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The electronic structure of liquid La is calculated by applying the linear combination of
atomic orbitals method to a cluster of 365 atoms. Although the s and d bands are of
nearly the same width and are strongly hybridized in the solid, we find that in the liquid
the s states retain their propagating character much more so than do the d states. This
suggests, tentatively, that in the calculation of the conductivity it is more nearly correct to
treat only the s electrons as current carriers than to regard both s and d electrons as con-

duction electrons.

I. INTRODUCTION

The electronic structure of lanthanum is interest-
ing for several reasons. The s and d valence bands
are of nearly the same width and occupy nearly the
same energy range. Thus it is necessary to treat
them on an equal basis, in contrast to the iron
series transition metals in which the s bands are
weakly bound while the d bands are tightly bound.

The Hall coefficient is positive for both solid
and liquid La. Now the Fermi surface is dominat-
ed, over at least some neighborhood of the {100}
directions, by an inverted (holelike) d band (see
Fig. 1). This raises the question of whether the
sign of the Hall effect might be due to the survival
of this band upon melting.

Calculations of the electrical resistivity of liquid
transition! and rare-earth metals® have often been
based on the assumption that the s electrons, but
not the d electrons, are the effective current car-
riers. This assumption has been criticized. Clearly
it has no a priori plausibility when the s and d
bands are nearly coextensive, as is the case for La,
but a calculation of the electronic states in the
liquid phase is necessary to resolve the issue.

For these reasons we present a linear combina-
tion of atomic orbitals (LCAO) calculation for a
cluster that simulates a sample of liquid La. The
model includes only the s and d valence bands.
The narrow unoccupied f band is omitted from the
model because it is sufficiently far above the Fermi
energy to have no effect on electronic transport.

Section II describes the version of the LCAO
method that we use, and it is tested in Sec. III by

25

calculating the band structure of fcc La. Sections
IV, V, and VI describe the construction of atomic
clusters to simulate the liquid state, and the calcu-
lation of their electronic structure. Finally the
conclusions are summarized in Sec. VII.
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FIG. 1. s and d bands for fcc La along the [100]
direction. The point X is a distance 27/a ==0.6276 a.u.
from the zone center (I'). Lengths are in atomic units
(Bohr radii) and energies are in Rydbergs. The narrow
f band at about 0.7 Ry is omitted from the model.
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II. LCAO METHOD

A. Overlap of basis functions

In this application of the LCAO method, we ex-
press all wave functions and potentials as linear
combinations of Slater-type basis functions of the
form

fimla,F)=e = pm+I=1ymp) (1

Thus the first problem is the computation of the
overlap integral for two such functions centered on
different atoms. Although several of these in-
tegrals have been evaluated in the past, they are
scattered throughout the literature in various nota-
tions and often expressed in an inconvenient coor-
dinate system. For this reason, as well as the pos-
sibility of errors in published formulas, we have
chosen to generate all the overlap integrals in a
systematic fashion that is most convenient for
computation.

An integral of the form (f(T),f,(F—R)) is a
convolution, hence its Fourier transform is the
product of the Fourier transforms of f(T) and

f2(T). [Here f,(T) denotes f,’:i,,l(al,f’).] These

can readily be obtained for the case n; =n,=0.
The inverse Fourier transform can be evaluated by
contour integration, and the overlap integrals for
ny and n, >0 can be generated by differentiation
with respect to ; and «,.

Though simple in principle, this calculation is
too tedious to carry out by hand for any but the
simplest cases. However, the necessary evaluation
of the residues at high-order poles, differentiation
to generate values of n; and n, >0, and the use of
I’'Hospital’s rule to obtain the limit a;=a, were
conveniently performed analytically by means of a
program written in the symbolic computing
language FORMAC73. The resulting formulas for
(f1(T),f2(F—R)) as functions of a;,a,, and R,
which are too lengthy to reproduce here, are au-
tomatically expressed in FORTRAN notation and
may be compiled for numerical evaluation.

B. The eigenvalue equation

The eigenvalue equation
H|$)=E|¢) )

is transformed into a matrix equation by expanding
in a suitable set of atomic orbitals,

|9y=23 ') 3)

whence (2) yields
3 H'je!=Ec! )
j

with
H'j=3 (S gHy, Sy={(¢;|¢;),
k

and
H;=(¢;|H|¢;) .

The raised and lowered indices emphasize the anal-
ogy with covariant and contravariant components
in geometry, a distinction that is necessary when-
ever the overlap matrix S;; is not diagonal.

An important advance in the theory was made
by Anderson,’ who showed that the “best” atomic-
like orbitals for describing a band of eigenfunctions
of the Hamiltonian

H=T+3V,, (5a)
a

where V, is the potential centered on atom a, are
determined by the equation

T+Va+2Vz$s |¢:)=¢€; ;) . (5b)
b#a

The effects of all atoms except a are contained in
pseudopotentials of the form

Vi= [1—% | ¢p){dg] ]Vb ,

which is weaker than the atomic potential because
the projection onto the orbitals on atom b has been
subtracted.

It can be shown from (5b) that

H';=(¢;|Vi|¢;) (6)

for orbitals i and j centered on different atoms,
and H';=58;;¢; when i and j are on the same atom.
In spite of appearances, (6) does not neglect the
nonorthogonality of orbitals on different atoms.
By means of a numerical example, Anderson
showed that although the perturbation of | ;) by
the pseudopotential term in (5b) is not negligible,
nevertheless it is sufficient for the evaluation of (6)
to approximate |¢;) by atomic orbitals that are
simply eigenfunctions of T+ V,.

C. Exchange and correlation effects

Although the total potential can always be writ-
ten formally as a sum of contributions centered on
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each atom as in (5a), one may not merely superim-
pose free atom potentials to obtain the total. This
is so even if the total electron density is given by
the sum of atomic electron densities, because the
exchange-correlation potential is not linear in elec-
tron density. The Hohenberg-Kohn-Sham* modifi-
cation of the Slater exchange potential,

1/3

V(D)= —aze?s %p(f’) , 7

where p(T’) is the electron density, e is the electron
charge, and a, =% has been used to compute self-
consistent orbitals for a single atom. In calculating
the overlap of this atom with a similar neighboring
atom at relative position R, the sum of the atomic
potentials must be corrected for nonadditivity of
V, by adding the term

8V, (P)=—c{ [p(P)+p(F—R)]'/?
—[pD]"=[p(r-RI}.  ®

The value of the constant ¢ is implicit in (7).
The transfer matrix element (6) should now be
computed as

Hy=(¢; |V ¢;)+(¢: | 8Vy | 8;) ©)

where V; is the free atom potential on the same
center as ¢;. The second term partially cancels the
first, and incidentally explains why Bromley et al.’
found it necessary to apply an ad hoc reduction
factor to their two-center integrals, which were just
the first term of (9).

The second term of (9) does not have the form
of a two-center integral and so it is difficult to
compute. But fortunately, 8V, (T) is slowly vary-
ing (see Fig. 2), and it may reasonably be approxi-
mated by a constant over the region of overlap of
the neighboring orbitals.

III. BAND-STRUCTURE CALCULATION

In order to test the method, the band structure
of fcc La was computed. Self-consistent atomic
orbitals were obtained, using (7) to approximate ex-
change effects, and the transfer matrix elements (9)
were then computed. But since the objective is not
primarily to study crystal band structure, but rath-
er to obtain realistic LCAO parameters for appli-
cation to the liquid state, two adjustable parame-
ters were used. The difference between the s and d
atomic levels was adjusted to yield the correct
separation between s and d bands at the zone
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FIG. 2. Contours of 8V,(T) (Ry), the nonadditive
part of the potential of two atoms. One atom is shown
on the +x axis, the other being the same distance from
the origin along the —x axis.

N

center, and the constant 8V, was adjusted to yield
the correct s band width (X4 —1I')), as earlier com-
puted by Glotzel and Fritsche.® The value so ob-
tained, 0.176 Ry, is apparently consistent with an
average of 6V, (T) over the bonding region. The
same value yields a good shape and width for the d
bands in the [100], [110], and [111] directions.
The only significant difference between our band
structure (Fig. 1) and that of Glotzel and Fritsche
is the depression of the lowest two bands at X in
our results. Indeed, our results for zero pressure
resemble their results at elevated pressure as far as
this feature is concerned. However, since the qual-
itative features of the band structure that are
relevant to this work (see Introduction) are present
at both high and low pressure, we shall not con-
cern ourselves further with the comparative accu-
racies of our band-structure calculation and those
of others.

IV. SIMULATION OF THE LIQUID

A cluster of 365 atoms, representing a sample of
liquid La, was generated by the Monte Carlo meth-
od, using as the interatomic potential

(XS —X"%Y+H, X<2

with X=r/rq, r0=5.669 a.u., c=1.0 eV,
H=0.0469 eV. This form was suggested by inver-
sion of the hypernetted-chain (HNC) equation’ to
obtain ¢(r) from the measured structure factor,?
but the scale parameter r, was empirically adjusted
since the inversion of the HNC equation is known
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to systematically overestimate the radius of the
repulsive core. The cluster is in a cubic volume,
surrounded by periodic replicas of itself to avoid
surface effects.

The simulation was performed for a temperature
1243 K, slightly above the melting point, from a
fce lattice as the initial configuration. Three cri-
teria were used to determine the reaching of equili-
brium:

(a) The fluctuations in energy no longer have
any systematic component.

(b) The pair-distribution function reached a
stable limit that does not exhibit peaks characteris-
tic of the crystal.

(c) Slices of the cluster were examined graphical-
ly to see whether the atoms still tended to lie in
lines parallel to the initial crystal axes.

These three criteria are successively more difficult
to satisfy.

The first and second criteria were satisfied after
150 iterations of the Monte Carlo program (that is,
each of the 365 particles attempted to move 150
times). The model pair distribution g(r) was in
reasonable overall agreement with experiment, but
the first peak was somewhat too sharp. A further
100 iterations were performed for a temperature
17% higher, equivalent to reducing the strength of
®(r), yielding the pair distribution shown in Fig. 3,
for which the third criterion is also well satisfied.
The remaining discrepancy between the model g(r)
and experiment is due to the repulsive core of our
potential (10) being somewhat too hard. The re-
sults for electronic structure should not be serious-
ly affected by this detail.

The electronic structure calculations were per-
formed on clusters with free surfaces (the periodic
replication being used only during the generation
of the clusters). The results for the cluster which

0
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FIG. 3. Radial distribution function for liquid La
near the melting point, according to experiment (Ref. 8)
(smooth curve) and as simulated in a cluster of 365
atoms (histogram).

was produced by 150 iterations [for which criterion
(c) was not quite satisfied] did not differ signifi-
cantly from those (Figs. 4 and 6—8) for the final
cluster. This confirms that our clusters are ade-
quately representative of the liquid state, even
though 250 iterations of the Monte Carlo program
are a rather small amount for a simulation.

V. THE RECURSION METHOD

The theory and applications of the recursion
method have recently been reviewed.” By repeated
application of the equation

Hlun) =ay |un)+bn+1‘un+l>+bn Iun—1>

one generates a chain of functions which form the
basis of a tridiagonal representation of H. For the
nonsymmetric matrix (9), we used the two-sided re-
currence method,!® in which the above equation is
supplemented by a similar one for H'. The tridi-
agonal form for H leads directly to a continued
fraction representation of the Green’s function,

Gy (E)=(u|(E—H)"'|u), (11

where |u )= |ug) is the arbitrary initial vector
chosen to begin the recursion. The imaginary part
of the Green’s function yields the projected density
of states on the vector |u),

n,(E)= lim —IlT—ImGu(E+ie)

€e—0

=3 (u|¢,)8E—E,). (12)
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FIG. 4. Local density of states on a central atom in
the liquid cluster by the following two methods: solid
curve, Eq. (12) with imaginary part €=0.03 added to
the energy, and dashed curve, Cambridge subroutine
RECTAB, which differentiates an approximation to the
cumulative distribution. The units of state densities are
electron states per Ry atom in Figs. 4—8.
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Here |, ) and E, are the true eigenvectors and
eigenvalues of the Hamiltonian. It has been com-
mon to take |u) to be a localized orbital on some
atom, in which case (12) is called the local density
of states (DOS). We shall sometimes take |u ) to
be an extended wave function in order to investi-
gate the propagating character of the states. The
projected density of states onto a multidimensional
subspace is obtained by summing the projected
densities on an orthogonal set of vectors that spans
the subspace.

In practice, the Green’s function is computed for
a finite cluster of atoms and the continued fraction
is truncated at some finite level. Either of these
truncations causes the density (12) to be strictly a
set of delta functions. There are two practical
methods for obtaining a smoothed spectrum. The
first is to keep the imaginary part of the energy in
(12) nonzero and at least as large as the spacing be-
tween delta functions. This method is always ap-
plicable, but it may obscure detail and it replaces
band edges with Lorentzian tails. The second
method is based on differentiation of the mean of
upper and lower bounds to the cumulative distribu-
tion. It is implemented in subroutine RECTAB of
the Cambridge Recursion Library.!! It yields ap-
parently superior results in many cases, but is
sometimes unusable because it can preserve some
unbroadened delta functions. The two methods are
compared in Fig. 4. The oscillations in the first
case are associated with the truncation of the con-
tinued fraction, and have no physical significance.
Figures 6—8, for the liquid state, were made by
the second method; however, for a crystal (Fig. 5),
only the first method gave a reasonable result. A
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FIG. 5. d state spectra for a crystal cluster for
f:(0,0,0) (dashed curve) and E:(0,0,0.SOZI a.u.) (solid
curve), with €=0.02 Ry. Small deviations of the peak
positions from the bands of Fig. 1 are due to the finite
size of the cluster.

third method, extending the continued fraction to
infinite order by means of an estimated asymptotic
form of the coefficients, was found to be ineffec-
tive.

From the peaks of the projected densities of
states onto the Bloch-like vectors,

luy=3 e  "|¢;), (13)
j

one can obtain the band structure for a crystalline
cluster (Fig. 5). The sum over atoms in (13) is
done for a particular (/,m) type of orbital, and the
densities summed to obtain all bands corresponding
to a given k. The subspace spanned by wave vec-
tors +k and —k can more easily be treated by
using sin and cos instead of the complex exponen-
tials. Each curve in Fig. 5 is the sum of ten pro-
jected densities, for sin and cos, and for
m=—2,...,2. Spurious peaks that do not corre-
spond to any actual band may sometimes occur,
however they can be distinguished from physical
peaks by varying the length of the continued frac-
tion and by varying the size of the cluster. Of
course this method is impractical compared to the
usual k space methods of crystal band structure
computation, and it is presented only to demon-
strate its effectiveness before applying it to the
liquid state.

iK-K

VI. RESULTS FOR LIQUID La

The Hamiltonian matrix (9) was computed from
the same atomic orbitals, potentials, and fitted
parameters that were determined for the crystal
(Sec. III). The matrix elements for a liquid cluster
were calculated as a function of the actual intera-
tomic separations of the atoms, rather than assum-
ing fixed values for “nearest neighbors,” as has
often been done. To keep the size of the matrix
within reasonable bounds, all overlap integrals were
cut off at a distance corresponding to second-
nearest neighbors in the crystal. The clusters of
365 atoms are cubic in shape with free boundary
conditions for the electronic structure calculations.
All results illustrated are for the final cluster (250
Monte Carlo iterations), since the results showed
no significant differences between clusters.

Figures 6 and 7 show the s and d state spectra
for several values of k in (13). There is no signifi-
cant dependence of the results on the orientation of
k with respect to the sides of the cube. The s state
spectrum exhibits well-defined peaks, although
they are quite broad in the midband region where
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FIG. 6. s state spectra for liquid La. From left to
right k =0, 0.1255, 0.2511, 0.3766, 0.5021, and 0.6276
(inverse Bohr radii).

sd hybridization is strong. The positions of the
peaks yield a well-defined dispersion relation,
which strongly suggests that these are propagating
states. On the other hand, the d state spectrum is
broad, without well-deﬁne_q peaks, and exhibits
very little dependence on k. Indeed, all curves of
Fig. 7 are quite similar to the local density of d
states on one atom. Just as a flat band (E indepen-
dent of k) is indicative of localized atomic states
in a crystal, so the k independence of these results
suggest that the d states in liquid La are nearly lo-
calized. We are not claiming localization in the
sense of the Anderson transition, but merely that
the propagating character of the d states has been
severely curtailed by the disorder.

The bulk density of states can be estimated from
the local density of states on atoms away from the
surface. Figure 8 shows the s, d, and total densi-
ties of states for liquid La, calculated as an average
over three central atoms. There is very little varia-
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FIG. 7. d state spectra for liquid La for k=0,
0.1883, 0.3766, and 0.6276. As k increases, the width of
the curve increases and the height decreases.
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FIG. 8. Total density of electron states per atom,
with s and d components shown, for liquid La. The
sharp structure near the top of the band is an artifact of
the imperfect smoothing routine (RECTAB).

tion from one atom to the other. There are 0.3 s
electrons and 2.7 d electrons per atom.

VII. CONCLUSIONS

The most striking conclusion is that in spite of
the s and d bands being about equally wide and
strongly hybridized in the crystal, the s band re-
tains a clearly defined dispersion relation upon
melting whereas the d band does not. The disorder
is apparently more effective in disrupting the prop-
agating character of d states than of s states.

The conjecture that the inverted d band that
dominates the Fermi surface in the crystal might
survive into the liquid state is not supported, so no
explanation is provided for the positive Hall coeffi-
cient in liquid La. ’

Because s states appear to retain their propagat-
ing character in the liquid more effectively than d
states, these results suggest that it is more nearly
correct to regard the dc conductivity as being due
to only s electrons than to regard the s and d elec-
trons as participating equally in conduction. The
tentative nature of this conclusion must be
stressed, and a proper LCAO calculation of the
conductivity is needed to determine the relative
contributions of s and d electrons.

Note added in proof. In view of the conclusion
that the propagating character of s states survives
while that of d states is severely disrupted, one
may wonder what would happen to p states. Using
a similar model in which p states replace the d
states, we find the k dependence of the p spectra
to be strong but less sharply peaked than the s
spectra of Fig. 6.
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