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Some simple, exactly soluble models for surfaces and interfaces
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Exact analytical results are given for several simple models of elementary excitations at
surfaces or interfaces, based on one- or two-band Hamiltonians with interactions between

atoms in the zeroth to first or second neighboring planes. Illustrative applications are
made to the fcc (110) face of a Heisenberg ferromagnet and to electrons at the {001)sur-

face of diamond or zinc-blende crystals; surface states appear in both cases. An extension

of the general theory is presented in an appendix.

I. INTRODUCTION

A number of three-dimensional problems can be

mapped, by appropriate transformations, onto a
linear chain. One example of such a mapping is
the real-space recursion method, ' which has been

very useful for calculating approximate local densi-

ties of states for a variety of systemsz: perfect
crystal surfaces, bulk alloys, ' random net-

works, and dislocations, to name a few. A
second class of examples is provided by surfaces or
interfaces in ordered crystals with interactions of
finite range-electrons described by tight-binding
Hamiltonians, phonons in the Born —von K mnin
or related bond-angle models, and magnons in the
Heisenberg model. Here, taking the two-
dimensional transform with respect to the surface
or interfacial wave vector q, yields an effective
linear-chain Hamiltonian whose elements represent

q, -dependent interplanar interactions. In a recent

paper, Mostoller and Kaplan' (referred to as MK
hereafter) outlined an exact formal solution of this
problem, using a matrix continued fraction ap-
proach to determine the desired blocks of the
Green's function. Subsequent work by Dy and co-
workers"' provides valuable further elaboration

of the theory, and the transfer matrix method of
Falicov and Yndurain' ' describes somewhat re-

lated techniques.
Most applications of linear-chain mappings have

involved reductions to linear chains with first-
nearest-neighbor (1NN) interactions only because

analytic solutions are available for this case.
Real-space recursion calculations generally fall into
this category. Kalkstein and Soven'5 illustrated
their pioneering work on elementary excitations at
surfaces with examples of this kind, the (100) and

(111}faces of what is sometimes called cubium —s

electrons in a simple cubic crystal with 1NN in-

teractions. Models that reduce to linear chains
with 1NN interactions have been used more recent-
ly to study a variety of interesting phenomena such
as chemisorption on metals, ' spin waves at
stepped surfaces, ' and surface instabilities and su-
perstructures. ' '

In this paper, we present exact analytic solutions
for two other simple linear-chain-like models that
in their most general form yield two bands of un-

equal width. Depending on the model parameters,
they correspond to one- or two-band Hamiltonians
with interactions between atoms in the same to
first or second neighboring planes. Two physical
applications are given, to electrons at the (001) sur-
face of diamond or zinc-blende crystals and'to spin
waves at the fcc (110}face of a Heisenberg fer-
romagnet. We believe that our exact results are of
intrinsic interest, as has proven to be the case for
the very simplest linear-chain-like model, and the
analytic solutions may also allow numerical checks
of more elaborate calculations.

In Sec. II the model Hamiltonians are defined
and expressions for the Green's function in the sur-
face region are derived. Results for certain elec-
tron bands at the diamond or zinc-blende (001) sur-
face are given in Sec. III. The fcc (110) face of a
Heisenberg ferromagnet is discussed in Sec. IV and
a few concluding remarks are made in Sec. V. A
more general theoretical extension is outlined in
Appendix C.

II. MODEL SURFACE HAMILTONIANS
AND THEIR SOLUTION

We follow the notation of MK (Ref. 10), and

refer the reader to that paper for details of how the

problem is set up and solved. The two-dimensional

transform of the Hamiltonian with respect to the
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surface wave vector q, is assumed to have the
block tridiagonal form

A (q, )= 0

A 8 0—2 —2

8~3 82 —3 —3

0 8~3 A4

in which the elements A,.(q, )P,.(q, ) a«
{n—1)X (n —1) square blocks whose elements in
turn are interplanar transform matrices
H(L,L'; q, ). Here n specifies the range of the in-

terplanar interactions, so that atoms in plane I.=1
interact with atoms in planes I.'= 1 to 1.'=n,
those in plane 2 with atoms in planes 1 to n +1„
and from L =n on down, atoms in plane L in-

teract with atoms in planes I.—n +1 to I.+n —1.
The dimension of the interplanar Hamiltonian
transforms LI(L,L ', q, ) is the size of the basis:
three for phonons, for example, or four for an s-p
tight-binding model for electrons in semiconduct-
ors. This blocking is important; as we shall see
later, the work of Dy and co-workers"' is flawed

by incorrect blocking that in their method of solu-
tion leads to calls to invert singular matrices, al-
though the method itself is sound.

The Hamiltonian in Eq. (1) is the same as that
for a semi-infinite linear chain. For a basis of one
state, for example, it corresponds to a linear chain
with fli'st to (n —1)st-lielghbor lilteiactloiis.

The Green's function or resolvent matrix,
blocked in the same way as the total Hamiltonian,
has the form

G(q„z)=[zI—A (qg)]

At some depth in the crystal, say for i & ni, the
Hamiltonian blocks A and 8 settle down to their
bulk values A~ and 8~. Then starting at level m,
the equations in the sequence (4) repeat, and can be
solved exactly for what we will call the terminated
bulk Green's function gb ——g~+J, j& 0,

gs ={zl—A~ @,—gb B~. )
t' —1 (5)

Once gs has been determined from Eq. (5), the sur-

face Green's function gi can be found by working
back up the sequence in Eq. (4), allowing variations
in interactions in the surface region if desired.

The simplest possible case that can occur is
when the matrices A,B in Eqs. (1), (4), and (5) are
scalars. The problem then reduces to that of a
monatomic hnear chain with 1NN interactions, and
the solution for the terminated bulk Green's func-
tion is

gs=,I z —As —[(z—As)z —4 IBs I

zj'~z I,

where the branch to be chosen is that for which

gs~l/E for z=E~+a& and Imgs(z =E
+i 0+ ) (0. This describes a single continuous
band of excitations on the interval

z=(As 21Bb I
Ah+2

I
Bs

I
)

and is the conventional termination for real-space
recursion calculations. ' We will now show how

two other simple models that allow two bands of
unequal width and interactions out to second
neighbors can be treated exactly. We begin by de-

fining the Hamiltonians for the two models.
Model A:

—11 —12 —13

—21 —22 —236 6 6
31 32 —336 6 6

A~ =
tAB eB

8~ ——

tAB ~BB

(7a)

(7b)

We redefine the upper left, surface block of 6 as

g1, that is,

gi(qg») =Gii(q. »»
and find that g 1 is the solution of a recursive se-
quence of equations,

gi=(zl Ai Bl gz Bi—)——1

gz=(zl —Az —Bz g3 Bz)—1

This model describes a system with one state per
atom, and interactions between atoms in the same-,
first-, and second-neighboring planes. It should
occur rather frequently along high-symmetry direc-
tions in the surface Brillouin zones (SBZ's) for
low-Miller-index faces of cubic crystals. Depend-
ing on the values of the parameters, model A may
give one or two bands. This will be illustrated by
our two applications, both of which correspond to
this model.
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A ~1

A~=
t~ e~

(8a)

D =detg's =grrg22 —gi2g2& ~

~ =D~~~~sa

(10a)

(10b)

From the matrix inverse of Eq. (5), it follows that

(8b)

gii =D [z —ea —( 4agii+&aag2z
2

+2r„'iitlillg i2)],

gu ~ (z eA rAAg 11 )
2

(1 la)

(1 lb)
This model describes a system with two states per
atom, interacting mth the same states on neighbors
in the same- and first-neighbor planes. It would be
appropriate, for example, for the (001) surface of a
bcc crystal with two bands and 1NN interactions.

We will show how to solve for the terminated
bulk and bulk Green's functions by working out
case A. The solution for the second case is given

in Appendix A.
I.et the elements of g» and its determinant be de-

fined by

D
gi2=gzi = (~gii+&gz&~gii ) .

1—6f
(1 lc)

With some straightforward algebra, gi i and hence

g;J can be expressed in terms of D and d,

g ii =FI(1—d)[z —ea Dna(z ——ea )]

(12)

D
(I+d)[(1 d) +Dr—gg]

g11 g I2

gzi g22
(9)

It 1'eiliallis to find D. This is done by substitut-

ing Eqs. (11)—(13}into Eq. (10). The result, after
ehmination of some common factors, is

O=if4+1 —[(z —ez)(z ez) (—t„~+—&~z)]D(d +1)+[bll(z —ez)+&m(z ez)+—4z4z] D

—2[(z —e„)(z ez ) (&qz—+&g—il )]D& 2lI— (14)

For t~iiiii 0, and h——ence d =Dr~t~li ——0, this
reduces to a quadratic for D. For the more general
case that t~tllil~, Eq. (14) can be rewritten as a
biquadratic for d. From the structure of this bi-
quadratic, if d is a solution, then so is I/d. This
suggests the transformation

(15a)

This yields a quadratic for 5, whose solution is as
follows:

5= , [E~Eg (c +c-' )+o]—,

Some care must be taken with the square roots
in Eqs. (15b) and (17). The rule is to choose the
physical branch, for which g;; ~1/E for
z =E~+ 00 along the real axis.

Dy, Wu, and Spratlin" (DWS) have outhned a
method for solving the general problem posed by
Eq. (5) for g» by transforming it into a A,-matrix

roblem. I.et Y=g».~~t, or g» = Y(~B)f' (our

g» is the same as DWS's 5). Then Eq. (15) can be
rewritten as

O=B~ Y Y (zl A~) Y+B~—. — (20)

A transformation Q is introduced to diagonalize Y,

Y—Q y Q ~ VIJ —yl~lj

and the columns of Q are denoted as vectors q(i},
i.e., qk(i)=Qk; It follows. from Eqs. (20) and (21)
that

(18a) 0=[y; B~ y;(z 1 A~—)+BJ—] q(i), . (22)

Ez ——(z —ez )/tzz,

rAB/4ArBB ~
2 2

c' =4a/~~~sa .&2

(18b)

(19a)

(19b)

which requires that the determinant vanish,

O=det[yzB~ —y(zl —A~)+g] . (23)

The method of DWS can be used to determine



SOME SIMPLE, EXACTLY SOLUBLE MODELS FOR SURFACES. . .

the terminated bulk Green's functions for our two
models. This is shown explicitly for model A in
Appendix 8. For problems in which the Hamil-
tonian matrices A-,8 are larger than 2&2's, the
method appears to be very promising. Regarding
such applications, a comment on blocking is in or-
der. Equations (20)—(23) above and the develop-
ment they summarize from DWS follow from the
definition gb F——(B~t) For. our two models [cf.
Eqs. {7b) and (Sb)], B~~ is upper triangular or full,
and nonsingular except in special cases. In con
trast, both in 0%S and in a subsequent paper by
Brasher and Dy, '

Bb (C in their notation) is de-
fined as a singular matrix with zero elements
everywhere below and on the diagonal. Since
(B~t) ' does not exist, only some combinations of
the elements of gb, rather than all elements, can be
found from I'=gb B~t I.'.

The source of the problem with blocking in
Refs. 11 and 12 lies in the structure of the Hamil-
tonians assumed there. In both cases, the Hamil-
tonians block like diatomic rather than monatomic
chains, settling down to an alternating sequence

(Ab I,Bb I ), (Ab2, Bb I), (Ab I,Bb I ), . . . in the bulk in-

stead of a single pair (Ab, Bb). The generalization
of the theory of MK and DWS to this important
class of problems is given in Appendix C. E( lx, 2y; 1—11)]coax/i, (25c)

t„'B=2[E{Ix,2x;111)+E( lx, 2y; 111)], (25d)

face of these semiconductors, the Chadi-Cohen
model yields surface-wave-vector transform Hanul-
tonians that contain decoupled 2)(2 blocks corre-
sponding to our model A.

The surface wave vector for the (001}face of
any fcc-based crystal is

q =(2~«)((i+4 —4+02 o) ~ (24)

where ——, g gi, gi g —, in the first SBZ. A dia-

mond or zinc-blende crystal has two sublattices,
oilc (labclcd 1) wlt11 f11'st IlcIglibol's af, (1,1,1),
(1,—1,—1,}, (—1,1,—1), (—1,—1,1) in units of a/4,
the other (labeled 2) with first neighbors at
(—1,—1,—1), (—1,1,1), (1,—1,1), (1,1,—1). Along
the direction $1=0, that is, for
q, =(2~/a}(g, —(,0), and for a sublattice-1 ter-
mination of the crystal, the states that transform
like (x+y) split off from the s, z, and (x —y)
states to give a model A Hamiltonian as follows
[cf. Eqs. (7a) and (7b)]:

eA E( lx, lx——;000),

CB E(2x,2x——;000),

tAB ——2[ E ( lx, 2x; 111)

III. DIAMOND OR ZINC BLENDE (001)

t„„=2E(lx, lx;022)cosm'gi,

tBB——2E(2x, 2x;022)cosa/I .

(25e)

In calculations of bulk electronic energy bands
or vibrational spectra, it is conventional to use
symmetry arguments to block-diagonalize the
Hamiltonian along high-symmetry directions in the
three-dimensional Brillouin zone. The same can be
done for surface or interfacial problems at certain
points or along symmetry directions in the two
dimensional surface Brillouin zone (SBZ). Our
first example falls into this category.

Chadi and Cohen have shown that an orthogo-
nal tight-binding approach including s and p states,
with general first-neighbor interactions and one
particular second-nelghbol' coupling» can give an
accurate picture of the valence bands of the group-
IV and III-VI semiconductors. Along two high
symmetry directions in the SBZ for the (001) sur-

The notation above corresponds to that in Slater
and Koster, with sublattice designations added.
For a sublattice-2 termination of the crystal, we

Iexchange eA=--."B, tAB+ tAB, tAA~tBB ~

Along the direction gi ——0, or for

q, =(2n/a)(g, g, 0), it is the states that transform
like (x —y) that spht off. For this case, with
sublattice-1 atoms in the top layer, Eqs.
(25a) —(25fl apply If wc lct (i~$2, tAB~tAB ~

Surface states may occur at isolated poles of the
terminated bulk Green's functions given by Eqs.
(11)—(13), that is, at zeros of the denominator of
the function E in Eq. (13). It turns out that there
is no singularity in g~ for 0= 1+4, so the potential
surface-state energies are determined by
0=(1 d} +DtAB. The—se energies are

E, = [2[(t —t )'+t„']j-'
&& I [tAB(eA+CB) —2(tAA tBB){tBBCA tAAeb} 2tABt—AB{tA—A+tBB)]+tAB(t B 4tAAt B} (e —eB) j ~—
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There are surface states if the residues of gIJ at
these energies are nonzero. These residues may be
found analytically, but it is extremely tedious to.do
so. Instead, we determine them numerically by
calculating (z —E,+)g,j for z E,—+ 2e——and e,
where e is small, and requiring that the values for
2e and e be the same within prescribed limits. A
good check on the calculations is provided by the
requirement that the residues of g» at E,+ and the
integral of the band-state spectral density,
—(1/m )Img;;, sum to unity. It should be noted
that even when surface states appear to be allowed,
that is, when the energies E,+ lie outside the
band-state spectra, zero residues can signal the ab-
sence of surface states. This occurs for the
Ge(001) surface discussed below; along the
(g, —g,o}direction, the nominal (x +y} surface
states have nonzero residues for a sublattice-1 ter-
mination of the crystal, but the residues are zero if
the outermost plane belongs to sublattice 2. The
situation is reversed along the (g,(,0) direction.

Figure 1 shows spectral densities for the (x +y)
states of terminated bulk Ge(001), with a
sublattice-1 termination of the crystal, at four wave
vectors along the (g, —$,0) direction in the SBZ.
Parameters for the calculation are taken from
Table 1 of Chadi and Cohen, 2 with E, in that
table shifted down to —5.79 eV to make the top of
the valence band fall at E =0. The surface state in
the gap is shown as a vertical line with a height
equal to the residue for plane 1. The surface-
wave-vector transform of the bulk Green's function
in the top panel was found by the methods out-
lined in Appendix B of MK. As g increases from

1
the SBZ center to g= —,, the band states narrow

and the strength of the surface state for plane 1 in-

creases, until at the zone boundary, all of the spec-
tral density for plane 1 is in the surface state, and
the band states for plane 2 are 5 functions of
strength —, at E =—1.60 and 6.84 eV.

1

The energy bands for the (x +y} states along the

(g, —(,0) direction are shown in Fig. 2, where the
narrowing of the band states and the small disper-
sion of the surface state can be seen more explicit-
1y.

IV. SURFACE SPIN WAVES
IN fcc FERROMAGNETS
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FIG. 1. Spectral densities for the (x +y) states at the
Ge(001) surface along the (g, —g,0) direction in the
SBZ. The surface plane belongs to sublattice i.

For a semi-infinite Heisenberg system at T =0
in the random-phase approximation (RPA), the
surface-wave-vector transform of the spin-wave
Green's function satisfies the equation

0.1 0.2 0.3 0.4
REDUCED O'AVE VECTOR

0.5

FIG. 2. Energy bands for the (x +y) states of
Ge(001) along the (g, —(,0) direction.
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2«S,{L)»5{L,L')

= Q I [z —Jp(L)]5(L,L, )+J(L,L„q,) )

X 9'(L i,L', q„z),

J(L,L';-, )= g " ' ' J(L,0;L,/),
1'

(31a)

(31b)

For both the fcc (001) and (110) surfaces with
1NN and 2NN interactions Ji and Ji, Eqs. (30)
and (31) correspond to model A Hamiltonians with
e =eq ——ez, tq ——tzz ——tzz, t2 ——t&z

——tzz. For the
(001) face, q, is given by Eq. (24), and

X (S,{L,/) &g (L,/;L', /'),

(29a)

Jp(L)= g g(L I'Li 1j)(sg(Li li)& . (29b)
1

~ ll, l,

e = 2J, [6—(cos21rgi+cos21rg2)]

+2J2(3—2 cos21rgicos21rg2),

t i =—4Ji cos1rgicos1rg2,

(32)

(33)

(34)

In the above, g (L,/;L', /') is the exchange interac-
tion between atom I in plane I. and atom l' in
plane L', and the notation otherwise is taken from
MK.

Demangeat and co-workers have investigated
complex spin arrangements at the {001)surface of
an fcc crystal by searching for soft surface spin
waves. Weling s has considered the (001) surface
magnetization of a simple cubic crystal described

by a one-band Hubbard model Hamiltonian that,
in the bulk, maps onto a monatomic linear chain
with 1NN interactions. Salzberg and Falicov'
have studied spin waves at a stepped surface of an
fcc ferromagnet, modeling the surface in a way
that also allows the algebra of the linear chain
with 1NN interactions to be used. Here, we will

discuss the physically simpler problem of spin
waves at the (001) and (110) surfaces of fcc crys-
tals, restricting calculations to the latter. The
spins are assumed to be ahgned ferromagnetically
and they and the exchange interactions are as-
sumed to be the same in the surface region as in
the bulk. These simplifying assumptions can of
course be relaxed {particularly the second) to treat
more general cases.

Vhth these assumptions, the Green's functions
can be renormalized by defining 6=8/2(s, &,

and the exchange interactions in real space by
J(L,l;L ', /') = (S,&g (L,/;L ', /'). Equations
(27)—(29) then reduce to

5(L,L')= QI [z —Jp(L)]/i(L, Li)

For the (110) face, the surface wave vector is

t i =—4Ji cos1rgicos1!'g2,

t2 = Ji —2J2cos21r(2—. (3g)

As was discussed for phonons in MK, the ter-
minated bulk Green's function for spin waves is
not a proper Green*s function for a cleaved crystal.
The Goldstone role is violated at the terminated
bulk surface, since e+ti+t2+0 for /=0; instead,
the bulk sum rule is obeyed, e +2ti+2ti 0 for-—
/=0, which is why we use the terminology "ter-
minated bulk. " Even without changes in the ex-
change interactions, the diagonal elements of the
Hamiltonian change in the surface region to satisfy
the Goldstone rule [cf. Eq. (31b)]. For the (001)
surface, the change is given by

4JI +Jp 0
A) —A~ ———

0 J2 (39)

while for the (110) surface, it is

5J] +2Jp
A) —A~ ———

0 J)+2J2 {40)

q, =(21r/a)($2, —gz, g, ),
and the elements of the Hamiltonian are

e =2J, (6—cos277gz)+2J2(3 cos217$—i), (36)

+Jp(L,Li,'q, ) J (6L, i'Lq„z),
(30)

For the (110) surface, second-neighbor exchange
does not extend the range of the interplanar in-
teractions in Eqs. (36)—(38), but modifies the re-
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8=161, the spectral density in plane 1 is actually
all in the surface-state 5 function at E =8.8J. Fig-
ure 4 compares bulk, terminated bulk, surface band
state and surface-state densities of states. For
plane 1, 64% of the spin-wave spectral density lies
in the surface states, while for plane 2, a very sub-
stantial majority fraction of 90% is in the band
states. The surface states compelled by the Gold-
stone rule are therefore strongly localized at the
surface.

V. CONCLUSIONS

The models we have considered are quite simple
ones, with the advantage that they can be solved
analytically. Applications to spin waves at sur-
faces and interfaces are immediate; we have given

0.6
I
I
I

i

l

II

ll
ll
l I

I

I 'I

/

(a)
gi=gb ll —(~i —k») gbl

'

1

1+5Jg11+Jg22+ 5d

—PLANE 1
—-—--- PLANE 2

04- ------ BULK

gii+ JD g&2

gg2+5JD

0.2—

(41)X

The surface-state energy z =E, is found by setting
the denominator in Eq. (41) equal to zero, which
leads to a biquadratic equation for E„'we solve for
E, and the residues numerically.

Figure 3 is a plot of the band and surface-state
energy bands along the (g, —g, g) direction in the
SBZ. At the zone boundary, (=O.S, where the
band states are shown to extend from E =12J to

0.4

PLANE 1---.—.PLANE 2
I '~
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t

I
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I
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01 OZ L3 0,4 L5
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FIG. 3. Spin-wave energy bands along the (g, —g, g)
direction in the SBZ of the fcc {110)face of a Heisen-

berg ferromagnet. The energy is in units of J.

FIG. 4. fcc {110)densities of states for a Heisenberg
ferromagnet: (a) terminated bulk and bulk, {b) surface
band states, and (c) surface states. The energy is in

units of J.

suits obtained with first-neighbor exchange only.
As shown by Demangeat and Mills for the (001)
face, the modifications can be quite significant,
producing soft surface spin waves and magnetic
reconstruction for J2 antiferromagnetic (J2 & 0)
and greater in magnitude than some critical value.
In going from Eqs. (27)—(29) to Eqs. (30) and
(31), however, we have made simplifying assump-
tions inconsistent with a study here of surface
magnetic reconstruction. For convenience, we
therefore further simplify by neglecting second-
neighbor exchange and set J~ ——0, J~ ——J.

With all of the simplifying assumptions we have
made, the terminated bulk Green's function gb has
no surface states, but the proper cleaved crystal
Green's function, for which the Goldstone rule is
satisfied, does. With the intraplanar interactions at
the surface changed according to Eq. (40), the
cleaved surface Green's function is determined
from Eqs. (4a), (S), (9), (10a), and (10b) by
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one example here. For electronic and vibrational

states, the utility of the models for most problems
will lie at symmetry points or lines in the SBZ,
where the Hamiltonian contains decoupled 2)&2
blocks. This offers the additional value of allow-

ing numerical checks of calculations for more com-
plicated Hamiltonians that reduce to our models in
special cases.

We have not shown examples for clean inter-

faces or for surfaces and interfaces containing im-

purities. However, once the terminated bulk
Grmn's function has been calculated, the properties
of clean surfaces or interfaces can be investigated

[cf. Eqs. (4a), (4b), . . .)] as the Hamiltonian param-
eters are allowed to vary near the interface. The
states of isolated impurities or periodic arrays of
them at interfaces, which can be important for
problems like grain boundary segregation and em-

brittlement, can also be studied.
»nally, both models can give two bands of dif-

ferent widths. They might therefore be useful for
real-space recursion calculations where this situa-
tion occurs.
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The solution for model B follows the same lines
used for model A. With A~, a~, gb, and D defined

by Eqs. (Sa)—(10a), the following expressions for

g,j emerge from Eq. (5) after some manipulation:

gl i E[ DtBB (z —eA)—
+ (1—

Dt2 )(z eB ) 2DtBB t i t2—], —

g22 =F [ (1—Dt2)(z —eA )

—Dt„„(zeB—) 2D—tAAt, t2],
(Alb)

1 +D ( tAA tBB +t 2 )jt 1

+Dt2[tBB(z —eA) +tAA(z eB—)j j,
(Alc)

Dp——
1 —d

D(tAAtBB t2) '

(A2)

(A3)

When the above expressions for g;J are substituted
back into the definition D =giig22 —gi2g2i, the re-

sulting equation for D is

APPENDIX 8: THE A,-MATRIX METHOD
FOR MODEI. A

In this appendix we sketch how to find the ele-

ments of gb for model A using the method of
DWS. Substituting the definitions of A~ and 8~
given by Eqs. (7a) and (7b) into Eq. (22), we obtain
relations between the elements of q (or Q),

CPg +c
qi(i}=——

2 q2(i)
p y. E+p +1

1 y. —Eg3;+12

q2(i),
p (c'y;+c)y;

(Bla)

(Blb)

where p=(tAAftBB)'~, and EA,EB,c,c' are defined
in Eqs. (18) and (19). From the condition (23) that
the determinant vanish, or equivalently, from the
equations for qk(i) above, the y s are roots of the
biquadratic

0=(y'+1)'—( EA+ EB+«') y(
y' +1)

+[EAEB (c'+e') jy'—
which factors easily to a pair of quadratics,

—[(z —eA)(z eB) ti—]D(d —+1)

+[tBB(z—eA )+tAA(z eB)+2ti—t2 j D

—2[(z —e„)(z—eB)—t2i ]Dd —2d' . (A4)

This has the same structure as Eq. (14) for model

A, and the rest of the solution proceeds in the
same way as for that case.



O=y +1
——,(( Eq +Ez+CC'}

+ t (Eg+Eg+cc')

—4[E~E21—(c +c' )] j }y (83)

According to DMS, the two roots y~,y2 to choose
from the four allowed by Eq. (83}are those that
lie inside the unit circle.

To demonstrate the equivalence of the results
obtained by the 3{,-matrix method and those found

by the direct approach described in the main text,
consider Eq. (82). By inspection, if y; is a solution
of that equation, then so is 1/y;, and the four roots
are yi,y2, 1/yi, 1/y2. From the coefficients of the
linear and quadratic terms in Eq. (82), it follows
that

3 1+32+ 1/3 1+1/3 2 EA +Eti+cc (84)

3 13 2+ 1/3 13 2+3 1/3 2+3 2/3 1

=E&Ez —(c'+c') . (85)

Now the determinant of gb, scaled by t~ttttt, is
d =yiy2 [cf. Eq. (10b)], so Eqs. (84)—(85) can be
rewritten as

(t~ttttt)' g12 = [~u(~u —c )yi

yi+y2=
1 d

«~+Ett+cc'»
1+d

y i+y 2 = d'+ [E~Ez—(c'+c') Id—1 . —

(87)

Solving Eq. (86) for y 1 and y2 ——d /y 1 in terms of
d, then substituting in Eq. (87), we obtain

O=d +1 [E„E&—(c +—c' )]d(d +1)

+ j (E~+Ez+cc')'

2[EgEg —(c +—c'2)] 2jd—
which is equivalent to Eq. (14).

On working back through the transformation in
Eqs. (20)—(24} to the A,-matrix problem to obtain
expressions for g,J in terms of y~ and y2, an in-
teresting feature emerges. The results for the off-
diagona1 elements are

(810)

From general arguments and from Eq. (11c),we
know that g~2

——g2~, but thts &s not made exphcct m
Eqs. (89a}and (89b). The equality can of course
be demonstrated, but only with some further alge-
braic manipulation.

APPENDIX C: THE ANALOG
OP THE DIATOMIC LINEAR CHAIN

Equation (5) for the terminated bulk Green's
function gb is based on the. assumption that the
Hamiltonian blocks A- and B in Eq. (1}settle
down to a single pair of bulk matrices A~ and @,.
Suppose that this is not the case, and instead,
(A,B ) alternate between (A~ 1,@,1) and (A~2,@,2)
in the bulk. Correspondingly, Eq. (5) is replaced

by a pair of recursion equations.

gb 1
=(z1—kt 1

—A 1'gb 2'kt 1 )

gb2=(zl —4 2
—42'gb 1'4 2)

—1

(Cla)

(Clb)

F= B1 ' f(z —A 1 }Xi—B2]

=Bi l(z —
A i }gi—1]B2

-1

we obtain the following after some algebra:

(C3)

If the matrices above are scalars, the solution is
straightforward, and yields two bands of equal
width. Otherwise, Eqs. (Cla) and (Clb) can be
transformed to a A,-matrix problem.

For brevity, we omit the b subscript hereafter,
and also the underlining and product ( ) notation
for the matrices, although the order of factors in
matrix products will of course be maintained. If
Xi ——giB2 and X2——g2B1, then Eqs. (Cla) and
(Clb) can be written as

0=Bi X2Xi —(z —A i )Xi +B2,

O=B2X1X2—(z A2)X2+B 1 . —

Equation (C2b) is solved for X2 in terms of Xi,
and the result is substituted in Eq. (C2a). With the
definition

«~tao) I/2

—&2t(&1~—c')y21

(89a)

O=aFF+PF+y,

a~B2(z —A 1 ) 'Bi,

p= —[(z—A2) —B2(z —
A 1 ) B2

—1

—Bi(z —Ai) Bi],—1

(C5a)



25 SOME SIMPLE, EXACTLY SOLUBLE MODELS FOR SURFACES. . . 6177

(CSc)

The transformation to the A,-matrix problem is
completed by following Eqs. (20)—(23). The di-

mension of the problem is the same as that of g
„

8~, A2, and 82, rather than twice that dimension
as in Refs. 11 and 12. Furthermore, there is no
call to invert singular matrices.
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