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We report a first-principles calculation of the phonon frequencies and mode-Gruneisen

parameters of Al with the use of the atomic number and the atomic mass as the only in-

puts. The phonon frequencies are determined by calculating the total energy of the per-

fect crystal and that of the crystal distorted by a frozen-phonon mode. Calculated results

agree very well with experimental values. The contributions to the restoring force for
various phonon modes are analyzed and discussed.

I. INTRODUCTION

One approach to calculating phonon spectra is
based on the Born —von Karman' force-constant
model. In this semiempirical approach, the force
constants are determined by fitting to some mea-
sured values of the phonon frequencies. Because
of the long-range forces in metals, an adequate
description of the phonon frequencies using force
constants requires interactions involving at least
eight or nine neighbors. It is often difficult to ex-
tract meaningful physical trends from such a large
parameter space.

Another possible approach is the frozen-phonon
method, where one calculates the energy caused by
a phonon distortion. %ithin the harmonic approx-
imation the phonon frequency is linearly propor-
tional to the square root of the distortion energy.
Applications of this approach to metals have been
mostly based on a nearly-free-electron model
(NFM). The electron-ion (e i) interacti-on is
represented by a weak pseudopotential, the electron
wave functions are calculated using perturbation
theory to second order in the e-i interaction, and

the effect of electron screening is represented by
some model dielectric functions. ' %'hile the
NFM method has been quite successful, the calcu-
lated phonon frequencies are often dependent on
the model pseudopotential and the dielectric func-
tion used.

In this paper we report a successful calculation
of the phonon frequencies and mode-Griineisen
parameters of Al using the frozen-phonon ap-
proach but without involving perturbation or linear
screening. The electron wave functions are calcu-
lated self-consistently within the density-functional

(DF) formalism, s and ab initio pseudopotentials are
used to represent the e-i interactions. This ap-
proach has been applied recently by Yin and
Cohen to study the phonon spectrum of Si, and
excellent agreement with experimental measure-
ments was obtained.

In the NFM the various contributions to the
phonon frequency are grouped together into a sin-

gle term, the band-structure term. In the present
calculations the various contributions are calculat-
ed explicitly; hence an analysis of the microscopic
restoring forces for the phonon modes is possible
in principle.

This paper is organized as follows: In Sec. II
the frozen-phonon formalism is presented, in Sec.
III the calculational procedure is described, in Sec.
IV the results are discussed and compared with the
experimental values, and in Sec. V the microscopic
contributions to the phonon frequencies are
analyzed.

II. GENERAL FORMALISM

For simplicity consider a crystal with only one
atom per lattice site; the atomic positions of a pho-
non mode are given in the harmonic approximation
by

~p p ~pR;=R;+u cos(q R;)costoqt,

where IRt J are the equilibrium atomic positions.
The kinetic energy per atom T and the potential
energy per atom V for this phonon mode are given
by
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where M is the ion mass and X is the total number
of atoms. The phonon energy per atom E„h is the
sum of T and V and it is time independent. In
particular, E~h

——V(t =0),

E~h , Mto~ ————~u
~

icos (q R;) (6)

(7)

where the mean-square distortion u is defined as

(u '& =—'
[
u'

[
'g cos'( q Ro) .

The calculation of the electronic wave functions
of a perfect crystal is facilitated by the periodic
properties of the crystal. I or an arbitrary phonon
mode, such periodicity is destroyed. However, for
phonon wave vector q, which is commensurate
with the undistorted lattice, that is, n q =G, where
n is an integer and G is a reciprocal-lattice vectof
of the undistorted crystal, the distorted crystal is
again periodic but with a larger real-space unit cell.
For these commensurate q's, the calculation
proceeds in analogy with that of a perfect-crystal
calculation. In this paper we use this approach to
examine the phonon mode at q=(1,0,0)2~/a,
( —,, —,, —, )2n./a, and (—,,0,0)2n./tt.

The total energy per atom is represented by the
DF expression with the Wigner interpolation for-
mula for the correlation energy and is calculated
in the momentum-space representation. The non-
local pseudopotentials for Al are determined using
the method developed by Hamann, Schliiter, and
Chiang. The same potentials were used recently
by the authors to calculate the static structural
properties of Al, ' and excellent agreement with
experiment was obtained.

The crystal wave functions are expanded in
p1ane waves with energies up to Epw ——10 Ry. An
even grid of k points is sampled,

n;+0.5 n, +0.5k= Q)+ -02
2

For a q at the zone boundary, that is, q =G/2, n3+0.5
+ G3, (12)

and for an arbitrary g,

Equation (7) is the starting point for the frozen-
phonon approach. If E~h is determined by calcu-
lating the total energy of a perfect crystal and a
crystal distorted by a frozen-lattice wave,

R; =R;+u cos( q R; ),
then Eq. (7) is used to obtain the phonon frequen-
cy.

Implicitly assumed in this approach is the
Born-Oppenheimer (adiabatic) approximation
which states that the electron wave functions ad-

just quickly to any lattice distortion. A successful
calculation of the phonon frequencies using this
approach is, therefore, also a confirmation of the
validity of the Born-Oppenheimer approximation.

O&nl &N) —1,
0&n2 &N2 —1,
O&n3 &X3—I .

(13a)

(13b)

(13c)

The even grid is centered at [0.5/N~, 0.5/Nz, 0.5/
N3] instead of the origin to avoid sampling of
high-symmetry k point; [ ] denotes vectors in the
basis of Gl, G2, and G3. An even grid is chosen
because it gives an unprejudiced representation of
the Fermi surface.

The calculations are iterated until the total ener-

gy is self-consistent to better than 10 Ry. The
iteration proccdufc ls dcscflbcd clscwhcfc. Fof

where Gl, 02, and G3 are the three primitive re-
ciprocal-lattice vectors; S],E2, and N3 are the
numbers of divisions along G„G~, and G3, respm-
tively, and the ranges of n~, nz, and n3 are
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TABLE I. Convergence test. The phonon amplitudes u are in units of the lattice constant and the phonon frequen-
cies in 10" rad/sec. The k-point sampling is denoted by X»(%2 X%3.

Q=O

Epw =10 Ry
ET

u =0.01
EIh
(Ry)

ph
(X 10") Q=O

Epw=—12 Ry
TT Eph

u =0.01 {Ry)
ph

(X 10")

L{100)
k points
6X6X6 —4.197092
8 X 6X6 —4.198212

—4.196441 + 0.000 651
—4.197569 + 0.000 643

6.27
6.23

—4.200 560 —4.199937 + 0.000 623
—4.201 595 —4.200977 + 0.000 618

6.13
6.11

T(100)
k points
6X4X4 —4.205422
6X6X6 —4.197092

—4.205 203 + 0.000219
—4.196853 + O.OQ0 239

3.63
3.79

—4.209 015 —4.208 808 + 0.000 207
—4.200 561 —4.200 332 + 0.000 229

3.54
3.72

each phonon mode the total energies of the undis-

torted and distorted crystal are calculated with the
same Epw and k points to insure good conver-

gence. The convergence of calculated quantities
with respect to Ep and k points will be discussed
in the next section. For the mode-Gruneisen
parameter yG, the volume is change by +3% and

yG is given by —dinch/din V. The equilibrium lat-
tice constant ao is taken to be 7.586015 a.u. or
4.013 A, and the ion mass which enters into Eq.
(7) is taken to be 26.985 atomic mass units or
4.4796)& 10 g.

IV. RESULTS

In this section, we will consider the following as-
pects of the calculation:

(1) convergence of the calculated quantities,
(2) validity of the harmonic approximation, and
(3) comparison with experimental values.
The convergence of the calculations is tested by

increasing Epw and the number of k points sam-
pled. The convergence test for the longitudinal
and transverse modes at q=(100)2m/a, L(100), and
T(100) are illustrated in Table I. The phonon am-
plitude u is given in units of the lattice constant.

Ep~ is increased across the table and the number
of k points increases going down the table. The
k-point sampling is denoted by N r X%2 XXs [Eq.
(12)]. Note that although the individual total ener-

gies are converged only to 10 Ry, the energy
difference E&h ls converged to —10 ' Ry. We es-
timate that the phonon frequencies are converged
to within a few percent.

The phonon frequencies are also calculated for
several phonon amplitudes to examine the degree
of anharmonicity (see Table II). It appears that
the harmonic approximation is quite good since the
variation in co&h is —1% for the different assumed
amplitudes.

The calculated phonon frequencies and mode-
Gruneisen parameters are shown in Table III along
with the experimental phonon frequencies. ' The
authors are not aware of any experimental values
for the mode-Griieisen parameters; however, an
average yo ——2.2 is obtained from thermal expan-
sion data.

V. ANALYSIS

The contributions from various energy com-
ponents to the phonon frequencies and their

TABLE II. Contribution of anharmonicity to the phonon frequency calculations. The
units are same as in Table I. (co) is the average value of co for the three phonon ampli-
tudes.

u =0.005 u =0.01 u =0.02

L(100)
T(100)

co=6.26
co =3.61

6.27
3.63

6.34
3.66

(ra) =6.29+1%
(co ) =3.63+1%
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TABLE III. Comparison between calculational and experimental results for phonon frequencies (10" rad/sec) and
mode-Gruneisen parameters.

I.(100) T(100) L(———)
1 1 1

2 2 2
T(———)

1 1 1

2 2 2
I. ( —00) T(—00)

co (10" rad/sec)
theory
experiment'
difference

yg mode-Gruneisen parameter
theory
experiment

'Reference 12.
Reference 13.

6.11
6.08
1%

1.71
(y) =2.2

3.63
3.65

l%%uo

2.83

6.21
6.06
2.5%

2.10

2.74
2.63
4%

2.37

4.56
4.45
2%

1.65

2.86
2.60
10%

1.70

The quantity co can be broken down into the fol-
lowing contributions:

2 2 2 2 2
kin+ 0e-i + 0e-e +xc+ +i-i ~ (15)

These quantities represent the electron kinetic ener-

gy, e-i interaction, e-e Coulomb repulsion, electron
exchange correlation, and ion-ion Coulomb interac-
tion. The divergences in the e-i, e-e, and the i-i
terms are properly taken out. ' It is also customary
to separate co into

volume dependence are examined in this section.
Since the energy components depend on the magni-
tude of the phonon amplitude, it is best to analyze
u, which is a normalized quantity,

2

g C f 5/3di +C f l Pl d3
P

(18)
Co and C& are positive. In a metallic close-packed
structure the electron density is reasonably uniform
compared to covalent and ionic solids. Any distor-
tion will create oscillations in the electronic densi-

ty, and hence increase the KE through the gradient
term. Actually, the increase in KE is also mani-
fest in the first term. Because the exponent (5/3)
is greater than unity, the increase in KE in the
high-density region is more than the decrease in
the low-density region. Quantitatively, the phonon
distortion causes some regions to have a higher
density than the average density, po+hp, and some
regions to have a lower density than the average
density, po —hp. The kinetic-energy increase
caused by the distortion given by the first term in
Eq. (18) is

2= 2 2.N =COe+Ni i (16)
bEg;„———,[Co(Po+bp) +Co(po —bp) ]

2= 2. 2=kin+pot . (17)

where co, can be thought of as the electronic
screening to the ion distortion. One can also
separate co into a kinetic and a potential contribu-
tion,

—Copo
S/3

2

po

p
po

(19)

The contributions from all these terms are shown
in Tables IV and V for two different volumes.
The units are in (10' rad/sec), and relative contri-
butions (i.e., co; ho, i=kin, e i, etc.) are -shown in
parenthesis. We will examine these contributions

by term
(I) co]„„Theelec.tron kinetic energy (KE) gives

a positive contribution to the phonon frequency.
This can be understood very simply in the density-
functional formalism. The KE is given by

(20)
If the exponent in the first term of Eq. (18) were
less than unity, then the coefficient of (bp/po) in
Eq. (20) would be negative. The above argument
applies only to structures with approximately uni-

form density such as Al. For open structures such
as Si, the phonon distortion could cause the density
to be more uniform giving a negative contribution,
for example, the TA mode at (100)2~/a of Si.'
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TABLE Iy. parious contributions to the phonon frequencies at two different volumes 0.97Vp and 1.03 Vp, for the
longitudinal mode. Vp is the equilibrium volume. Units are in (10"rad/sec) . Relative contributions are in
parentheses.

0.97Vp

I.(—-)1 1 1

222
1.03 Vp 0.97Vp

L(100)
1.03 Vo 0.97Vo

L (—00)
1.03 Vp

2.
kin

+ 124.40
(2.85)

+ 105.25
(3.10)

+ 107.03
(2.46)

+ 100.48
(2.84)

+ 54.79
(2.41)

+ 49.39
(2.65)

2
+e-i

—599.91
(—13.72)

—565.24
(—16.63)

—422.94
(—9.73)

—406.78
(—11.49)

—587.47
(—25.83)

—551.96
(—29.58)

2
+e-e

+ 217.89
(4.98)

+ 209.48
(6.16)

+ 137.34
(3.16)

+ 133.13
(3.76)

+ 259.09
(11.39)

+ 242.50
(13.00)

2xc
—35.89
(—0.82)

—32.28
(—0.95)

—29.52
(—0.68)

—28.31
(—0.80)

—16.95
(—0.75)

—16.08
(—0.86)

—293.48
(—6.71)

—282.81
(—8.32)

—208.09
(—4.79)

—201.48
(—5.69)

—290.53
(—12.78)

—276.16
(—14.80)

2$).I
+ 337.19

(7.71)
+ 316.79

(9.32)
+ 251.52

(5.79)
+ 236.87

(6.69)
+ 313 27

(13.78)
+ 294.82

(15.80)

+ 43.71
(1.00)

+ 33.98
(1.00)

+ 43.43
(1.00)

+ 35.39
(1.00)

+ 22.74
(1.00)

+ 18.66
(1.00)

2
pot

—80.69
(—1.85)

—71.27
(—2.10)

—63.60
(—1.46)

—65.09
(—1.84)

—32.05
(—1.41)

—30.73
(—1.65)

COe

2
cog (

0.87 0.89 0.83 0.85 0.93 0.94

2.
kin

2
Nppt

1.54 1.48 1.68 1.54 1.71 1.61

The kinetic-energy term is larger for the smaller
volume. If we assume bp/po is independent of
volume, then it is clear from Eq. (20) that this is
so because po is larger at smaller volume. Actual-

ly, bp/po is not independent of volume but de-
creases slightly with volume; however, the pz fac-
tor dominates causing a net increase in the kinetic-

energy term. Although the absolute magnitude of
this term is much larger for the longitudinal modes
than the transverse modes, the relative contribu-
tions are quite similar indicating that the kinetic-
energy term is just as important for the transverse
modes as for the longitudinal modes.

(2) co, ;. The e iinteraction con-tributes nega-

tively to the restoring force because a phonon dis-
tortion tends to dimerize the atoms causing an in-

crease in the e-i interaction, which is negative.

The magnitude of this term increases as the
volume decreases for the longitudinal modes, but it
is quite insensitive to the volume change for the
transverse modes. For some transverse modes the
magnitudes get smaller when the volume is de-
creased. This term measures the degree of covalen-
cy. As the volume decreases, the degree of co-
valency increases for the longitudinal modes but
may passibly decrease for same transverse modes.

(3) co, , Dimerization causes an increase in e-e
Coulomb repulsion; hence this term gives a positive
contribution. The volume dependence of this term
is similar to that of co, ;.

(4) co„,. The correlation energy is a very slowly
varying function of the density; thus it does not
contribute significantly to the phonon frequency.
This term, therefore, contributes mainly through
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TABLE V. Same as Table IV except this is for the transverse mode.

0.97Vp

T(———)
1 1 1

222
1.03VO 0.97VO

T(100)

1.03Vo 0.97VO

T(—00)
1.03Vp

2
kin

+ 11.51
(1.33)

+ 10.78
(1.66)

+ 37.29
(2.38)

+ 36.54
(3.28)

+ 18.40
(2.05)

+ 16.96
(2.32)

2
+e-c

—20.38
(—2.96)

—21.00
(—3.24)

—92.21
{—5.89)

—92.99
(—8.35)

—42.35
(—4.73)

—41.27
(—5.64)

2
e-e

+ 3.20
(0.37)

+ 3.40
(0.52)

+ 20.91
(1.34)

+2137
(1.92)

+ 9.05
(1.01)

+ 9.33
(1.28)

2xc
—2.48

(—0.29)

—2.47
{—0.38)

—10.04
(—0.64)

—10.01
(—0.90)

—5.02
(—0.56)

—4.93
(—0.63)

—8.15
(—0.95)

—9.31
(—1.43)

—44.06
(—2.82)

—45.09
(—4.05)

—19.93
(—2.22)

—19.91
(—2.72)

28;f + 16.78
(1.95)

+ 15.80
(2.43)

+ 59.71
(3.82)

+ 56.23
(5.05)

+ 28.90
{3.22)

+ 2722
{3.72)

+ 8.63
(1.00)

+ 6.49
(1.00)

+ 15.65
(1.00)

+ 11.14
(1.00)

+ 8.97
(1.00)

+731
(1.00)

—2.88
(—0.33)

—4.29
{—0.66)

—21.64
(—1.38)

—25.40
(—2.28)

—9.43
(—1.05)

—9.65
(—1.32)

602

2
N;g

0.49 0.59 0.74 0.80 0.69 0.73

2.kin
2

Nag
4.03 2.52 1.72 1.44 1.95 1.76

its exchange component. Since E„ is proportional
to —p4~i with a negative coefficient, it has the op-

posite effect of the p
~ term in the kinetic energy

and is decreased by the phonon distortion. The
volume dependence of this term is quite weak for
both longitudinal and transverse modes because it
is not strongly dependent on the density.

(5) co;;. This is an electrostatic energy term
which has a minimum for a symmetrical arrange-
ment of ions. Phonon distortions always increase
the i-i term for a close-packed structure. The i-i
interaction scales with the inverse of the lattice
constant; consequently, this term increases as the
volume decreases.

(6) co,. This term is negative, which indicates
that the effect of the electron motion is to reduce
the i iinteraction. -The effectiveness of this screen-

ing can be measured by the absolute value of the
ratio of co, to ai;;. The screening seems to be very

effective for the longitudinal modes and slightly
less effective for some transverse modes (see Tables
IV and V). For the longitudinal modes, co, ap-
proaches —mg f as q —+0 thus giving co—+0 as q —+0.
As the volume decreases, the screening becomes
less effective, see

~
ro, /co;;

~

.
(7) co~,. This term is negative indicating that

the potential energy alone would be unstable
against any phonon distortion. The increase in the
electron kinetic energy is an essential contribution
to the restoring force. The absolute value of the
ratio of co~„ to co~, is also shown in Tables IV and
V. This ratio is larger for smaller volume because
the kinetic-energy term becomes more dominant at
small volume.

It is difficult to isolate one major contribution to
the restoring force. As we can see from Tables IV
and V several components have magnitudes many
times larger than the net contribution. The pho-
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non frequency is a result of many compensating ef-
fects. However, if we focus on the kinetic and po-
tential energies only, we can state that it is the in-
crease in the electron kinetic energy which provides
the restoring force when a close-packed metal is
distorted by a phonon mode. On the other hand, if
we think in terms of ion-ion interactions (co;;) and
electron screening (co, ), then we would state that
the restoring force is provided by the Coulomb in-

teraction between ions which tends to restore the
ions back to a symmetrical arrangement, and this
restoring force is softened by the electron screen-
ing. At first sight these two pictures seem quite
different, but they are related. If we do not con-
sider the electron kinetic energy, then the electron
screening would overcompensate the ion-ion in-
teraction; the electron kinetic energy limits the
electron screening, and thus gives a positive pho-
non frequency. Therefore, the importance of the
electron kinetic energy is manifest in both pictures.

VI. CONCLUSIONS

We have demonstrated that it is possible to
predict the phonon frequencies of Al with the
atomic number and mass as the only input parame-
ters and a well-defined formalism, that is, ab initio

pseudopotentials, the density-functional method,
and the frozen-phonon approach. Furthermore,
this method enables us to examine the microscopic
origins of the restoring vibrational forces. For a
simple close-packed metal such as Al, we found
that if we analyze the total energy in terms of elec-
tron kinetic energy and potential energy, it is the
increase in the electron kinetic energy which con-
tributes to the restoring force.

We expect that the present method can be ap-
plied to other solids. A systematic analysis of the
restoring force for a series of materials should pro-
vide much information about vibrational forces
and phonon modes.
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