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The two-dimensional +J model (antiferromagnetic and ferromagnetic bonds at random) is
studied by transfer-matrix and Monte Carlo calculations. Large clusters of spins pointing in one
direction are found for 0.12 < x =<0.16 (x being the concentration of negative bonds). Evi-
dence against a phase transition at finite temperature is found by investigating the correlation

function (SySg )2

I. INTRODUCTION

The thermodynamics of two-dimensional Ising lat-
tices with random exchange interactions have been
studied extensively in the context of the spin-glass
problem.!™ The question of a phase transition has
been heavily debated. At the present time there ex-
ists a lot of (mostly numerical) evidence against a
phase transition in all short-range interaction models
considered so far.*% On the other hand, experimen-
tal results are still ambiguous concerning this ques-
tion.

In the most abstracted case, the +J model (antifer-
romagnetic and ferromagnetic bonds at random).
Transfer-matrix calculations (TM) showed for the
correlation function {(SySg)?} (two spins in distance
R) a power law decay with R at temperature T =0
for a concentration x =0.5 of negative bonds. For
finite temperature an exponential decay is seen. At
lower concentrations of negative bonds not all aspects
of the system are investigated so far. Monte Carlo
(MC) calculations*” found a breakdown of the fer-
romagnetic order at x =0.12 £0.1. This effect was
also seen by TM at the same concentration® consider-
ing the ferromagnetic susceptibility

kgTX f 1 )

Several analytical calculations showed qualitatively
similar results.” But the question of an equilibrium
phase transition slightly above the breakdown con-
centration of the ferromagnetic order was not con-
sidered. In a recent publication, Maynard et al.!
mentioned the possibility of a ‘“‘random antiphase”’
for 0.10 =< x =0.15 characterized by the existence of
long-range order and zero magnetization, the latter
already seen by MC and TM. The present work now
applies the most powerful tool so far in questions of
phase transitions in spin-glasses, the TM, in this case
considering the decay of the correlation function
{{SoSr }?}av at zero temperature.

II. +JMODEL AND TRANSFER-MATRIX METHOD

We consider the Ising Hamiltonian with random
nearest-neighbor interaction {J;} for an L x M square
lattice

-Bx =3 J;S:S; , )
(% jRivj

where we have for the J;;’s the probability distribu-
tion

P(Jy) =x8(J +J;) + (1 —x)8(J - Jy) (3)

In the present work we mainly consider the range
0.09 < x <0.16.

The transfer-matrix method TM computes the free
energy recursively, starting by generating the statisti-
cal factors for all 2~ states of the spins in the first
row. When the first spin of the second row is added,
the trace over the first spin of the first row is taken,
and so on. Adding spins TM has to update the sta-
tistical weights at each step, generating recursively
the partition function Z, or, in order to keep
numbers small (1/LM) InZ, the free energy. At each
step 2~ states have to be kept. Therefore the storage
requirement for the computation sets a limit. Thus
only small lattices (here mainly 20 X 12 and 12 X 16)
can be treated. The correlation function {SySg)? is
obtained by numerical differentiation after fixing the
spin S, on the free boundary (we have cylindric
boundary conditions) and applying a small magnetic
field on the spin Sg. The quenched average value
{...}a is approximated by averaging over only about
50—120 random configurations leading to ‘‘small
enough’’ error bars as seen from standard statistical
analysis (see Fig. 2).

III. NUMERICAL RESULTS

We introduce cylindric boundary conditions and an
even number of spins in both directions in our systems.
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A. Transfer-matrix results

Figure 1 shows the behavior of the correlation
function {(SoSg )%}y extrapolated to temperature
T=0. TM is only able to treat temperatures down to
kgT/J =0.1; but in comparison to kgT/J =0.15, no
significant differences in the values for the correla-
tion function are seen, i.e., the ground states are al-
ready reached for the small systems.

For all concentrations x =<0.13 we notice a power
law decay analogous to the case x =0.5,

{<S(PSR)%]av=R—P ’ (4)
when ( - - - ) denotes thermodynamically averaged
for T —0.

The decay of the correlation function is related to
the existence of ‘‘nontrivial loops’’ crossing the lat-
tice.® A nontrivial loop is a zero-energy surface sur-
rounding a larger part or, in most of our cases, the
whole lattice. For one particular lattice the correla-
tion function of two spins on both sides of the non-
trivial loop reads

zH-z0) |
(SoSn)t- m] ' ®

where Z (+) denotes the number of states connected
to the nontrivial loop with SoSg =+1 and Z(-)
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FIG 1. {(S¢Sg )3, against distance R for various con-
centrations of negative bonds xat 7 —0. Double-
logarithmic plot.

analogous. While the total number of states

Z =Z(+) +Z(-) is very large, the difference be-
comes very small (as also expected from symmetry
arguments). Thus the sudden occurrence of a very
small number of the correlation function indicates
the existence of a nontrivial loop. The area sur-
rounded by the loop leads to a certain energy barrier
which is proportional to R. Thus a power law of the
correlation function indicates a zero probability for
the existence of an infinite barrier height. Due to
the finite barriers, we have no phase transition at fin-
ite temperature.

At the most interesting concentrations x =0.13 and
0.14, we still obtain a power law decay of {(SoSg)?ay
qualitatively analogous to x =0.5. Thus we conclude
that a phase transition occurs at these concentrations
onlyat T=0. The random antiphase is destroyed by
shells of zero-energy surface, i.e., nontrivial loops.
For concentrations x =<0.12 we obtain a constant
correlation function for larger distances, which is due
to the existence of the ferromagnetic phase in this re-
gion. On the other hand, the existence of nontrivial
loops destroys the ferromagnetic susceptibility! as
shown in Fig. 2. The existence of a nontrivial loop is
caused by the appearance of frustrated plaquettes and
not by negative bonds. Thus Fig. 2 shows a natural
curve of X, only plotted against xr, the concentration
of frustrated plaquettes, where

xr=4[x(1-x)3+x*(1-x)] . (6)
X
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FIG. 2. Ferromagnetic susceptibility kg TX f/N against
concentration of frustrated plaquettes xz. Various lattice
sized (L x L).
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FIG. 3. Ground-state structure of a 20 x 16 lattice for
concentration x =0.14. Open circles denote frustrated pla-
quettes; thick lines between are strings. Dotted lines indi-
cate nontrivial loops. Grey shaped region surrounded by
thinner lines and strings denotes cluster with spins mainly
pointing down. Cylindric boundary conditions.

Plotted against the concentrations of negative bonds,
the curve looks ‘‘unnatural’ in contrast to the feeling
one has from ‘‘ordinary’’ phase transitions. For

x =0.12 we have ferromagnetic ordering. Figure 1
shows, therefore, a constant correlation function for
larger R. This constant increases for smaller concen-
trations as the number of ‘‘defects’’ decreases.

B. Monte Carlo calculations

Particular ground states are obtained by slow cool-
ing down of MC calculations. For the given lattice
the ground-state energy is known from TM and we
are really sure to get a ground state. Figure 3 shows
a typical example of a 20 x 16 lattice for concentra-
tion x =0.14. A nontrivial loop is crossing the lat-
tice. Notice that only one loop is necessary to obtain
different shells with zero-energy surfaces because of
the free boundary in vertical direction. Periodic
boundaries, also in this direction, would destroy the
breakdown effect of (SoSg)? in our small lattices,? as
at least two nontrivial loops are necessary. This

would lead to a too small probability to find them in
our case.

On the other hand, an odd number of spins would
also destroy the described effect, as no balance of
positive and negative ‘‘energy bonds’’ is possible. It
is clear that the thermodynamic limit is well approxi-
mated only by an even number of spins, since the
energy difference between odd and even infinite
loops will vanish.

IV. MAGNETIC WALLS AND SPIN PACKETS

Inside the remaining zero-energy shell we find

' large areas of spins pointing in one direction. In Fig.

3 the grey shaped regions are down spins in contrast
to the not shaped ones. These regions are divided by
magnetic walls consisting of a combination of strings
and negative bonds leading to a large gain of energy
compared to the ferromagnetic case. It has now been
accepted that MC as a dynamic process is able to
simulate the real world of spin-glasses.!'*!! For the
considered concentration x =0.14 we get the same
freezing effect as at x =0.5, but with large up and
down clusters and the related magnetic walls. The
existence of nontrivial loops is neglected.

For larger lattices we expect a network of shells
surrounded by nontrivial loops. This network is seen
in larger lattices,>’ where it is not possible to check
the ground state by TM. On the other hand, 16 X 16
lattices with free boundaries also show typically two
loops, one in each direction.

V. CONCLUSION

The present work shows no evidence for the ex-
istence of a random antiphase. Shells with zero-
energy surfaces surround large clusters of up and
down spins divided by magnetic walls. As for the
case x =0.5 we have a network of zero-energy shells
which should be turned over on a large time scale.
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