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The problem of vacancy migration in a metal under the influence of an electric current
is studied in several model situations. The wind force is calculated as a function of the
position of the atom which moves towards the vacancy. A currently used model in pseu-

dopotential calculations implies that plane waves are scattered by a potential which is
found by subtracting the unperturbed lattice potential from the potential of the system
with the vacancy. As soon as the atom has started to move the scattering potential in

this "subtracted" model (SM) consists practically of two vacancies with the atom some-

where in between, which forms a cluster of three scatterers. Owing to neglect of the
background lattice, the SM is bound to fail for strong scatterers. A new model is called
finite cluster model {FCM). It allows for the treatment of stronger scatterers and the
background lattice is accounted for depending on the size of the cluster. In this FCM the
system is modeled by a finite cluster of atoms surrounding the vacancy. Results are ob-

tained and discussed for the SM treated exactly which means that all multiple scattering
effects are accounted for, and in the Born approximation. The FCM is treated exactly,
for clusters containing 1, 3, 5, 7, 11, 15, and 19 atoms. The system treated has the fcc
structure, the atomic potentials are represented by spherical wells, and in the results

presented only s scattering is accounted for. The force in the region of interest appears to
be largely reduced by the presence of an environment, particularly for stronger scatterers.

I. INTRODUCTION

When an electric field is applied to a metal a
migration of atoms can be observed. This phe-
nomenon, which is known as electromigration, is a
subject of fundamental as well as technological in-

terest. ' Recent theoretical studies essentially cor-
roborate the traditional viewpoint that the driving
force for electromigration can be separated into
two distinct contributions. One contribution is
called the direct force and is due to the applied
electric field E acting on the ion or atom of in-

terest. For an ion of valence Z this force is ZeE
where e is the charge of the proton. The second
contribution to the driving force is called the wind

force and arises from the current (or "wind") of
electrons being scattered by the ion or atom of in-

terest. The wind force is the subject of this paper.
In particular, we shall evaluate the wind force
within a finite-cluster model. This will enable us

to perform the first calculation of electromigration
forces which includes multiple-scattering effects.

Multiple scattering of electrons during atomic
migration is unavoidable: The region containing
the migrating atom contains more than one scatter-
ing center and the electrons will suffer collisions
with all of these centers. For example, in the case
of interstitial migration, the scattering region, or
defect complex, consists of the interstitial atom
and the surrounding lattice distortion. In the case
of vacancy migration, the defect complex consists
of two nearest-neighbor vacancies with the migrat-

ing atom somewhere in between. Lattice distortion
is also present. A realistic calculation of the wind

force should allow for the scattering of electrons

by the particular atomic configuration for the mi-

gration mechanism of interest.
Until now atomic configuration effects in elec-

tromigration have been treated only within lowest-

order perturbation theory or its equivalent in
pseudopotential theory. ' ' (A modified version of
perturbation theory has been used in treating liquid
metals. ) The perturbation theory or pseudopoten-
tial calculations are not expected to be valid when
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any of the atoms in the defect complex is a strong
scatterer (large phase shifts) or when the host met-
al is not free electron like. Furthermore, even for
simple metals the phase shifts are not always small
enough to allow one confidently to treat intersti-
tials or vacancies as weak scatterers. Thus, even
for simple metals there is a real need to push the
calculations beyond lowest-order perturbation
theory and pseudopotential theory. For the case of
electromigration in transition metals, it is even
more important to consider the multiple-scattering
aspects of the problem.

Recent theoretical work has led to an expression
for the wind force in which multiple-scattering
contributions are retained. ' '" Denoting the wind
force by F, the result is

F=—gfi(k)f ~gq(r)~ d r,k

where fi(k) is the perturbed electron-distribution
function caused by the applied field and g &

(r ) is
the electron scattering wave function for an elec-
tron incident upon the defect complex. The in-
teraction potential between an electron and the
atom of interest is v i

——vi(r —Ri) where Ri is the
position of that atom. The integration is over all

space and the sum is over all electron states k.
The appearance of fi(k ), however, limits the k
summation to states on the Fermi surface. Expres-
sion (1) was explicitly obtained by Schaich' for a
free-electron gas and is also consistent with force
expressions derived by Sham" for the models he
considered.

The derivation of expression (1) for a Bloch
crystal is discussed in Sec. II. Here we only point
out that Eq. (1) can be heuristically derived in an
independent electron picture from the general
Feynman-Hellmann' form for the force, i.e.,

F= —fn(r) d r,
BR)

(2)

is to be used in Eq. (2). This immediately gives ex-
pression (1).

where n (r) is the electron density. We can now
argue that the electron density is simply the densi-

ty appropriate to each scattering state summed
over all the occupied scattering states. Since only
the field-dependent part of the force is required,
only the fi(k ) part of the occupation is needed.
That is

n(r)= gfi(k) ~P-„(r)~'

%e remark that the force on an atom will in
general depend on the coordinate Ri since fp(r )

in the vicinity of the ion depends on the detailed
atomic configuration of the defect complex. The
driving force for electromigration is the average of
the actual driving force over the migration path,
namely,

ZeE+L ' fF.dRi,

where the integral is over the path of length L.
This average force times L equals the work done
by the electron wind on the migrating atom. The
work done, and hence the average force, is the
quantity which infiuences the atomic migration.

Equation (1) is a powerful theoretical expression,
but there are difficulties in applying it to realistic
systems. One needs to know the distribution func-
tion f, (k) over the Fermi surface. Then one needs
to perform the k integration over this generally
complicated Fermi surface. The self-consistent
electron-ion interaction u~ is also required. Most
difficult of all is the determination of the scatter-
ing states f-„(r).

Because of these difficulties no applications of
Eq. (1) have been made for configurations of
strong scatterers. Genoni and Huntington' have
applied Eq. (1) for weak scatterers but have kept
the Bloch-like character of the scattering state, i.e.,
they correctly evaluated g-„(r) to first order in vi.
They do, however, retain much of the complexity
of the Fermi surface and of fi(k) even though
their host metal Zn is nearly free elix:tron like.
Ideally one would like to go beyond this and intro-
duce multiple scattering effects in f z (r) while

still retaining band-structure effects in g z and

fi(k). Here we settle for a more approximate
treatment which still gives due emphasis on the
multiple-scattering aspects of P-„(r)but is rather
less faithful in describing the Bloch-like nature of
Pz(r) or fi(k).

Our calculation is based on the finite-cluster
model. This model has previously been used in
studies of densities of states' and of electron life-
times' in metals and has been found to be useful.
In this model fg(r) is calculated by considering a
plane wave incident on a finite cluster. The plane
waves are assumed to be occupied according to the
free-electron form of the distribution function
fi(k). The multiple scattering within the cluster
is solved exactly using Schrodinger's equation.
The cluster consists of the migrating atom and the
atoms in its neighborhood. As the cluster size in-
creases one expects the calculation to become more
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accurate, for a more representative portion of the
host lattice is included in the evolution of g i, (r).
To the extent that the finite-cluster wave function
approaches the true wave function in the vicinity
of the migrating atom, the form of Eq. (1}implies
that the finite-cluster result should be a good ap-
proximation. Although certain details of t/r z (r )

and f i(k) are lost, especially when k is near a
band edge, the k-space summation in Eq. (1) is
likely to reduce the importance of these lost de-

tails.
Our numerical calculations are restricted to s-

wave scatterers in the geometry appropriate to the
vacancy migration mechanism in a fcc metal.
Cluster sizes of up to 19 atoms are considered.
The emphasis here is on examining the multiple-
scattering effects. Indirectly, this study provides a
critical appraisal of pseudopotential calculations. 2'6

The present work should be regarded as a prelude
to future calculations based on expression (1). Ul-

timately we would like to include p-wave and d-
wave scattering in larger clusters and to calculate
the alloy wave function P z (r) more accurately.

In Sec. II we comment on the derivation of Eq.
(1) for Bloch states and derive useful general ex-

pressions for determining F from cluster calcula-
tions. In Sec. III the finite-cluster model and its
pseudopotential analogue (the "subtracted model"}
are discussed for the case of vacancy migration.
Numerical results are presented and discussed in
Sec. IV. Conclusions are stated in Sec. V. Atomic
units are used such that A=2m =1, where m is the
electron mass.

II. EXPRESSION FOR THE WIND FORCE

(3)

dfo(e eF)—
fi(k)= erE.v—

BG
(4)

z being the transport relaxation time, E the applied
electric field, —e, v, and e are the charge, velocity,

Expression (1) for the wind force is a combina-
tion of Schaich's' Eqs. (29), (32), and (Al). It is
the force on an ion at position Ri, being part of a
cluster of ions with potential

V(r)= gu;(r —R;) .
I

The deviation from equilibrium of the electron dis-

tribution fi(k) equals

and energy of an electron, respectively, eF is the
Fermi energy, and fo is the Fermi-Dirac distribu-
tion function. Expression (1) was written down for
a finite cluster iinmersed in a free-electron gas.

For our studies we would like to start from an
expression which is valid in a solid as well, con-
taining (1}as the free-electron limit. A first
analysis for one migrating ion in a periodic solid
which starts from a Kubo linear response theory
formulation'6 as Schaich did for the free-electron

gas, was given by Sham. " His formula (4.12)
compared with Schaich's formula (33}suggests
that (1) is valid for a cluster in a solid provided
that fi(k ) is the perturbed electron distribution
function for the solid. This is equivalent to re-

placing r in Eq. (4) by the generally anisotropic re-

laxation time r(k) obtained by solving the
Boltzmann equation. In fact, the reduction of the
linear response expression for the wind force in a
solid to the form (1) requires neglect of band-

mixing contributions from nondiagonal matrix ele-
ments of the velocity operator. Sham neglects
band-mixing contributions implicity by his treat-
ment of the current vertex function, ' and it is at
thi's vertex that the distribution function f, (k) is
effectively introduced. Accepting Sham's pro-
cedure, we find that the series generated by the di-
agrams in his Fig. 1 lead to the result given by our
Eq. (1). We remark that Sham's analysis neglects
certain vertex corrections and band polarization ef-

fects, ' but these are usually small compared to the
wind force.i' These neglected terms can formally
be regarded as corrections to the direct force
ZeE, ' and are not of interest in the present study.
We therefore regard (1) as a reliable expression for
the wind force. We apply this expression to the
finite cluster consisting of the migrating atom and
the bulk atoms in its nearby environment. For
simplicity, the anisotropy of r(k) is ignored in our
calculations.

In order to evaluate the expression for the wind

force one needs the electron wave function in the
range of the potential of the migrating ion. The
treatment to be given is exact for a nonoverlapping
muffin-tin potential. For sake of clarity we first
write down the form of the wave function which is
valid in the free-space region just outside the range
of theyotential at R„using x as to be measured
from Ri (r=x+Ri)

(5)
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where ft is thc volume of the system,

»z(r)=j&(«r)Fz (r ), j& and ni are the spherical
Bcsscl and Nclllilanll fllilctions, »II =ji + IIII,

, p is the energy of tllc clcctl'olla Rt tllc Fer-
mi surface, the matrix T is the duster r matrix

with, for convenience, the symbolical notation Tf~z

{jL—
~

T ~j'L') and where rI =—sin5iexp(i5I)
with 5~I being a phase shift for the scatterer at RJ,
8=—iG, G=J+iN,

~ of

Jgg~ 4ni——g'I CI.L ~L,«jr»(R ')
L tP

ill follows from J by the replacement in (7) of jL-
by IIJ RIld CIL &I «Rlc'thc GallIlt cocfflcicIlts

CLI I- ——dk FL, (k) 1'I, (k) &L,-(k)

Real spherical harmonics are used. This form is
givcii bccausc it shows clcal'ly that in tlM scattered
wave part proportional to the hankel function mul-
tiple scattering is accounted for in the cluster r ma-
trix T.

All lllconilIlg waves proportloIlal to tllc Bcsscl
function add to exp[ik (x+Ri)j. The form (5)
can be rewritten simply, such that it is valid also
inside the muffin-tin sphere with radius RMT of
the ion at R,:

4mf q (x+RI)= ~ p ~ f/

ji, (x) i FL, (k)exp(ik Ri)+ g BI'JI, TLI. i F L(k)exp(ik RI )

JOKUL

P JOJfL fl

+ g QR (rx){1L
~
(1—Br) ' ~j'L')i' Fz (k)exP(ik R~')

I j'I.'

~'&'mm~

One sees a part with 1 &l,„anda part with 1 &1,„,where 1,
„

is the maximum angular momentum which
contributes to the scattering. Owing to the gradient in the matrix element determining the wind force (1)
one term of the 1 ~ lm, „partcontributes, namely the 1 =1m,„+1 term. The regular solution of' the
Schrodinger equation for the ion at Rl is, for x & RM&, equal to

RI'(x)=jI(xx) itI'hl+(ax) —(x)RM&) .
Expression (1) for the wind force can be elaborated in a straightforward fashion with the use of the follow-
ing equahty for the volume integral

Jd'xRL (x)[Vu(x)]RL(x)=RMT Jdx[RI, (x),VRI(x)]„«
One finds for the 1,„=0case

(10)

JJ J
v+&.j'Aj" ~

A A A ~ Of+ j Of/

1'I I («RII)»i(«RJ'J')(E R" )RI»T~J T J

The angular-momentum indices for the matrix T
have been omitted since they take only the value 0.
Expression (11) has been calculated numerically for
the different model situations apart from the factor
eEr/III, which is the drift velocity.

For sake of comparison with results obtained
previously with approximate expressions we derive
a I-matrix improvement of the Born approximation
(BA). Usually one replaces the potential matrix

elements in the BA expression by t-matrix ele-
ments. We will proceed the other way around, by
approximating the exact expression (11). A /-

matrix BA expression for the wave function can be
obtained from (5) by the replacement

~ ~ g

Tp~ ~t/5JJ'5I. I, .
This leads to a corresponding BA expression from
(8), in which an additional replacement is induced
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by (12)

(1 B—t) '~-1+Br . (13)

As for the Bt term which follows from (13), the
full regular solution RL, (x) in (8) should be re-
placed by jL (x). All these replacements together
imply that in expression (11) for the force in the
first and third terms (12) should be used, while ef-
fectively in the second term

T ij ih+ (—aR „)t't~ . (14)

If one elaborates the Im operation in the expression

I

obtained in this way the terms proportional to no
and n i are for small phase shifts cubic in i}, while
the other terms are quadratic. In an expression de-
rived in the Born approximation cubic terms are
not present. By omitting the Neumann-function
terms the BA expressions converge and are even

continuous in the limit R &j
—+0. If these ttmns

would be retained the BA t-matrix formula would
lead to a singularity in the limit of vanishing dis-
tance between two scatterers. So the t-matrix BA
formula for the wind force follows from (11}with

(12) and (14) applied as indicated above and after
omission of the Neumann function terms

A 4K eE7 1 i Jl(+R1i). .. 1 jF~„d= Im , t'E g——E J&(«—»)(E Rij)Ri; iJ'0(«i;)r r'
7TNl -~i KR ]j

+ i gj i (zR )~ )(E R iJ )R iJt '&

jQ]

This expression still contains terms of order higher than quadratic in sin5 and terms with factors cos5. In
an expression written down starting from BA such terms are not present. That is why in practice we used
the following reduced form for the component of the t-matrix BA wind force in the direction of the electric
field:

4v eErF„,„zE=— —,sin 5'+ g sin5'sin5'
n.m jQ]

j,( R, )
X jp(«ij) —(E'Rij) [Jo(«»)j2(KR». )+ji(KRlj)1

scR )j
(16)

An equivalent expression has been used previous-

ly ' although in a restricted sense. In the case of
vacancy scattering the vacancy phase shifts were
taken equal to minus the atom phase shifts accord-
ing to the rules to obtain Born phase shifts. In
fact one finds, if one calculates the true scattering
phase shifts for a vacancy, that this procedure is
not correct. %e will return to this point in the dis-
cussion of the results.

III. MODEL SITUATIONS

In the present paper we study the mind force
acting on an ion in a fcc metal while it migrates
from a cubic corner towards a vacancy at a face
center. Therefore, we are dealing with a vacancy
migration problem in a metal. In pseudopotential
calculations ' one uses a "subtracted model" (SM)
as far as the scattering is concerned. This means,
as it can be seen from the symbolical one-dimen-

sional picture in Fig. 1, that the vacancy migration
problem reduces to a 3-scatterers problem as soon
as the migrating atom has started to move from its
position at the cubic corner. It is, in fact, a
vacancy-atom-vacancy problem. It will be clear
that such an approach can only be expected to be
valid for simple metals, in which case a BA or r-

matrix BA treatment of the scattering is not too
bad an approximation. A SM calculation using
(11) makes only sense for not too strong scatterers
although that expression treats scattering to all or-
ders. The model itself is bound to be applicable
for weaker scatterers. In addition it has to be real-
ized that expression (11) is derived for nonoverlap-

ping potentials, and it is clear that for realistic
muffin-tin radii in the SM this is barely achieved
mhen the atom is midway between cubic corner
and face center. Nevertheless we applied (11}also
for the SM, mainly for sake of comparison with t-

matrix BA results obtained from (16).
In the finite-cluster model (FCM} the problem of
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ATOM MOVES TO
NE I GH BOR I NG
VACANCY

-+ X

0

PERFECT SYSTEM

*' SUBTRAC TED
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SCALE ALONG THE
AXIS OF MOTION

I j j j
-6 0 6

X

FIG. 1. One-dimensional picture of the subtracted
model situation for vacancy migration, which leads to a
3-scatterer problem.

overlapping potentials does not arise. The metal is
modeled by the migrating atom in its nearby en-

vironment (Fig. 2) and scattering is treated exactly.
The approximation is that the extended bulk en-

vironment of the region where migration occurs is

replaced by the constant interstitial potential, effec-
tively by free space. The most complete nearby en-

vironment requires the treatment of scattering in a
cluster of 19 scatterers. The simplest environment

consists of 3 or 5 scatterers depending on one' s

preference. Since the electric field and, on the
average, the electric current are chosen along the
axis of motion one may expect a strong contribu-
tion from the two nearby atoms on this axis. On

the other hand, the 5-scatterers case deals with
those atoms which have equal distance to cubic
corner and face center. In intermediate cases one
counts 7, 11, and 15 scatterers as indicated in Fig.
2. Since no subtraction is applied the atom moves
without overlap problems from the cubic corner,
chosen as the origin, to the face center. The
nearest-neighbor distance is chosen to be 6, being a
reasonable value for a fcc metal.

In the present study, only s scattering is account-
ed for. Since this first study has more the charac-
ter of looking for trends and of comparison with

approximate methods used earlier we chose as po-
tentials simple spherical wells. The we11 radius
used mostly was 1.20 which allows for some range
of validity of (11) for the SM midway between
corner and face center (from 2.40 to 3.60). A few
test calculations were made using a well radius of
0.15, for which case this range lies between 0.30
and 5.70. Further we chose the depth of the po-
tential such that we studied a weak, a stronger, and
a strong scatterer, having cot5O equal to 10, 1, and
0.1, respectively.

FIG. 2. Different cluster sizes and shapes used in the
finite-cluster-model calculations. The atom migrates
along the x axis, which connects a cubic corner and a
nearest face center in a fcc metal. The nearest-neighbor
distance is 6.

IV. RESULTS AND DISCUSSION

A. Subtracted model (SM)

The results for the subtracted model are given in
Fig. 3. Figures 3(a) —3(c) apply for increasing
scatterer strength given by cot5O" ——10, 1, and 0.1,
respectively. In order to show how far p and d
scattering can be expected to be negligible cot5~"
for I= 1 and 2 are printed after the value for
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Q.Q3 KF- 033
1,63, 5200, -412 CF - 0.33

Q1, 36, 3300, -3.22

BA(v =-a)

-Q,Q3

-QQ6

—QQ9

I s

l
Q

FCM-19 —Q.QS
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FCM -1

BA

FCM -19

FCM-1

10, 340, 25000, -13,11

I I I I
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Q 2 4

-G,24
BA {v=-o)
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FIG. 3. Wind force as a function of the position of the migrating atom for a weak (a), a stronger (b), and a strong
(c) scatterer, represented by cot5O" ——10, 1, and 0.1, respectively. The numbers given under the Fermi energy are
cot5I" for 1=0, 1, and 2 and cot5& '"'", respectively.

cot5O" It is s. een that the d phase shift is negligi-

bly small in all cases, while the p phase shift is still
smaller than 0.03 rad if cot5O" ——0.1. The
cot5O'""'" apparently is larger than —cot5o" for
all cases, which implies that in the energy range of
our calculations potential-well scattering is stronger
than barrier scattering. The Fermi energy of 0.33
used is the free-electron value for a monovalent fcc
metal with nearest-neighbor distance 6. The physi-
cal region of motion hes between x=0 and 6.
Since the wind force as a function of the position
is symmetrical with respect to the line x=3 just
one value beyond x=3 is given. Further, the
curves have been calculated for a few negative x
values. The results corresponding to expressions
(11) and (16) are indicated by SM and BA, respec-
tively. In applying both expressions to the present
model, the summation over j extends over the two
vacancies in the three-center scattering complex.
For comparison the FCM results for 1 scatterer
and 19 scatterers are plotted also. The expression
for 1 scatterer follows simply from (11) by omit-

ting all terms except the one proportional to T /3,
which factor has to be replaced by t'/3. This case,
of course, shows a position-independent force.

First it is seen that the BA result for the weak-

est scatterer follows the SM result closely. This is
found particularly striking in a calculation we
made for an even weaker scatterer with cos5O™
=100. Further the FCM-19 result does not devi-

ate much from the BA result for the energy 0.-33,
which corresponds to the case of a monovalent
metal. There are deviations, however, between

FCM-19 and BA results for the energies 0.53 and
0.70, which correspond to divalent and trivalent
metals, respectively. (See Fig. 4.) Intuitively, one
might expect that for weak scatterers the FCM re-
sults in the infinite-cluster limit should approach
the BA result for the subtracted model. That this
is not true can be seen readily from the weak
scattering expression (16). In the SM the summa-
tion over j runs over the two values for the vacan-
'cy, and 5J= —5'. In the PCM this summation
runs over all lattice positions apart from the cubic
corner and the face center while 5J=5'. Clearly

o)5 I)l
I l I

II

oo-

(0) II)020- I(11~
I 1(l ~

Ill $

oo

—0.30
LL,

—045

FcM-19 -O2O

FCM -1

-0.40

BA(v~-a)

EF~ 0.53

10, 200, 9400, -12.28

I t I ' I I

0 2 4

-0.60

FCM-19
FCM -1

BA (v*-o)

= 070
10,150,5100, -11.85

I I I I

0 2 4

FIG. 4. Wind force as a function of the position of
the migrating atom for a divalent (e~——0.53) and a
trivalent (e~——0.70) metal. The numbers given under the
Fermi energy are cot5~' for l=0, 1, and 2, and
cotso"'"'", respectively.
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for weak scatterers the SM result follows from the
corresponding FCM result after subtraction of a
term which includes summation over the unper-
turbed lattice. The variation of the force over the
path is therefore not represented correctly by the
subtracted model. However, for weak scatterers,
the contributions from the unperturbed lattice can
be shown to have a spatial variation like sinG Ri
where 6 is a reciprocal-lattice vector spanning the
Fermi surface. The existence of such contributions
from the unperturbed lattice was shown by Sorbel-
lo in his pseudopotential calculations. The
sinG Ri contributions only exist for
polyvalent metals, and in any case, they play no
role in electromigration since they vanish when

averaged over the jump path. This explains why in
Table I the average forces calculated from FCM-19
and BA for weak scatterers are not very different
for @=0.53 or 0.70 despite the fact that the spatial
variation of the FCM-19 and BA forces are very
different.

In the region x ~ 2.40 expression (11) is not valid
if it is applied for the SM. That is why the SM

curve is dashed in that region. The irregular
behavior becomes dramatic near the origin. The
value of the force according to (11) for the SM is
finite. In fact only the h i term contributes and the
divergence of the hankel function is canceled by
the cluster t-matrix element factors which ap-
proach linearly to zero with R io.

The t-matrix BA limit (16) has lost the irregular-
ity in the region of overlap which is typical for the
exact result according to (11). In the derivation of
(15) it was already inentioned that in the lowest or-
der BA limit Neumann function terms drop out.
Reasoning the other way round one is here faced
with an example that one can make errors if one
tries to improve a treatment by merely replacing
lowest order ingredients (potential matrix elements)
by better ones (t-matrix elements) in a final expres-
sion. By omitting terms higher than quadratic in 5
the replacement of terms quadratic in 5 by t-
matrix elements clearly is an inconsistent pro-
cedure.

Finally we want to draw attention to the fact
that in the SM 5""'"'"+—5"' . We calculated

TABLE I. The average of the wind force over the path in units of the wind force for an
isolated atom (FCM-1). The values are given for monovalent (0.33), divalent (0.53), and
trivalent (0.70) metals, for the different model situations.

t~atom 10 0.1

BA

BA(v = —a)

FCM-3

FCM-5

FCM-7

FCM-11

FCM-15

FCM-19

@=0.33
0.53
0.70

@=0.33
0.53
0.70

@=0.33
0.53
0.70

t.=0.33
0.53
0.70

@=0.33
0.53
0.70

@=0.33
0.53
0.70

a=0.33
0.53
0.70

@=0.33
0.53
0.70

1.037
1.008
0.978
1.038
1.008
0.978
1.024
1.018
0.973
0.919
0.985
1.045
0.944
1.003
1.018
1.155
1.022
0.957
1.073
1.007
1.002
1.112
1.012
0.987

1.029
1.007
0.981
1.038
1.008
0.978
1.037
1.017
0.973
0.885
1.000
1.043
0.928
1.016
1.017
1.178
1.018
0.950
1.058
1.017
0.995
1.109
1.013
0.971

1.013
1.003
0.990
1.038
1.008
0.978
0.941
0.941
0.946
0.812
0.839
0.880
0.762
0.823
0.808
1.015
0.836
0.771
0.857
0.728
0.631
0.817
0.633
0.526

1.011
1.003
0.990
1.038
1.008
0.978
0.769
0.858
0.889
0.548
0.905
1.100
0.350
0.728
0.933
0.689
0.581
0.435
0.404
0.511
0.443
0.293
0.237
0.272
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also the r-matrix BA expression (16) using the
equality. In Figs. 3 and 4 these results are indicat-
ed by BA (u =—u).

Figure 3(b) shows already a strong deviation
from the correct BA result but also for the weak
scatterer for different energies shown in Figs. 3(a)
and 4, the BA(v =—a) results move away from
the exact SM results.

B. Pinite-cluster model (PCM)

The FCM results are shown in Fig. 5. In the
weak scatterer case [Fig. 5(a)] the curves for the
three largest clusters follow each other closely,
while the curves for the smaller clusters deviate
markedly. It is seen that relative to the position-
independent 1-atom line, the 3-atom and 5-atom
curves add to the 7-atom curve and that similarly
the 5-atom and 11-atom curves add to the 15-atom
curve. From this additive behavior we conclude
that multiple-scattering effects can still be neglect-
ed. This no longer holds for intermediate and
strong scatterers as shown in Figs. 5(b) and 5(c).
In general, but in particular for stronger scatterers,
one does not expect that the 11-atom cluster will

give meaningful results. For stronger scatterers the
5- and 7-atom clusters can be considered as more
realistic small cluster representations of the more
complete 15- and 19-atom clusters.

If the scatterers become stronger cancellation ef-
fects are observed due to the presence of an en-

vironment for almost all cluster sizes. By cancella-

tion we mean that the wind force is reduced in

comparison with the force experienced by one
scatterer in free space, the FCM-1 case. Strong
cancellation can occur for stronger scatterers, al-

though we found that the effect depends on the
Fermi energy which is used, on the valency of the
host metal atoms.

This cancellation is seen most clearly from Table
I in which for the various cases the average of the
wind force over the path is given in units of the
wind force for an isolated atom (FCM-1). Note
that for weak scatterers the path averaged force is
within a few percent of the FCM-1 force. This ab-

sence of an effect from the environment for weak
scatterers is not a general feature for all potentials.
For example, large cancellations (of order 50%)
were obtained by Sorbello in a weak-scattering cal-
culation for some metals, but in those calculations
the pseudopotentials employed gave appreciable @-

wave scattering. In the s-wave scattering con-
sidered in the present work, large cancellation is
associated with strong scatterers. The extent of the
cancellation for strong scatterers is rather surpris-

1Qg.

The spatial variation of the wind force is
noteworthy. For weak scatterers, the wind force
exhibits sinusoidal-like variation about the FCM-1
value and is largest in magnitude near the "saddle
point" of the path (x =3) and is considerably
smaller in magnitude near the starting point
(x =0). For strong scatterers, however, this
behavior is not observed. We also remark that for
all cases shown the average force over the path be-

(a)
0.04

0.02

0

0.0S

0

{c)

-0.02
fF —0.33
cot 6~1

gF ~ 0.33
cot6=10

l I I I l

0 2 4
-008

0 2 4

-0.1 5

-0,20

KF = 0.33
cot 6=0.)

I I I I

0 2 4

FIG. 5. Wind force as a function of the position of the migrating atom for different cluster sizes and three scatterer
strengths. cot5 stands for cot50" . The number indicating a curve stands for the number of scatterers corresponding to
a cluster in the FCM.
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tween x=0 and 6 is rather well approximated by
the average of the forces at x=0 and 3. Such an

approximation is sometimes made in electromigra-
tion calculations. ' However, we hasten to add
that some calculations we have made indicate that
for strong scatterers this is not necessarily a good
approximation. For example, when cot5= 0.1 and
a=0.53 the procedure of approximating the path
average force by the average of the forces at x=0
and 3 gives an error of about 30%.

V. CONCLUSIONS

Using a finite-cluster approach to electromigra-
tion we have presented the first multiple-scattering

calculation of the electron wind force. All
multiple-scattering effects are contained in the
cluster T matrix appearing in expression (11). For
strong scatterers, we find large cancellation effects
in the wind force. These cancellations arise from
contributions to the electron density due to the
scattering of electrons by atoms in the neighbor-
hood of the migrating atom. Our expression (11)
can be generalized in a straightforward manner to
include s-, p-, and d-wave scattering. Numerical
calculations for a finite-cluster treatment of other
defect complexes, such as those containing intersti-
tial or substitutional impurities, are also possible.
Further work is in progress.
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