van Hove
singularities' which behave hke

~
E—Ez (

where Ez is a threshold energy (+2 V here}; this is
a characteristic of a one-dimensional density of
states, which p(E) is.

III. METHOD FOR EVALUATING p(E)

0 0 0

The tight-binding model Hamiltonian H, for the random superstructure is a tridiagonal matrix
I

IVi Vi 0 0 0 0

V) 8'2 V2

Hg —— 0 Vg 8'3 V3 0 0

0 0 V3 8'g Vg 0

0 0

and its secular determinant can be expressed in
terms of its eigenvalues

det(H, E)—= Q {E„E). —

This determinant can be evaluated by elementary
rom operations, and is

N

det {H,—E )= g X„,
a=1

(10)

where X„=~„—E—V„ i /X„ i is'determined re-
cursively, with Xi being Wi —E.

The number of negative factors in Eq. (9}or (10)
is the number of eigenvalues E, &

less than E, or
the integrated density of states

S(E)= f p(E')dE'=ND(E) . (11)

Thus the densities of states D(E) and p(E) can be
determined by fixing E, counting the number of
sign changes in Eq. (10), and differentiating. This
is basically the negative eigenvalue theorem, '7 and

can be used for any Hamiltonian of the form of
Eq. (8). The numerical evaluation of the densities
of states for very large superstructures is easy and
computationally very fast.

IV. RESULTS

To illustrate this approach, we consider a simple
example with a special kind of randomness: The
nearest-neighbor matrix elements V„are ail equal,
the odd-site diagonal matrix elements all vanish

(IV2„ i
——0), and the even-site matrix elements are

umformly but randomly distributed in the interval

[—A,B]. Thus the disorder band width is A+B.

In this case we are especially interested in

@whether the disordered system exhibits a band gap.
We know that for A =—8 the model does produce
a gap (because we have a "diatomic crystal"} and
that for A =8 it does not (because A =8 would

correspond to the Anderson model if both even

and odd sites were disordered). We hope to stimu-

late experiments studying the transition from An-

derson to diatomic behavior.
The results for p(E} are shown in Pigs. 3 —6.

The calculations employed a model with 20000
layers. %e took V = 1, and random disorder uni-

formly distributed within the interval [—A,B].
That is, the minimum energy of a disordered site is
—A, and the ma inurn is 8.

Several features of the calculated densities of
states merit special mention: (i} For A =8 (the
quasi-Anderson model) no gap appears (Fig. 3) the
disorder simply makes the density of states curve
flatter, broader, and more ragged as 8 increases.
(ii) For A =0, the disorder is completely asymmet-

rical, the spectrum is shifted to higher energy,
band tailing is evident near the bottom of the band,
and a gap opens in the density of states for any
finite 8 (Fig. 4). For small 8, the density of states

sprouts two van Hove singularities on either side

of the gap. As the disorder {8)increases, the van

Hove singularities at the top and bottom of the

perfect crystal density of states are attenuated, but

the van Hove singularity at E=0 becomes sharper
while the singularity at the gap first sharpens, then

is bllllYed (Fig. 4). Tile gap occurs because tlie

average or virtual crystal is diatomic. (iii) If the
disorder width 3+8 is kept constant, the gap nar-

rovrs and the 8=0 singularity disappears as the
distribution of disordered levels becomes more
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FIG. 4. Densities of states p(E) vs E for A =0, V=1,
and various values of 8.

FIG. 3. Calculated densities of states p(E) vs E for
A=8, V=1.

symmetrically distributed about E=O, the energy
of the undisordered sublattice (see Fig. 5). Of
course, the results are symmetric in A and 8, as
can be seen by comparing Fig. 6 and the corres-
ponding curve of Fig. 4.

The gap is the most outstanding feature of this.

particular type of controlled randomness. In the
Appendix %e suggest some gro%th parameters for
a superstructure likely to exhibit such a gap.

However, the primary purpose of this paper is to
encourage and stimulate efforts to grow superlat-
tices vrith controlled randomness or contro1led im-
perfections. The cases we have considered here are
but a few of the many conceivable.
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FIG. 5. Dens1t1es of states p(E) vs E for band
widths A +8= 1 and 2, and with V= 1.
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right well (e.g., AlI „Ga,As) extends from z„+I to

Z„+I, with depth U„+,. The Hamiltonian for the
two-mell system is expressible in terms of the
unit step function e(z):

I 1

0 X Z

E

FIG. 6. Density of states p(E) and full density of
states D(E) for A =0.5, 8=0, and V=1. Compare this
with Fig. 4 for A =0, 8=0.5. The gap in p(E) shows

Qp as a flat port1on 1n D(E).

APPENDIX: DETERMINATION OF THE
PARAMETERS OP THE TIGHT-BINDING

MOD EI.
Mfq ~-

JL

In this appendix we show how the matrix:ele-
Illcllts of 'thc tlgllt'-bllldlllg model al'c lclatcd to tllc
thicknesses and mell depths of the quantum wells.
A two-well clclllcllt of tllc supcrlattIcc ls sllowll 111

Fig. 7. The left well (e.g., GaAs) extends from z„
to Z„, and has a depth U„=—

~ U„~ relative to
the reference or "spacer" material (e.g., A1As); the

FIG. 7. Schematic illustration of the notation for the
two-well model.



TABLE I. Parameters for the growth of a random superstructure of 400 layers. See Fig. 7 for the notation. The
wells are made of GaAs and the barriers of Gao 5A105As. Zq„~ is always 30.94 A (for GaAs), and z2„+~ —Z2„ is equal
tO &2n —Z2n —~.

Random number
0

Z2n —&2n «) ~2n Z2n -1 Random number Z2n —Z2n (A) ~2n Z2n —1 (A)

0.195
0.732
0.609
0.323
0.108
0.188
0.062
0.713
0.638
0.049
0.671
0.392
0.379
0.538
0.884
0.409
0.800
0.436
0.020
0.134
0.679
0.391
0.298
0.182
0.366
0.136
0.686
0.306
0.457
0.369
0.956
0.117
0.432
0.267
0.037
0.470
0.362
0.439
0.555
0.747
0.038
0.109
0.574
0.873
0.883
0.40S
0.665
0.305
0.288
0.352

50.51
39.24
41.78
47.68
52.52
50.65
S3.66
39.64
41.18
53.98
40.52
46.20
46.48
43.20
3S.84
45.84
37.80
45.29
54.71
51.92
40.35
46.22
48.21
50.80
46,76
51.88
40.20
48.04
44.86
46.69
33.75
52.32
45.38
48.88
54.27
44.59
46.85
45.24
42.87
38.94
54.25
52.51
42.47
36.10
35.86
45.94
40.63
48.06
48.42
47.05

7.55
24.91
18.30
10.01
6.11
7.44
5.38

23.63
19.58
5.18

21.19
11.57
11.26
15,68
43.56
11.99
30.65
12.66
4.75
6.52

21.63
11.55
9.50
7.33

10.95
6.55

22.04
9.66

13.22
11.03
76.21
6.24

12.56
8.89
5.01

13.58
10.86
12.74
16.24
25.96

5.02
6.12

16.95
41.26
43.30
11.87
20.89
9.64
9.31

10.65

0.145
0.235
0.999
0.100
0.374
0.831
0.413
0.233
0.589
0.828
0.013
0.557
0.170
0.131
0.033
0.571
0.566
0.044
0.226
0.735
0.557
0.660
0.522
0.236
0.663
0.849
0.294
0.006
0.802
0.430
0.185
0.523
0.932
0.056
0.884
0.511
0.427
0.923
0.664
0.453
O.OS7

0.985
0.278
0.715
0.148
0.956
0.862
0.999
0.966
0.901

51.65
49.60
31.31
52.72
46.59
37.11
45.76
49.64
42.18
37.16
54.87
42.82
51.09
51.98
54.37
42.S4
42,64
54.11
49.81
39.19
42.82
40.74
43.52
49.57
40.67
36.67
48.29
55.05
37.7S
45.42
50.73
43.51
34.52
53.80
35.82
43.7S
45.48
34.78
40.66
44.95
53.79
32.S2
48.64
39.60
51.59
33.74
36.38
31 41
33.37
35.40

6.70
8.28

581.16
5.98

11.14
34.29
12.09
8,24

17.49
33.97
4.65

16.32
7.12
6.48
4.95

16.83
16.65
5.10
8.11

25.08
16.33
20.64
15.16
8.30

20.81
37.02
9.43
4.55

30.88
12.51
7.38

15.19
59.86
5.29

43.69
14.81
12.43
55.66
20.83
13.11
5.30

135.17
9.11

23.77
6.7S

76.47
39.10

453.33
88.00
47.86



+U„8(Z„—z)8(z —z„)+U„+)8(Z„+t
—z)8(z —z„+t) .

(W„—U„)'/ =(—U„)'/ sin (W„—U„)

The eigenvalue W„ is obtained, as for a single square well, from the transcendental equation:

(Z„—z„)
2

The tunneling operator V is evaluated in the %KB approximation, as by Harrison':

I ~..+t I

'=—o.o.+ t/I:(Z. +i —z.+i)(Z.—z. ) l exp( —rl »

where U„ is the electron's velocity in the nth well and we have

r„= 2( 2m/t)l)'/z I ( —W„)'/ dz .
ZN

For our case, this becomes

~w, a+t=(+/2ttt)'"(Wa —Ua)'"(Wa+t-Ua+t)' '(Zs —z. ) '"(Za+i —zan+i)
' 'exp( —&a»

where

R„=(2trtffi )'/ I —,[(—W, )'/ +(—W„+t)' ]&z .

Thus the effective Hamiltonian of the two-well system becomes

&=
I
tt & W. &tt I + I

tt+1& W. +~&tt + 1
I +

I
tt & ~n,.+t &tt + 1

I + I
tt+1& 1'.,a+t&tt I

The relationships among the parameters W„, V„„+~,U„, Z„, and z„permit one to construct superstruc-
tures of the form discussed in this paper. For example, to grow a 400-layer random superstructure from al-
ternating layers of GaAs and Ale sGao 5As, with 8=2, A =0, V= 1, and a gap of -0.04 eV, one might con-
sider the thicknesses in Tab1e I.
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