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Charge states for H and He moving in an electron gas
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A new method for calculating equilibrium charge states for ions moving in a uniform
electron gas is proposed. These charge states are obtained in terms of the processes of
capture and loss for the level bound to the ion, and these processes are calculated by
means of usual many-body techniques. Our method has been applied to H and He, the
results showing good agreement with the available experimental evidence.

I. INTRODUCTION

The problem of ions inoving in a solid has been
the subject of interest since the first years of this
century. ' The energy-loss processes are of great in-

terest from a theoretical and practical point of
view. At high velocities (v »Z ~ e /Ii, Z being
the atomic number), the ion is stripped of its elec-
tronic charge, and its stopping power in its motion
across the solid can be obtained from Bethe formu-
la as a function of a few parameters characteriz-
ing the ion and the solid. This expression applies
for E & 1 MeV/amu. At low velocities the ion is
surrounded by a cloud of electronic charge, and its
stopping power can be evaluated by means of a
Fermi-Thomas model. This approach, not as ac-
curate as the Bethe method, usually applies for
E (10 keV/amu. At intermediate velocities there
is no fundamental theory at all, the problem with
this case being that the charge state distribution
for the moving ion is not known. Recently,
Brandt and co-workers ' have given an effective
charge theory to explain stopping powers for those
intermediate velocities. This approach is also relat-
ed to those experiments measuring the charge
states of ions emerging from solids. s Here the
number of ions of a given charge leaving the solid
are determined as a function of the energy of the
ions fired at the target. Although it has not been
clearly proven whether those charge states of ions
are closely related to their effective charges, it
seems to us that a theory determining these charge
states would be of great help to the understanding
of the stopping powers of ions in solids.

The purpose of this work is to propose a method
for calculating equilibrium charges for ions moving
in a uniform electron gas within any range of ve-
locities. ' From the point of view of applied phys-
ics, our results are relevant for the intermediate
and low velocities of light atoms, a case for which
shell corrections can be neglected. In this paper,
we only apply our method to protons and He, al-
though an extension to heavier atoms can be easily
done.

In our analysis we assume that the ion—H or
He—has a bound electron state for the whole range
of velocities. Although this assumption will be
substantiated by. our final results, note that for a
proton, Cross" has shown that for high velocities
an analysis of the charge states of the atom can be
done in terms of the processes of capture into, and
loss from, the electron level bound to the proton.
On the other hand, recent theoretical calcula-
tions' ' have shown that a proton at rest inside
an electron gas can bind two electrons in a stable
orbit. As regards He, it is clear that this atom can
bind an electron state' more easily than H.

In our procedure —extending the Cross approach
for high velocities —the charge states of the ion for
any range of velocities are determined as a func-
tion of the different processes of loss and capture
for the electron level bound to the atom. Our
method for evaluating these processes is an exten-
sion of the many-body techniques' to the case of
an ion moving inside an electron gas.

In the first step, we determine the wave function
and the mean level of the electron bound to the
atom by a method which closely follows a recent
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work of two of us' for impurities in an electron
gas. Since a crucial point in this calculation is the
screening introduced by the electron gas, we dis-
cuss in Sec. II the linear response screening to the
nuclear charge. Wc arc interested in analyzing the
effect of the screening to the field "felt" by the
electron bound to the atom, in order to elucidate
how far this field departs from spherical symme-

try. For increasing velocities of the ion the results

given in Sec. II show that those deviations can be
neglected in such a way that the wave function of
the electron bound to the atom may be approxi-
mated by a wave function with an s symmetry for
any vcloc1ty.

In Secs. III and IV we discuss our general for-
malism: First we show how to obtain the wave
function of the electron bound to the atom (assum-

ing an s symmetry for the electron state), and then
we proceed to determine the charge states for the
ion. Our concluding remarks are given in Sec. V.

II. LINEAR RESPONSE THEORY

The linear response theory for a charge moving
inside an electron gas has been discussed by many
authors in order to analyze plasmon excita-
tions, ' ' the wake created by a charge along its
path, '9'2o and many other effects. It is well estab-

lished that hnear response theory can be applied
for the case of charges moving with high velocities
in metals; however, for low and intermediate veloc-

ities nonlinear effects are important, a charge at
rest being a particular case. Although we are more
interested in low and intermediate velocities, we

discuss the linear theory in this section owing to
two main reasons: (1) As stated above we want to
find out how far the induced potential around the

moving ion departs from the spherical symmetry.
For a charge at rest this potential is spherically

symmetric, but as its velocity increases thc poten-
tial loses this symmetry. A strong modification of
this type should create an important effect in the
electron state bound to the atom. We think that
linear theory can give the order of magnitude of
these corrections. (ii) On the other hand, linear

theory gives the correct hmit for charges at high
velocities. Having this limit lets us know when

nonlinear effects disappear.
It is a well-known result of a linear theory that

the screened potential P created by a charge Z
moving with velocity v 1s g1vcn by:

P(kci)) , = 5(co—k v), (1)
k2e(k, a))

where e(k, co) is the dielectric function for which a
random-phase approximation (RPA) can be used.
This result is equivalent to saying that the poten-
tial, given in a framework moving with the charge
itself, is the following:

4nZe
(2)

ke(kk v)

where instead of the static dielectric function e(k),
we have now e(k, k v). Then, the potential in real
space P (r) is given by

4vZe

(2~) k e(k, k.v)

and the induced potential by

~yi(~) J' d k 41TZ8

(2n) k

1
+

e(k, k v)

&&exp(ik r) . (3b)

The use of a RPA for e turns out to be a rather
cumbersome calculation that becomes very lengthy
and computer time consuming. Accordingly, we
have looked for a simple expression for e that
could give a reasonable approximation to Eq. (3).
To this end we have tried two different approxima-
tions to e: (i) First, a plasmon-pole approxima-
tion ':

2
COp

e —1—
co +co& —Ni(k)

(4)

k~k2
coi(k) =co~+

(ii) A second approximation is afforded by the
dielectric function given in Ref. 22:

2
Np

eo ——1—
kkz

ro+i ~
Th18 is siIDilar to thc plasmon-pole approxiIMtion,
but it goes a step further by including some effects
associated with the electron-hole pair contribu-
tion.

Equations (4) and (5) have been compared with

eapA by calculating P"' (r =0) in Eq. (3) with the
three dielectric functions. In Fig. 1, P ' (r =0) has
been plotted for these three cases. From this fig-
ure we see that eo [Eq. (5)] gives a fair approxima-
tion to eRp~ in order to obtain P . On the other
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TABLE I. Induced electron densities upon a moving
charge in linear theory. pRPA calculated with RPA
dielectric function. p with the dielectric function
described in the text.
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FIG. l. P ' (r =0) {see text), as calculated with three
different dielectric functions: full line, eRPA, broken line,

Epp,
' dotted line, ep [Eq. (5)].
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hand,
happ

is not such a good approximation; note,
for instance, the minimum given by evv for v 1.
Although the curves for P (r =0) obtained with

@RE and 6'pp do not differ greatly, the above-

mentioned minimum gives some unphysical results
when

happ
ls used to calculate the electronic levels

bound by the charge.
Another confirmation of 6'o has been done by ob-

taining the electron charge density induced on the
proton as a function of the velocity of the atom
and the electron density. These values have been
obtained by using the following equation:

( I
~ ~ ~ ~~ ~ ~ ~ ~ ~

~e

r ( a.u. )

P~' (r)= i' I dk(eu '(k, k.v) —1)I

Xj&(kr),

where (eo (k, k.v))~ is the projection of the func-
+

tion ee (k, k v)=co (k, k.vcos8) on the Legen-
dre polynomial PI(cos8).

In Fig. 2 we have plotted P, ' (r)/Z, P»' (r) jZ,

p'" (r)=Ze f ——1
e(k, k v)

V=2

d k
Xexp(i k.r )

(2n )
(6)

The results for a RPA calculation are very similar
to those obtained by using eo [Eq. (5)] in Eq. (6)
(see Table I). Owing to this fact and previous re-
sults, from now on we shall use eo everywhere in-

stead of eRpA for any numerical calculation of an
expression having 6'RpA.

Returning to Eq. (3), one notes that, for v+0,
this equation gives a nonspherical symmetry for
the potential P ' (r). In order to see the impor-
tance of the nonspherical components of P ' (r),
we have analyzed the projection of P (r) on the
different spherical harmonics. Thus, we can write

P" ( r ) = g tI) ~
' (r)P~ (cos8'),

1

8' being the angle between r and v, in such a way
that PI

' (r) is given by the following equation:

-0.7-
(a. u, )

(a)

0 -- —.—.. . , , ,
—r ( a.u, )

1 2 3

V: 3

-0.4 ~
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FIG. 2. Different spherical components of the in-
duced potential, P"' (r), for v=2 and 3, r, =2. Full line,
s component; dotted, p component; broken line; d com-
ponent.
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and P»' (r) IZ for different velocities and r, =2
These curves show that Pz' (r) and P»' (r) ate
much smaller than P, ' (r} for r & 1.5 in the range
of velocities of interest (v & 3). Let us now em-

phasize that the atomic wave functions bound to
the ions (H or He) extend up to distances less than,

say, 1.5 a.u. This shows that, as regards the calcu-
lation of the bound orbitals, we can neglect any
nonsphericity of the potential.

III. GENERAL FORMALISM: WAVE
FUNCTION AND MEAN LEVEL

FIG. 3. Shaded region shows the Fermi sphere as
seen from a framework moving with the ion.

Let us now consider the problem of a light atom
moving at low and intermediate velocities inside an
electron gas. In this range of velocities the atom is
only partially ionized in such a way that any self-

consistent treatment of the problem must aim at
obtaining the bound states of the atom and its oc-
cupation number. In this section we discuss the
method we have followed for the determination of
wave functions of the electrons bound to the atom
as a function of their occupation number. The
procedure we have followed for the determination

of charge states for the atom will be discussed in

Sm. IV.
The method we use in this section closely fol-

lows a recent work of two of us for impurities at
rest in an electron gas. ' Some differences, though,
must be introduced due to the projectile velocities.
First of all, we use a framework moving with the
atom (we assume its velocity to be constant, so
recoil effects are neglected}. From the point of
view of this framework the atom is at rest, while
the electrons move with an average velocity ( —v);
see Fig. 3. In this system of reference, things ap-
pear to be stationary; therefore many of the argu-
ments given for an atom at rest can be applied to
our present case. Let us briefiy discuss the main

steps in this procedure and stress the differences
introduced by the velocity.

We start with the quasiparticle equation:

——,'V +V~(r)+ f d r'X(r, r;E) P;(r')

=Eg;(r) (9)

where V&(r) is the Hartree potential and X the
self-energy. Assuming X is independent of E, ' we
can look for solutions of Eq. (9) in the conduction
band in the form

g;(r)= gb, g i
k),

k

where

i
k)= exp(ik r} s — is),

where
i

k ) is a plane wave orthogonalized to the
bound state

i
s ). Moreover, according to the dis-

cussion of Sec. II, we take this bound state to be
spherically symmetric:

' 1/2

is)= exp( ar), — (12)

where a is a variational parameter to be determined

by a minimization process. Equation (9) can be
written in matrix form by projecting it on the com-
plete basis t i

s ), i
k ) I. It is then an easy matter

to obtain the following result:

E+HM +(E E&—)SM~S~M—
a'
b-

k
=0, (13}

where

E„=(siH is),

I

a11d

This equation allows us to introduce the pseudopo-
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tential (E —Hz )
~

s }(s
~

for the conduction band.
Equation (13) can be used to determine the

atomic wave function
~
s }as well as the perturba-

tion introduced by the atom in the conduction
band. However, since the different potentials act-
ing on the free electrons are dependent on the same
atomic wave function

~

s },these equations must be
solved self-consistently. This has been achieved in
different steps. First, the perturbation introduced

by the impurity in the conduction band has been
calculated as a function of the parameter a [see
Eq. (12)]. Then, the self-energy associated with the
atomic wave function has also been obtained as a
function of a, and finally this parameter has been
calculated self-consistently by minimizing Ez.

/k} „=/k}+g. . . /k'},
k'

(14)

where V(k —k'} is the Fourier transform of the lo-
cal potential V(r). Then, the charge induced in
the conduction band is given by

This general argument follows closely the case of
an impurity at rest. However, some details are
different; consider, for example, the calculation of
the response function, an essential quantity used
for obtaining the perturbation on the conduction-
band wave functions due to the entire potential
acting on the free electrons. For the perturbed
wave functions we can write

(r)=
K(kF
K Qkp

4SQ exP( QP)
( kP ~) 8Q . exP( QP)

V(k kg)
(g 2+ $2)& (g 2+ /'i)2

1»2
—,k'2 ——,k2

The main difference with the static case appears in the values taken by k and k', a =
I
k —ko

I & A:» and
K'=

~

k' —kc
~
)k» (see Fig. 3}. Equation (15) can be transformed by means of the change K~ —l7 and

Pr '~ lr
' (see Fig—. 3}applied to the complex conjugate term. In this way, we get the following result:

5p(q)=Xo(q, —ko q)V(q)

~ „(k (a +
~

a '+ko~ ) (a + [ a+ko+q
~

) —,k2 ——,a' +q'ko
K pkF

( +
~

' —ko~ ) (a'+
~

— +ko+q ) ) —,x ——,
' —q'ks

K pkF

~,(g,„(u +
~

a'+ko~') (a + (
s+ko(') (4& +q ) —,a' ——,i~'+q' ko

K )kp

K'g k+

where q'=a ' —a, and Xo(q, co) is the RPA polarizability

Kgb
K'=

( q + K j g kp

2 ' »2
2 2
—K ——K —CO

Equation (16) can be further simplified by substituting some factors in this equation by an appropiate inter-
polation between the limits ko~O and ao. For example, the factor I/(a +

~

a '+ko
~

) has been approxi-
mated by I/(a +k» +@0), since for k0~0 it can be substituted by li(a +k» ) (see Ref. 15), and for
A;0 —+ 00 it behaves like 1/ko. It is worth mentioning that the corrections introduced by the orthogonaliza-
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tion hole, collected in the last four terms of Eq. (16), are only importarit for smaH u and for u not much
larger than k+. The main virtue of the proposed approximation for the different factors appearing in Eq.
(16) is that it gives the right limit for u going to zero, ' the velocity region for which the orthogonalization
hole effects are not negligible.

With this kind of approximation, Eq. (16) yields

Sp(q) =X,(q, —k, q) V(q)

6'-a' 8ma'

(a'+kF2+k,')'(4a'+q') (a'+k~i+k,')'[(~'+q'+kg+ k,')' —4q'{k++k,')]

X g Xo(q', —ko q')V{q').
f (2k@

(18)

Equation (18) and the fundamental equation relating the potential with the charge,

V(q)= V (q)+ z 5p(q),

allows us to obtain the screened pseudopotential,
W

—1 Vo{q}
e(q, —q.ko)V (q) 4rr f(q)

e(q, —q ko} q e(q, —q ko)

e(q—,q ko)

and

(u +kp+ko) (4a +q ) (a'+kp+ko)2[(a +qz+kp+ko)2 —4qz(kF+ko)]

e(q, -q ko)=1 — Xo(q, —q ko) . (21b
2

Equation (20) defines the screened potential as a function of the projectile velocity measured by ko. Having

obtained this potential, we can now proceed to discuss how we have de6ned the energy of the atomic orbital

and calculated the parameter a.
As regards the Hartree potential we have included the same interactions discussed in Ref. 15 with the

changes introduced by the velocity. For instance, the screened electron-proton interaction must now be ob-

tailled by Eq. (20), as well as the electroii-electi'oil illterae'tloil aild the lilteractloll with 'tile orthogoilallzatloil

hole. In order to obtain the Hartree interaction between the bound orbital and the charge induced by the

pseudopotential, (E Ez )
~
s ) (s ~, we—have approximated this nonlocal potential by the local one:

64m''
(Ep —Eg) i i 2 for~ k —k'~ g2kp

V(k, k')= . (0 +kp+ko)

0 for ik —ki)2k@

where again we have used an interpolation between the limits k0~0 and ao. This approximation is similar

to that proposed above to simplify Eq. (16), and it has similar advantages since the effects introduced by
this pseudopotential on the bound orbital are only important for the limit of low velocities. Moreover„ the

s one type of approximation has been used in other Hartree interactions; they AH not be discussed here as

the terms involved give minor contributions to this energy.
For the exchange and correlation contributions to Eq, we have followed the simple approximation pro-

posed by Hedin. In this approximation
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X(r, r ';co)= —(N
~ g (r)g(r ') iN) W(r, r ',co=0)+ , —5(r —r')Wz(r, r ';co=0) . (23)

where the first term represents the screened ex-

change interaction and the second one the Cou-
lomb hole term that can be associated with an adi-
abatic buildup of the interactions (see Ref. 15). In
Eq. (23) W, the screens interaction, is related to
W~, the induced potential, by W =e /

i
r —r'

i

+ 8'p.
Projecting Eq. (23) on the bound orbital is), we

get the exchange and correlation interaction associ-
ated with this state. By using Eq. (20) we can get
W and Wr, this equation defining these contribu-
tions as a function of the projectile velocity.

Once we have defined the different interactions
associated with the bound orbital, we can obtain a
and Ez, the atomic wave function [Eq. (12)] and
its mean energy, as a function of the projectile
velocity and the occupation number Nz for the
bound orbital. In Tables II and III, we give a and
Ez as a function of v for Nz ——0, 0.5, and 1 and

r, =2 for H and He. For v=O and Nq ——1 we re-
cover the results given in Ref. 15, although some
minor differences appear due to the different
dielectric functions used in both cases. On the

I

other hand, as u increases the interaction between
the bound orbitals and the electron gas decreases in
such a way that a and Eq tend, for Xz ——0 and 1,
to the following values: For H,

a =1 a.u. , Ez ———0.5 a.u. ,

a =0.6875 a.u. , Ez ———0.021 a.u. ,

For He,

a =2 a.u. , Eq ———2 a.u. ,

a =1.6875 a.u. , E~ ———0.896 a.u. ,

Eg ——1.
Note that the differences between these limiting

values for a and those given in Tables II and III
are a measure of the nonlinear interaction existing
between the ion and the electron gas. As was dis-

TABLE II. Values of the exponent a and the energy level E~ relative to the bottom of the
band for various occupancies {r,=2). H atom. {Atomic units. )

Xg ——0.5 Ng ——1

v=0.2

v=0.4

u=0.6

v=0.8

v=1

u=1.2

v= 1.4

v= 1.6

u=1.8

v=2

a =0.90
Eg ——. —0.106

a =0.88
E~ ———0.096

a =0.86
Eg ———0.075

a =0.80
Eg ———0.048

a =0.72
Eg ———0.027

a =0.74
Eg ———0.027

a =0.82
Eg ———0.041

a =0.86
Eg ———0.063

a =0.90
Eg ———0.096

a =0.92
Eg ———0.125

a=0.94
Eg ———0.184

a =0.80
Eg ———0.050

a=0.78
Eg ———0.043

a =0.72
Eg ———0.028

a =0.68
Eg ———0.009

a =0.66
Eg ———0.008

a=0.70
Eg ———0.008

a =0.76
Eg ———0.021

a =0.80
Eg ———0.021

a =0.82
E~ ———0.034

a =0.82
Eg ———0.046

a =0.82
Eg ———0.060

a=0.76
Eg ———0.046

a =0.72
Eg ———0.036

a =0.76
Eg ———0.012

a=0.54
Eg ———0.004

a =0.52
Eg ———0.009

a =0.58
Eg ——0 010

a =0.70
Eg ——0.011

a =0.74
Eg ——0.011

a =0.74
Eg ——0.006

a =0.72
Eg ——0.005

a =0.72
Eg ——0.001
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TABLE III. Same as Table II, He atom.

He Xg ——0 Xg ——0.5

u=0.5

v=1

V=1.5

v=2

v=2.5

a=1.88
EA ——0.914

a =1.88
Eg ———0.874

a=1.90
Eq ———0.897

a =1.93
Eg ———1.098

a =1.96
Eg ———1.252

a=1.97
Eg ———1.327

a=1.98
Eg ———1.456

a =1.78
Eg ———0.748

a = 1.76
Eg ———0.615

a =1.74
Eq ———0.639

a=1.80
Eq ———0.778

a = 1.82

Eg ———0.906
a=1.84

Eg ———0.969
a=1.84

E~ ———1.090

a =1.60
Eg ———0.509

a =1.60
Eg ———0.450

a =1.72
E~ ———0.439

a =1.67
Eg ———0.540

a =1.7
Eg ———0.621

a=1.7
Eg ———0.658

a =1.7
Eg ———0.682

cussed in Ref. 15, nonlinear effects are included in

our calculation through the variational calculation
of a; according to Tables II and III these nonlinear

effects become small for v -2.5 a.u. (r, =2). For
this velocity we shall see in the next paragraph
that Nz is also small, so that with a fair approxi-
mation we can say that for greater velocities the
interaction between the ion and the electron gas
can be obtained by means of a linear response

theory.
In addition, it is worth mentioning that the vari-

ational parameter a is very slightly dependent on
most of the input data discussed above. Note the
small changes that Tables II and III show for a.
In general, the crucial factor introducing most of
the changes in this variational parameter is the
orthogonalization hole, and its effect appears main-

ly through the dielectric function [Eq. (20)] and its
Hsrtree interaction with the bound orbital. As re-

gards Ez, the changes shown in Tables II and III
are important due to the contribution coming from
the linear screening associated to the interaction
between the nucleus and the bound orbital, a con-
tribution giving most of the Eq changes at high
velocities. Let us also mention that the major
source of error for Ez comes from the approxima-
tion given by Eq. (23) for the exchange and corre-
lation interaction and from the variational method
itself; from our experience with the static case, '5

we think that this error is around a few tenths of
eV's. At this point, it could be of interest to com-
ment that the dielectric function given by Eq. (5)
represents a substantial improvement over the
plasmon-pole approximation for velocities around

v 1. Thus, the use of the plasmon-pole approxi-
mation could introduce errors as great as 1 eV for

IV. GENERAL FORMALISM:
CHARGE STATES

X(r, r ';io)= e'" G(r, r ',co+co')2'
X W(r, r ';co)dco', (24)

where G(r, r ',co) is the causal Green's function
and W( r, r ';co) the causal screened interaction. It
is of interest to consider Eq. (24) for a homogene-

ous electron gas when the framework is moving
with a velocity v. In Appendix A we prove that
this self-energy is related to the self-energy for a
framework at rest, X, by means of the following

equation:

2

X(k,a))=X kyv, co+—+k v
2

(25)

This is the result we could have expected based
on elemental arguments. A particle of momentum

k and energy co in the moving framework has the

Once that a and Eq have been determined as s
function of Nz, we proceed to calculate the density
of states associated to the electron bound to the
atom. Our final aim is to determine Nq self-con-
sistently. To this end, we use many-body tech-
niques adapted to our present case. The crucial
quantity is the self-energy as given by the RPA ap-
proximation
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following momentum and energy:

k'=@+v,
-+2

co =6)+ +k'v
2

in the framework at rest.
As in Sec. III, we use Eq. (24) for a framework

fixed to the moving atom. Then, the Green's func.
tion can be approximated by

1 —Xg
(26)

where, according to the causal formalism, rik is a positive infinitesimal for unoccupied states, namely for

~

k —ko
~

=Ir & kr(ko ———v ), while ri is a positive infinitesimal also. Eo is the energy of the bound state as
determined from Dyson equation: co=Esr+X(oi) (see below), an energy which can be different from the
mean level Eq as obtained in Sec. III.

On the other hand, the screened interaction 8'(r, r ';co) can be obtained by using a type of equation analo-

gous to Eq. (20) but generalized to a dynamical case (see Ref. 22). This approximation gives the following
equation:

Uo(q) 4m f(q)

e(q, c0—ko. q) q e(q, ei —ko q) 1+
e(q, co —q ko)

—1 f(q)
(27)

&o(q)
W(q, co)=

e(q, c0—ko q)
(29)

where uo(q) =4ir/q is the bare electron-electron
interaction.

Equations (24), (26), and (27) define the whole
self-energy; by projecting it on the s level we obtain
the following atomic self-energy:

Xq(ro)= f d rd r'(s, r
~

X(r, r ';co) ~s, r ') . (28)

In order to analyze the different contributions to
Xq, we are going to neglect in Eq. (27) the terms
associated with the orthogonalization hole, and
write

I

In Ref. 22, it was shown that this approximation
turns out to be very appropiate in order to calcu-
late the imaginary part of Xz. As regards its real
part, the effects associated with the orthogonaliza-
tion hole are important, although its main contri-
bution can be simulated by shifting E& (the Har-
tree energy} by a constant; in other words, the
dispersive effects introduced by the orthogonaliza-
tion hole are negligible.

By llslilg Eqs. (29) aild (26) we call split tile
correlation self-energy into four different contribu-
tions defined as follows:

Xp,,( )
p "d „ i'" d q ~ 4' i, i

( „), (s, r ~e 'q '
~
k, r)(k, r'~e'q ' ~sr')

6)+CO —
2 k —q v —l YJ

d'q ~ 4n, i, „,(s, r [e 'q ' [k, r)(k, r'~e'q'' ~s, r')
I

(30a)

co ce
2

Xal~s( ) f g uf d q 4ir I [
1 (~ p ~ )] Pe

(2'ir) q co+co —q 'v Eo —i'g—
(30b)

(30c)

Xnr, e( ) f d uf q ir I ~

—i

(2~) q co co" qv Eo+—i i)— —
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where p» =16a "/[(4a2+q2) ] is the Fourier transform of (a /m)e '". Note that Eqs. (30) have been ob-
tained by using the following causal form for fV~(r, r ';co), 8'=e /

I
r —r '

I +R~:
00 008" (r, r ';co') =— dco" Im[ekpz(q, cg")] exp[iq (r —r ')]—~ (2m) q

J, 1

m'+iq+q v —m m —ig+q'~+

equivalent to Eq. (29).
In Eqs. (30), ImX&'(co) [or ImX& (rg)] gives the

probability by unit time for an electron transition

jump from (to) the conduction band to (from) a
hole (electron) created in the ion at an m level; in

these processes, an electron-hole pair —or a
plasmon —is excited at the same time in the elec-

tron gm. On the other hand, Xg"*"(a))and
Xq"'(co)—the nonrecoil terms —are related to the

probability of exciting an electron-hole pair or a
plasmon in the electron gas when a hole or an elec-

tron are suddenly created in the atom. 22 25

It is important to note that the imaginary parts
of Xz'(co) and Xz"'"(co}are positive, while those of
X„"'(co) and X&"'(co}are negative; this is a conse-

quence of the fact that Xq' and Xq'" are related to
the creation of a hole in the atom. On the other

hand, the velocity v changes the behavior of these

functions dramatically. In particular, for v =0,
ImX&' is nonzero only for 0 &Ez, while ImX„"' is

nonzero for co p Ez', for u+0, these restrictions
disappear. In Fig. 4, we show 1m''(co) and
Im

I Xz (co)
I

for r, =2, and the following veloci-

l

ties: u=0, u= 1 (H) and u=0, u=1.6 (He) (see Ap-
pendix 8}. From this figure we can see how
ImX„"'(co) and Im

I
Xz'(co)

I
overlap over a region

which increases with the velocity. This is one of
the main results of our calculation; we will see
below how these results are related to the occupa-
tion number for the atomic orbital. On the other
hand, ImX„'"/N„and Im

I

X„'"'
I
/(1 Nz ) are-

symmetric to each other with respect to Eu. In
Fig. 5 we show ImXq"'"/Nq and
Im

I
Xg"'I/(1 —&g) for r, =2 and u=0, 1 (H), 0,1.5

(He). Note that for u+0 both quantities also over-

lap near co=SO. It is of interest to note at this
point that the results shown in the previous figures

(Figs. 4 and 5}have been calculated by using eu in

Eqs. (30a)—(30d), as given by Eq. (5), instead of
@RE~. As was the case earlier in this section we ex-

pect this to be a fair approximation to those equa-

tions. On the other hand, let us comment on the
important role played by the orthogonalized plane
waves

I k, r ) in Eqs. (30). We have checked that
it is crucial to include these functions instead of
the plane waves, for velocities ranging from 0 to 2

7x19 2 Q. u. 7x]Q-2

r~l
].m gA (~]

7x1Q 2 Q. u,

-1.5
( Q. u. )

6X10 3 Q. U. Bx'(0 3

-Im Z. A' (~) t IT„' I~1. $mg '

(c) (a.u. )

(Q. u. )

FIG. 4. ImXq (co) and Im
I
X„"'(co)

I
for r, =2, and (a) u=O, H; (b) v=1, H; (c) v=0, He; (d) u=1.6, He.
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( a. u. )

1.5

+ nr, h

NA

1.5-
gnr, h

fA
A

EA
—0.5

EA-0. 5

EA

(aj

(b)

EA+ 0.5

EA+0.5

1.5 (a. u. j

rm(Znr, ';e

Note that X is a function of this same level [see

Eq. (26) above], which accordingly has to be deter-
mined self-consistently. However, in similar prob-
lems (Refs. 15 and 22) we have found that Ez, as
calculated in Sec. III, is a fair approximation to
Eo. Then, according to the discussion given above
for the effect of the orthogonalization hole on W

[Eqs. (27) and (29)], we have used Eq. (32) with W
as given by Eq. (29) and shifted EH to get Eo Ez-—
[this is also a fair way of including the orthogonal-
ization hole effects on the density of states given

by Eq. (32)].
Having determined the whole density of states

and Ep the problem now is to obtain the occupa-
tion number associated to this density. Equation
(32) suggests defining the distribution function

1m[X&'(co)+ Xq"' (co)]

Im[Xg'(co)+ Kg"' (oi)+Xg'(oi)+ Xg"'()]

(34)

FIG. 5. ImX„"'"/N„and Im
~

X""'
~
/(1 —K ) for

r, =2. {a) Full line u=O, broken line u=1, H. (b) Full

line u=O, broken line u=1.6, He.

a.u. The use of plane waves would introduce very
important errors in the different self-energy com-
ponents, amounting in the most unfavorable cases
even to a factor of 10. In other words, the orthog-
onalization hole introduces substantial modifica-
tions in the different probabilities by unit time as-
sociated to the transitions between the bound state
of the atom and the conduction band.

Now, taking into account the signs associated
with the different correlation energies, we can de-
fine the density of states associated with the elec-
tron bound to the proton as follows:

1 P, CN (co )= ——Im[ oi En X„—Xg (—co)—
—Xg'(eu) —Xg' (oi)

Xnr, e( }]—i (32)

where EH is the Hartree energy associated to the
bound electron, X„ its exchange energy, and X the
complex conjugate of X for all the correlation
terms.

Equation (32) defines our level, Eo, by means of
the following type of Dyson equation:

Eo=EH+X +Re[Xi (Eo}+Xa(Eo)

+X~' «o)+XX'«o)] .

(33)

in such a way that Nz is given by

Nq ——I n(co)N(co)de .

Note that n(co} is a function of Nq [see Eqs.
(30)], and that Eq. (35) must be solved self-con-
sistently for the occupation number, N~, and the
exponent, a, of the orbit bound to the atom.

In general, we have found that Eq. (35) can be
approximated by

(35)

1m [X''(Eo )]
1m[Xi (Eo)+Xi (Eo)]

(36)

this is mainly due to the fact that, as stated above,
ImX""'"(co) and ImX&"(co) are symmetric to each
other with respect to Eo.

Equation (36) expresses the intuitive result that
the occupation number depends on the ratio be-
tween the capture and loss cross sections for the
atomic level. In Fig. 6 we have drawn for r, =2
and u= 1 (H), 1.6 (He) the following function:

ImX&'(co)
'n(co) =

1m[X„"'(~)+X„"'(o~)]
(37)

which according to Eq. (36}plays the role of a dis-
tribution function for the atomic level. It is of in-
terest to note that for u=0, n "(co) has a step
behavior with a well-defined Fermi level. This is a
consequence of the values taken by ImX&'(oi) and
ImX& (co): ImXq (co)=0 for co)EF, while
ImXq (co}=0 for co & EF. However, as u increases,
these functions start to overlap (see Fig. 4 above)
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0
—1.5

V=1

(a)
( a. U.)

1

and Eo. In Fig. 7, Eo and EF have been plotted as
a function of v for r, =2, H and He; for v=1.03
a.u. and H, Eo——E~, while for v 1.63 a.u. and He,
Eo ——EF, these being the velocities for which Nq
= —,. Note that E~ decreases quickly as a function

of v going like ( —v /2) with respect to the bottom
of the band for large values of v; this is a clear
consequence of the referential framework which
moves with the atom.

We can also define the level broadening by
means of the equation

—=Im[ X"'(Eo)+X"'(Eo)
2

+X"'"(E&)+X""'(E,)] . (38)

0
-2

(b)

FIG. 6. n'(co) (see text) for r, =2 and (a) v=1, H; (b)
v=1.6, He.

and n "(c0) becomes smoother with a general pattern
similar to the one given in Fig. 6. Let us now de-

fine as the Fermi level Ez for a given velocity v

the value of the energy for which n "(E~)=—,.
Then, the occupation number for the atomic level

is determined by the relative position between EF

The different values of I'/2 as a function of v,

for r, =2, H and He, have been shown in Fig. 7 by
means of the shaded region drawn around the level

Eo. It is important to note that, except for a small
region near vo 1 for H, this shaded area does not
touch the conduction band; the meaning of this re-
sult is that the assumption about the existence of a
well-defined atomic level is entirely correct.

It is of interest to make a comment, at this
point, about the behavior of I'/2 for v~0. In this
limit ImX"'"(Eo)=ImX""'(Eo)=0, in such a way
that

—"=im[X"'(E,)+X"(E,)] (v =0) .
2

This equation defines the Auger line width for the

ir(llllLI dllljri, .
I I //g (a.u. )

-0.4 o5, IIIIIII (III, ~. .
If

-0.1-
-0.6—

—0.8—

-po2-

(o)

-1 ~ 4—

FIG. 7. E0 and E~ are shown as a function of the velocity of the ion for {a) H and {b) He (r, =2).
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-1 5

(a)

I

0
( a.u. )

(b}

I

0 (a u)

FIG. 8. Atomic density of states, %{co),for r, =2
and (a) v=1, H; {1)u=1.6, He.

core level (see Ref. 22). Now, this line width has a
critical dependence on the dielectric function used

to calculate X. Thus, by using a plasmon-pole ap-
proximation I /2 turns out to be zero. However,
as discussed in Ref. 22, eo [Eq. (5) above] and ERpA

give similar line widths for the core level. This is
another reason, on top of the discussion given in
Sec. II to use Eq. (5) instead of Eq. (4) as a fair ap-
proximation to ERpA.

In Fig. 8 we have also shown the atomic density
of states (DOS) for r, =2, and v= 1 (H), 1.6 (He).
Note the small structure appearing at Eo+hco&.
These are the plasmarons ', in general, their effects
in all the results of this paper are negligible. It is
also important to note the broadening associated
with the main peak of this atomic DOS; in general,
this broadening is small as compared with the
width associated with the distribution function
n (co) defined above in Eq. (37) (compare Figs. 6
and 8). Note that this fact reinforces the approxi-
mation made in going from Eq. (35) to Eq. (36).

I.et us now comment on the degree of accuracy
associated with the different approximations made
to obtain the results so far given in this paragraph.
The main sources of error come from two points:
(i) the error in Eo, and (ii) the approximate calcula-

tion of the imaginary components of the self-

energy as given by Eqs. (30a)—(30d). As regards
Eo, from the experience with the static case, ' we
estimate its error to be around +0.5 eV, while for
the different imaginary components of the self-

energy we estimate that they have been calculated
with an accuracy better than 70% (see Appendix
B). However, the error for the self-energy intro-
duces minor errors in the calculation of n "(co),
which accordingly, we think to have obtained with
very good accuracy ~even a calculation with the
values of the self-energy obtained by using plane
waves instead of orthogonalized plane wave (OPW)
gives a reasonable approximation to n "(co), al-

though each component of X itself is then very

poorly approximated]. More important is the
source of error appearing in the calculation of Nq

[Eq. (36)] due to the error in the level, Eo. This
can be easily estimated by means of Fig. 6; in this
way we obtain that the accuracy of Nq is better
than 80%. This shows that n "(co) and N„have
been calculated with a good accuracy, in spite of
the lower accuracy appearing in the calculation of
Eo and the components of the self-energy.

Finally, let us obtain the ratio of the fraction of
bare atoms to the fraction of atoms with only one
electron emerging from the solid. This can be cal-
culated from the occupation number, Nz (shown in

Fig. 9 as a function of U), by noting that in our ap-
proximation we neglect the intra-atomic electron
correlation. Then, (1 Nq) gives t—he fraction of
bare atoms, while 2N~ (1 N„) measure—s the frac-
tion of atoms with only one electron. Note that it
would be incorrect to use uncorrelated electrons for
the bound orbitals in order to determine the frac-
tion of atoms with two electrons emerging from
the solid, since in this case the electron-electron
correlation is of primary importance. Moreover,
we could expect to have some corrections to the
fractions obtained above for bare atoms and atoms
with one electron when N~ tends to 1, since in this
case the fraction of atoms with two electrons be-
comes important. Neglecting these corrections, the
ratio we are interested in is given by (1 Nq )/—
2N„. This quantity has been drawn in Fig. 10, for
H and He, as a function of v. For H, we show the
experimental data given by Phillips for protons
emerging from A1. The agreement between our
theoretical calculations and these experimental data
is rather good, although some discrepancies appear
at low velocities. However, note that our calcula-
tions give practically a linear relation between lnv

and In(1 Nz )/2N& in agreem—ent with general ar-



P. GUINEA, P. PLORES, AND P. M. ECHENIQUE

NA
He

D 2-
0

0, 2-

j l l

'l. 5
V I o. u.j

) I

2 3 5
l

10, 20
Nzzx2 &

NA

FIG. IO. Ratio between the fraction of bare ions and
ions %vith one electron N /X j a8 a fUnct1on of U.

Experimental data are for H (broken line. )

0-2—

V (o ~ u. j

FIG. 9. ShovN N~ a8 a fUnct1on of v for P' =2 and

(a) H, (1), He.

the intra-atomic electron correlation has been
neglected, this being, possibly, the main limitation
of the method presented here. For instance, intra-
atomic correlation is of primary importance if we
are interested in determining the yields associated
with the capture of two electmns by a proton, a
case that has been overlooked in this paper. %ork
lnclUdlng thc intra-atomic clcctl'on corrclatlon ln
ordcl to obtain thc H yield ls ln pl'ogress ln oUr
laboratory.

guments, while Phillips data show a deviation
from this linear relation for u (0.8 a.u, We think
that this deviation is partially due to the neglect of
intra-atomic correlation quoted above. Surface ef-

fects could play a significant mle, since for low ve-

locities the atom has enough time to feel the pres-
ence of the surface.

V. CONCLUDING REMARKS

APPENDIX A

He«we consider an homogeneous electron gas
111ov111g w1tll velocity ( —v). FO1' th1s case, the
Green's-function G (r, r ',co) can be approximated
by

~ exp[i f a. —V) (r —r ')]Grr r0=Z
CO —E~ ~ +1'q

We have presented a method to obt»n the
charge states for ions moving in an electron gas, by
means of the techmques commonly used in many-

body theory. In our procedure the charge states of
the ion are determined as a balance between the
processes of loss and capture for the electron state
bound to the ion. Our results for protons show a
good agreement with the experimental evidence.
However, we have remarked that in oUr approach

where A=0+ for a~k& and r)=0 for 1r~k+. As
regards the screened interaction, note that the
dielectric function taken from the framework at
motion e"(q,a1) can be related to the usual dielec-
tric function e(q, u) by means of the following
cqUatlon:

s'"(q, co)=e(q,a)+q v) .

Accordingly we can write
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This equation defines the screened interaction W(q, co) =4m lq e"(q,co). Equations (Al) and (A3) yield the
following correlation energy:

X,(k,ro)= f dc@"f d q 2
Im

e( q, co")

(A4)

This equation can be transformed into the following result, by means of the equation E(k+ q )=E(k+ q
+v) ——,v —(k+q) v:

X,(k,oi)= f dao" f d3q Im —1

q e(q, co")

"k+v+q
N+N +l'g —E k+~+~+ 2 U +k'V

i —nk+
li ~ 1

N —N —lq —E +—
U +k'vk+q+v 2

(A5)

This is the correlation energy, X,(k+ v, co+ —,U + k v), for an electron of momentum k+ v and energy
co+ —,u +k v, as given in a framework at rest. A similar argument can be given for the exchange energy„
in such a may that, in general,

X(k co)=X (k+v co+ —
U +k v) (A

APPENDIX 8

Details about the method used to calculate ImX&' and ImX& are given here. From Eq. (30a) we can
verite

ImX~'(co)=m' f dc@"f — g n(k ko) I—m[&ap~(q, oi")t
) (&,r ~e

'q'
~
k, r) ((2m. )'

&&5(co+or"——,k —q v),

n(k —ko)=. 1 fori k —koi &ks

0 fori k —kol )kz .

Let us first assume
~
k, r ) to be a plane-wave function. In this approximation

/ (s, r fe q''
f
k, r) /2=4, (k —q),

this equation stressing the dependence of this function on the argument (k —q).
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Introducing the net variab1e, q~, defined by

(83)

Eq. (81) yields

ImX„"(co)=n f dco" f q, q, n(q» —q)lm[ettpA(q, co")]4,(ko —q')—~ (2n) (2m)3 q

g5(co+co"——,{—q»+q+ko) —q v) . (84)

Now, this equation can be integrated in the angular dependences of q and q». Thus

ImXg (co)= f dco f dq f dq Im[&RpA(q~co )] &

3 qu

0 for S) (Sg
f(q*,q, co",co) = 1 1

(g2+S )3 (u2+S )3

S~ ——min( ~2co+2co"+q»2 —(q» —q) ~,(q»+u) (

Sx——max (
[2co+2co"+q»' —(q»+q)x(, )2co+2co"+q» —kg (,(q» —u)~) .

Proceeding in a similar way, we have obtained the following result for ImX&'(co):

3 qu

0 for t) (t2
g(q ~q~co ~co)= 1 1

for t2 ~ t&(u'+t2)' (u'+t&)'

t) ——mm ( )2 co2co" +q* (q* —q) ), (2c—o 2co"+q» kF—[,{q»+u) —),
t2 ——max( [2co 2co"+q—»~ (q»+q)—(,(q» u)

J
. —

However, Eqs. (85) and (86) have been obtained by taking
~

k.r ) -e' " ' '. Now, by using an OPW, we

must substitute the factor (s, r
~

e' q ' '
~

e' " ' ' )=4,(k —q ) [see Eq. {82)]by

(s, r
~

e' q ' "
~
k, r ) =4,(k —q) —4,(k)p(q) .

In this way, the full expression for ImX&'(co) is given by

3» d3 4
ImX~'(co) =m' f dco" f 3 3

n (q» —ku)lm[eRp~(q, co")]—"(2m) (2m) q

X@g(q»—q ) 1—p(q )
@g —q»+ ko

X5(co+co"——,( —q»+q+kz)2 —q v) .
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A good approximation to this equation can be ob-
tained by taking

4, ( —q ~+ q+ ko) =1.
4g( —q ~+ ko)

We have checked that in the limit v~0, the most
unfavorable case, the accuracy of this approxima-
tion for ImX„"' is better than 70%. Then, the ef-

feet of the OPW is embodied in the factor

~
1 —p(q) ~, in such a way that the full expression

for ImX&'(to) [or ImX&'(to)] is given by Eq. (85)
[or (86)] by including

~
1 —p(q)

~

2 in it. These fi-
nal expressions, edith eo substituting to E'Rph, 11ave

been Gnally used to compute Im
~

Xz'
~

and
Im /Xg'f.
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