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Random superstructures
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Predictions of the densities of states are given for various forms of controlled random
disorder in artificial multilayered materials or superstructures.

I. INTRODUCTION

With the development of techniques' for fabri-
cating artificial, multilayered, periodic materials, it
is possible to study controlled randomness and its
effects on electronic states of matter. A hint of
the suitability of such superstructured materials for
randomness studies was contained in the early
work of Esaki and Tsu,? but since then the greatest
experimental effort has been to remove randomness
from superstructures and to make the interfaces
between layers abrupt and atomically smooth.

Superstructures with two types of randomness
can be grown: randomly varying layer thicknesses
and random layer compositions. Both metallic and
semiconductor superstructures have been grown,
and the ideas of this paper will be applicable to ei-
ther; however, for definiteness we confine our at-
tention to superstructures composed of layered
semiconductors GaAs-Al,Ga;_,As, where the ran-
dom variables are the layer thicknesses d and alloy
compositions x. We envision that the stochastic
variables d and x are determined by a random
number generator during the superstructure growth
process and that these quantities are preserved for
the analyses of data taken from the superstructured
sample.

The resulting disorder is controlled, finite in ex-
tent, and essentially one dimensional. Its con-
trolled nature is a valuable aid to understanding
random systems, because few such systems have
been fabricated before. Moreover, controlled-
disorder superlattices offer the possibility of study-
ing heretofore unimagined combinations of order
and disorder, such as periodically stacked alternat-
ing ordered and disordered arrays. The finiteness
of the artificially produced disorder offers oppor-
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tunities to directly determine the extent of localiza-
tion of states and to study the impending onset of
Anderson localization® as a function of increasing
size. One dimensional random systems are com-
paratively well understood theoretically; numerous
models have been solved exactly and even more
have been thoroughly studied.

For electronic states in semiconductor super-
structures three theoretical regimes present them-
selves: the regime of localized deep-trap-like
states,* the mixed regime of localized and extended
states, and the regime of extended states described
by effective-mass theory.” The most interesting is
the one-band effective-mass theory of carrier
motion, which we shall consider. This regime has
two subregimes: the quantum well limit® in which
the effective-mass electron’s de Broglie wavelength
is comparable with or larger than typical super-
structure dimensions, and the classical limit in
which the electronic spectrum is characteristic of a
classical particle colliding with barriers. In this
paper we shall restrict our attention to the quan-
tum well limit.”®

The standard theoretical questions to be
answered by any theory of disorder are as follows:
(i) What is the ensemble-averaged density of states
for the random system? (ii) Are the band gaps of
the ordered structure preserved in spite of the dis-
order or annihilated by it? (iii) Can selected types
of disorder introduce gaps into a spectrum that
would otherwise be continuous? (iv) To what ex-
tent does the disorder produce localized states, is
diffusion possible, and what is the transmission
coefficient for an electron in a random superstruc-
ture? (v) What are the effects of “many body” in-
teractions between electrons confined to adjacent
layers and can they produce one-dimensional
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quasi-phase-transitions?® Here we shall present
answers to the first three questions; subsequent
work will deal with localization and phase transi-
tions.

In this paper we consider a random superlattice
in the quantum-well limit, show how its density of
states can be evaluated, and illustrate how the band
gaps depend on the disorder.

II. MODEL

Since the primary purpose of this paper is to il-
lustrate the physics of random superstructures, we
take the simplest possible model. For a periodic
superlattice in the z direction (Fig. 1), the Hamil-
tonian is taken to be

pi+p}

H=
2m

+H;, (1)

where

He= 3 (W, n)(n ] +V(|n)(n 1]
n=1

+|n4+1){n 1, )

and the (isotropic) one-band effective-mass approx-
imation is assumed valid for the electronic motion
in the x and y directions. The energy W, is the
energy of the single state!® bound in the nth quan-
tum well, and is taken to be zero for the periodic
superlattice. The tunneling matrix element V,,
from the nth to the (n + 1)st well can be evaluated
using the tunneling Hamiltonian formalism of Bar-
deen,'! Harrison,'? Cohen et al.,'* and Prange'*
(see the Appendix), and is a constant for the
periodic superlattice of Fig, 2.
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FIG. 1. Schematic illustration of the variation of the
conduction-band edge with position in a periodic super-
lattice (a) and in a random super-structure of the “dia-
tomic™ type (b) considered here. The dashed lines are
the energies W, of bound states in the (isolated) quan-
tum wells.

The dispersion relation in this model is
E(ky,ky,E, ;)=1(k;+k})/2m +E,; , 3)

where E,; is the ith eigenvalue of H,.

With a random superstructure the matrix ele-
ments W, and V, become random variables, with
distributions determined by the growth conditions.
The Appendix shows how these tight-binding ma-
trix elements are related to the well depths (i.e., al-
loy compositions) and thicknesses.

Writing the density of states

k2 k2
D(E)=N""! > 38 E——(—+—y)—Ez,- 4)
k_k E 2m ’

x>y Bz,i

and assuming effective-mass theory with a con-
stant effectlve mass m throughout the superstruc-
ture,'> we find that the derivative of the super-
structure density of states is proportional to a one-
dimensional density of states p(E):

daD _ arl/3
iE CEZS(E —€,)=CN "“p(E) , (5)

where C=(L/2m)* (2m /#*) and the sample size is
L3. An alternative method for determining the
one dimensional density of states p(E) is to apply a
strong magnetic field perpendicular to the superlat-
tice layers and to condense the transverse free-
electron motion into discrete Landau levels.

For the special case of a periodic superstructure,
the eigenvalues are

E,(k,)=2Vcoska;, , (6

where a; is the distance between the centers of ad-
jacent wells and E, is taken to be zero for all n.
The densities of states are
p(E)=m"Y(4V?—E?)~129(4V2—E?), (7a)
and

1 1| E |, 2 2
D(E)= sin™ 7 — |O(4V*—E?)
+O(E-2w), (7b)

FIG. 2. Schematic illustration of the tight-binding
model obtained for a random superstructure such as
that in Fig. 1. (See Appendix.)
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where ©(x) is the unit step function. (See Fig. 3
for A=0=B.) Near the top and the bottom of the
band for p(E), the spectrum exhibits van Hove
singularities'® which behave like | E—Er| '/,
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where E7 is a threshold energy (+2 V here); this is
a characteristic of a one-dimensional density of
states, which p(E) is.

III. METHOD FOR EVALUATING p(E)

The tight-binding model Hamiltonian H, for the random superstructure is a tridiagonal matrix

W, vV, 0 0 00
Vi W, V, 0 00
H=|0 VvV, Wy V; 00
0 0 V; Wy V, 0
0 0 Vy_1

and its secular determinant can be expressed in
terms of its eigenvalues

det(H,—E)=[] (E,;—E) . 9)
i
This determinant can be evaluated by elementary
row operations, and is
N
det(H,—E)=[] X, , (10)
n=1
where X, =W, —E —V?2_, /X, _, is determined re-
cursively, with X; being W, —E.
The number of negative factors in Eq. (9) or (10)
is the number of eigenvalues E,; less than E, or
the integrated density of states

E
S(E)= [_p(E"\dE'=ND(E) . (1n

Thus the densities of states D (E) and p(E) can be
determined by fixing E, counting the number of
sign changes in Eq. (10), and differentiating. This
is basically the negative eigenvalue theorem,!” and
can be used for any Hamiltonian of the form of
Eq. (8). The numerical evaluation of the densities
of states for very large superstructures is easy and
computationally very fast.

IV. RESULTS

To illustrate this approach, we consider a simple
example with a special kind of randomness: The
nearest-neighbor matrix elements V,, are all equal,
the odd-site diagonal matrix elements all vanish
(W3, _1=0), and the even-site matrix elements are
uniformly but randomly distributed in the interval
[—A,B]. Thus the disorder band width is 4 + B.

, ®)

In this case we are especially interested in
whether the disordered system exhibits a band gap.
We know that for 4 = — B the model does produce
a gap (because we have a “diatomic crystal”) and
that for 4 =B it does not (because 4 =B would
correspond to the Anderson model® if both even
and odd sites were disordered). We hope to stimu-
late experiments studying the transition from An-
derson to diatemic behavior.

The results for p(E) are shown in Figs. 3—6.
The calculations employed a model with 20 000
layers. We took ¥ = 1, and random disorder uni-
formly distributed within the interval [—4,B].
That is, the minimum energy of a disordered site is
—A, and the maximum is B.

Several features of the calculated densities of
states merit special mention: (i) For 4 =B (the
quasi-Anderson model) no gap appears (Fig. 3) the
disorder simply makes the density of states curve
flatter, broader, and more ragged as B increases.
(ii) For A =0, the disorder is completely asymmet-
rical, the spectrum is shifted to higher energy,
band tailing is evident near the bottom of the band,
and a gap opens in the density of states for any
finite B (Fig. 4). For small B, the density of states
sprouts two van Hove singularities'® on either side
of the gap. As the disorder (B) increases, the van
Hove singularities at the top and bottom of the
perfect crystal density of states are attenuated, but
the van Hove singularity at E =0 becomes sharper
while the singularity at the gap first sharpens, then
is blurred (Fig. 4). The gap occurs because the
average or virtual crystal is diatomic. (iii) If the
disorder width 4 + B is kept constant, the gap nar-
rows and the E =0 singularity disappears as the
distribution of disordered levels becomes more
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FIG. 3. Calculated densities of states p(E) vs E for
A=B,V=1.

symmetrically distributed about E =0, the energy
of the undisordered sublattice (see Fig. 5). Of
course, the results are symmetric in 4 and B, as
can be seen by comparing Fig. 6 and the corres-
ponding curve of Fig. 4.

The gap is the most outstanding feature of this.
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FIG. 4. Densities of states p(E) vs E for 4 =0, V=1,
and various values of B.

particular type of controlled randomness. In the
Appendix we suggest some growth parameters for
a superstructure likely to exhibit such a gap.

However, the primary purpose of this paper is to
encourage and stimulate efforts to grow superlat-
tices with controlled randomness or controlled im-
perfections. The cases we have considered here are
but a few of the many conceivable.
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FIG. 5. Densities of states p(E) vs E for band
widths A +B =1 and 2, and with V=1.
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APPENDIX: DETERMINATION OF THE
PARAMETERS OF THE TIGHT-BINDING
MODEL

In this appendix we show how the matrix-ele-
ments of the tight-binding model are related to the
thicknesses and well depths of the quantum wells.
A two-well element of the superlattice is shown in
Fig. 7. The left well (e.g., GaAs) extends from z,
to Z,, and has a depth U,=— | U, | relative to
the reference or “spacer” material (e.g., AlAs); the
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FIG. 6. Density of states p(E) and full density of
states D (E) for 4 =0.5, B=0, and V'=1. Compare this
with Fig. 4 for 4=0, B=0.5. The gap in p(E) shows
up as a flat portion in D (E).

right well (e.g., Al;_,Ga,As) extends from z, ,; to
Z, ., with depth U, , ;. The Hamiltonian for the
two-well system is'* expressible in terms of the
unit step function ©(z):

Zn Zn Znt] Zy+)

FIG. 7. Schematic illustration of the notation for the
two-well model.
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TABLE 1. Parameters for the growth of a random superstructure of 400 layers, See Fig. 7 for the notation. The
wells are made of GaAs and the barriers of GagsAlysAs. Z,,_; is always 30.94 A (for GaAs), and z,, | —2Z,, is equal
to 23y —Zon1-

o

Random number Zyn—25, (A) Zon—2Zoy _1 (A) Random number Zoy—2y (A) Zyn—Zan 4 (;\)

0.195 50.51 7.55 0.145 51.65 6.70
0.732 39.24 24.91 0.235 49.60 8.28
0.609 41.78 18.30 0.999 31.31 581.16
0.323 47.68 10.01 0.100 52.72 5.98
0.108 52.52 6.11 0.374 46.59 11.14
0.188 50.65 7.44 0.831 37.11 34.29
0.062 53.66 5.38 0.413 45.76 12.09
0.713 39.64 23.63 0.233 49.64 8.24
0.638 41.18 19.58 0.589 42.18 17.49
0.049 53.98 5.18 0.828 37.16 33.97
0.671 40.52 21.19 0.013 54.87 4.65
0.392 46.20 11.57 0.557 42.82 16.32
0.379 46.48 11.26 0.170 51.09 7.12
0.538 43.20 15.68 0.131 51.98 6.48
0.884 35.84 43.56 0.033 54.37 4.95
0.409 45.84 11.99 0.571 42.54 16.83
0.800 37.80 - 30.65 0.566 42.64 16.65
0.436 45.29 12.66 0.044 54.11 5.10
0.020 54.71 4.75 0.226 49.81 8.11
0.134 51.92 6.52 0.735 39.19 25.08
0.679 40.35 21.63 0.557 42.82 16.33
0.391 46.22 11.55 0.660 40.74 20.64
0.298 48.21 9.50 0.522 43.52 15.16
0.182 50.80 7.33 0.236 49.57 8.30
0.366 46.76 10.95 0.663 40.67 20.81
0.136 51.88 6.55 0.849 36.67 37.02
0.686 40.20 22.04 0.294 48.29 9.43
0.306 48.04 9.66 0.006 55.05 4.55
0.457 44.86 13.22 0.802 37.75 30.88
0.369 46.69 11.03 0.430 45.42 12.51
0.956 33.75 76.21 0.185 50.73 7.38
0.117 52.32 6.24 0.523 43.51 15.19
0.432 45.38 12.56 0.932 34.52 59.86
0.267 48.88 8.89 0.056 53.80 5.29
0.037 54.27 5.01 0.884 35.82 43.69
0.470 44.59 13.58 0.511 43.75 14.81
0.362 46.85 10.86 0.427 45.48 12.43
0.439 45.24 12.74 0.923 34.78 55.66
0.555 42.87 16.24 0.664 40.66 20.83
0.747 38.94 25.96 0.453 44.95 13.11
0.038 54.25 5.02 0.057 53.79 5.30
0.109 52.51 6.12 0.985 32.52 135.17
0.574 42.47 16.95 0.278 48.64 9.11
0.873 36.10 41.26 0.715 39.60 23.77
0.883 35.86 43.30 0.148 51.59 6.75
0.405 45.94 11.87 0.956 33.74 76.47
0.665 40.63 20.89 0.862 36.38 39.10
0.305 48.06 9.64 0.999 31.41 453.33
0.288 48.42 9.31 0.966 33.37 88.00

0.352 47.05 10.65 0.901 35.40 47.86
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—# d?

———+U,0(Z,—2)0(z—2,)+ U, 1O(Z, .1 —2)O(z—2, 1) .

2m dz?

The eigenvalue W, is obtained, as for a single square well, from the transcendental equation:

(W, —U,)"2=(—U,)sin | | 22

2

The tunneling operator V is evaluated in the WKB approximation, as by Harrison

2(z,—z,)
(W,—U,) | ——

2

12,

| Vn,n+1 l2=?vnvn+1/[(zn+l"‘zn+l)(zn —z,)]exp(—r,),

where v, is the electron’s velocity in the nth well and we have

ra=2m /B2 [ (—W,) 2z .

For our case, this becomes

Van+1 =(#/2m )"/ W,—U, Y Was1— Uy +1)1/4(Zn —2Zy )—l/z(zn+1 —2Zy +1)—1/2exp( —R,),

where

z’l
Ry=Cm /N2 [ " (= W)V (=W, ) PNdz
. z, 2

Thus the effective Hamiltonian of the two-well system becomes
H= In)Wn<n | + ln+1>Wn+1<n +1]+ in)V,n+1<n +1|+ ln+l>Vn,n+1<n | .

The relationships among the parameters Wy, V,, , .1, Uy, Z,, and z, permit one to construct superstruc-
tures of the form discussed in this paper. For example, to grow a 400-layer random superstructure from al-
ternating layers of GaAs and Alj sGag sAs, with B=2, 4 =0, V=1, and a gap of ~0.04 eV, one might con-

sider the thicknesses in Table 1.
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