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A theoretical method is presented for calculating the complex band structures of a
solid. Using this method, we have studied the evanescent Bloch functions associated with

14 zinc-blende materials for various crystallographic orientations and directions, and have
obtained new insight into the topological structure of the complex bands in solids. The
present application of the general method is based on a 10-band nearest-neighbor tight-
binding model which is capable of producing realistic band structures for most semicon-
ductors and insulators. The method is conceptually simple and computationally efficient.
The evanescent Bloch solutions obtained with the present model can be used to study
various electronic properties associated with solid surfaces, interfaces, and superlattices.

I. INTRODUCTION

During the past decade, there has been a great
increase of interest in solid surfaces and interfaces.
Many theoretical techniques have been developed
to treat these problems. ' In a pioneering paper,
Heine has pointed out that an electronic wave
function near a solid surface (or interface) may be
obtained by matching the allowed solutions on the
two sides of a boundary plane. To match at every
point of the boundary plane, one needs to know all
the solutions of the Schrodinger equation in the
crystal at a given energy E, ' including those asso-
ciated with complex values of the wave vector k,
normal to the surface —the evanescent states. The
relationship between the energy E and the evanes-
cent states is contained in the so-called complex
band structure.

Several calculations of complex band structures
for metals and semiconductors have been previous-

ly performed "with techniques requiring rather
heavy computation for realistic models. In this pa-
per we present a simple and computationally fast
method for calculating the complex band struc-
tures and evanescent states for solids. This method
is based on a realistic nearest-neighbor tight-
binding model in which five atomic orbitals (sp3

plus an excited s-like orbital) for each lattice site
are used. Hjalmarson et a/. ' ' have shown that
with appropriately chosen parameters this model
provides a good representation of the valence bands
as well as the lowest conduction band of almost all

zinc-blende materials. Since our method is concep-
tually simple and computationally efficient, while
taking into account the important features of the
solid, it has immediate application to problems
such as solid surfaces, interfaces, and superlattices.

We studied the complex band structures of 14
zinc-blende materials including C, Si, Ge, u-Sn,
GaAs, GaP, GaSb, A1As, A1P, InAs, InP, InSb,
ZnSe, and ZnTe for the (100), (111),and (110)
orientations. For each orientation, the wave vector
parallel to the corresponding surface k is kept real
and the wave vector normal to the surface k, is al-
lowed to be complex. Here and henceforth, we
shall use k to denote the three-dimensional wave
vector and k to denote the projection of k on the
plane parallel to the surface. We find that for the
(100) and (111)orientations with k = 0, the com-
plex band structures can be obtained through ana-
lytic procedures. For other cases the complex band
structures are obtained through simple numerical
procedures, which involve finding the roots of a
polynomial of order ten or less.

In Sec. II we discuss the basic problem of find-
ing the complex band structure of solids and some
simple mathematical tricks which can be employed
to simplify the problem. In Sec. III we discuss the
method used to obtain the evanescent Bloch states
of the bulk material for the (100), (111),and (110)
orientations. We show that the complex wave vec-
tors k, associated with these evanescent states can
be obtained by finding the zeros of a finite-order
polynomial and that the coefficients of the polyno-
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mial can be obtained easily. In Sec. IV we present
the results for the complex band structures of six
typical zinc-blende materials and various orienta-
tions. %'e discuss the topology of these three-
dimensional band structures and its relation to the
symmetry properties of the crystal. In Sec. V a
summary and some concluding remarks are
presented.

%+1
T i h (~—i —xz2) d (k&) (4a)

parallel to the surface. " To find these coefficients
h' ', we first evaluate the determinant d(k, ) using

Eq. (2) for (X+ 1) arbitrary trial values of k,
(denoted as ki ', A, = jl, . . .,% +1), we then obtain a
matrix equation

II. BASIC PROBLEM

where

i (a—1 —N/2)k&a'
(4b)

The conventional method of obtaining the band
structures of solids is to find the eigenvalues of the
Hamiltonian H(k) as functions of the real wave
vector k, i.e., to solve the Schrodinger equation

H(k )Q =E(k )g.

In this calculation we are interested in the real en-

ergy solutions to Eq. (1) for complex wave vectors
k. In general one can diagonalize the Hamiltonian
matrix H( k) for each fixed complex value of k
and select out the resulting real energy eigenvalues.
This procedure is useful for special cases (e.g., k
= 0) where the real energy solutions are known

(by symmetry considerations) to exist along some
special paths (e.g. , the imaginary axis) in the com-

plex k, plane. Schulman and McGill' have used
this procedure to study the complex band struc-
tures of metals and semiconductors along the spe-
cial directions. For general cases this procedure
has difficulty in finding the correct paths (the so-
called real lines) on which the real energy solution
lies.

The alternative is to find the solution k, to Eq.
(1) for each fixed real values of E and k.
Equivalently, one finds the zeros of the deter-
minant function

The coefficients h '~~ can be obtained by multiply-

ing T ' on both sides of Eq. (4a) and the complex
k, solutions are simply the roots of the polynomial
given in Eq. (3).

For zinc-blende materials, the TB Hamiltonian
matrix H( k) as a function of the wave vector k
can be written in the block form

A V(k)
V'(k) C

where A, C, V(k), and V'(k) represent the anion-
anion, cation-cation, anion-cation, and cation-anion
interaction matrices, respectively. In the nearest-
neighbor tight-binding model with five atomic or-
bitals per site, ' ' the off-diagonal elements of the
matrices A and C all vanish and the diagonal ele-

ments are given by the on-site atomic energies:

p p pAii =~a~~a~~a~~a~~a

and

Cgg'EQfEQ6QpEQpE'q, l =1, . . . , 5.S S P P P

The anion-cation interaction matrix is given by

d(k, ) =det[H(k, k, ) —E le], (2)
V~J(k) =P,qg„(k),

where 10 is an identity matrix. In a tight-binding
(TB) approximation, the determinant d(k, ) is in

k
general a polynomial in the variable g= e '
where a' is the distance between two adjacent
layers parallel to a given surface, i.e.,

N/2

d(k, )= g h' 'e
cr =—N/2

(3)

where N is the order of the polynomial, which
equals 2m (m being the number of neighbors in-
cluded in the TB approximation) times the number
of independent atomic orbitals on an atomic plane

P= —V,—

—V,—

V,s

—Vs,p

—V, ,p

V,— V,— V,

V,~ Vs~ Vs~,

Vxy V~y

V„y V „V~y
—Vs p Vy Vxy

and

wherepij and n,j are elements of the 5 & 5 ma-
trices P and n defined by
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0 0 1 2 3
0 0 1 2

n= 1 1 0 3 2
2 2 3 0 1

3 3 2 1 0

The cation-anion matrix V'(k) is related to V(k)
by

(7b}

] i(k)+k2+k3)a/4 i (kl —k2 —k3)a/4g„=—, (e +e &2n &3n

i ( —kl+k2 —k3)a/4+e &1n&3n

VJ(k) = VJ;( —k). (8)

It should be noted that for real k, V'(k)= V+(k),
the Hermitian conjugate of V(k). In Eqs. (6)—(8)
we have written the nearest-neighbor interactions
in terms of the product of a k-independent matrix
Pj (which contains all the nearest-neighbor param-
eters) and a parameter-independent matrix g„(k ).

lJ

The functions g„(k); n = 0, 1, 2, 3 are defined in
Ref. 15. We find that they can be expressed in a
compact, symmetric form as

A E—10 V( k ) '.
I,

Y'a

0 D(k) (13)

where

D( k )—:—V'( k )(A —E lo) ' V( k )

+ C—E1p. (14)

Since A and C are diagonal, Eq. (14) can be written
more explicitly as

D,z(k) = —QPk;Pkjg„„( —k)g„„(k)/ak
k

+ c;5g), (15)

where

and

ak =Akk —E,

c =—C- —EI lI

In Eq. (15}we used the r'elations (6) and (8). Com-
paring Eq. (13) with (2), we find

where

k2+ k3 )a /4+e &in&2n )»
5

d(k, )= g a; det[D(k)]. (16)

&nn' = '
+1 for n =n'
—1 for nQn'

(10)

and a is the lattice constant. This tight-binding
model includes 13 empirical parameters, i.e., E'„

$ p $ $ p~at ~at ~QF ~pl ~Qp ~syp& ~sop& Vs p ~s p~ ~ss~ ~xx~S IP 1

and V„~. Those parameters which yield a good fit
to the band structures of 14 zinc-blende sernicon-
ductors can be found in Refs. 13 and 14. Combin-
ing Eq. (1) with (5), we write

It should be noted that Eq. (16) holds true for arbi-
trary values of E, since according to Eq. (2), d(k, )

is also a polynomial in E and the factor (g,. ia;)
should cancel all the poles of det [D(k)] in Eq.
(16}. We have thus far reduced the problem to
that of finding the zeros of a five-dimensional
determinant function d(k, ). In Sec. III we discuss
how to find the evanescent Bloch states for various
faces.

III. EVANESCENT STATES FOR
(100), (111),AND (110) FACES

A E lp V(k)—
V'(k) C E1—

l(», = —(A —Elo) 'V(k)Q, (12)

into Eq. (11) and obtain

where g, and g, are five-dimensional column vec-
tors, denoting the anion and cation components of
1(», respectively, 10 denotes an identity matrix of di-
mension five. For energy E not equal to E'„e'„or
e „we may substitute the equation

To find the evanescent states associated with a
given surface, we first specify the energy E and the
wave vector parallel to the surface k. Only real
values of k are of interest, since the Harniltonian is
invariant under the translation parallel to the sur-
face or interface of concern. As mentioned in Sec.
II, the complex wave vectors k, associated with the
evanescent states are simply the zeros of the deter-
minant function d(k, ), which is a finite polynomial

ik a' —ik a'
in e ' and e ', a' being the distance between
two adjacent layers. The procedure of obtaining
the evanescent states will be discussed below for
the (100), (111),and (110) faces, separately.
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A. (100) face

f' '(k) '
] (17)

It is noted from Eq. (9) that we can write the
functions g (k) as the sum of two terms, propor-

i a'/2 ik a'/2
tional to e * and e ', respectively, with
a'—=a/2 being the distance between two adjacent
layers parallel to the (100) plane, viz. ,

ga(k)=-, [f'"«)e '

the product of a quadratic and a cubic polynomial
for the variable g= cos(k,a/2). The two roots of
the quadratic polynomial are degenerate and can be
expressed as

)=2 [ (e~ E—)(E~ E) ——V„y]/( V~ —V„y)—1.

(21)

The roots of the cubic polynomial are somewhat
lengthy to write down, but can be handled analyti-
cally without difficulty.

where

~(+), — i(k)+k ) 2/a2 B. (111)face

and

—i (k
&
+k2)a'/2+ E'1n62n

k ' 2

—i (k
&

—k2)a'/2+e 1n 63n

(18a)

(18b)

For the (111)face, we define a new coordinate
system in which the wave vectors k [parallel to the
(111)plane] and k, [normal to the (111)plane] are
given by

1
(ki+k2+ k3),v3

From Eq. (6) it is obvious that the nearest-neighbor
interaction matrix V(k) can also be written as the

ik a'/2
sum of two terms proportional to e * and—ik a'/2
e ', respectively. Physically these two terms
represent the couplings of a given atomic plane to
the adjacent plane on the right and left sides,
respectively. Substituting Eqs. (17) and (15) into
(16), one can show that the function d(k, ) can be
written in the polynomial form as in Eq. (3) with
N= 10.

The problem can be further simplified by ex-
ploiting the symmetry properties of the crystal.
The zinc-blende crystal has a mirror plane parallel
to the (100) face. As a result the coefficients
h' '(k) are all real. Furthermore, since the Hamil-
tonian is Hermitian for real k„we have

h'-'(k) =h"'(k). (19)

Therefore, Eq. (3) can be rewritten as

d(k, )= g C„(k)P,
n=0

where g= cos(k, (2/2) and C„are related to [h' '
)

by a simple transformation.
For the special case k = 0, the complex band

structure can be obtained analytically. It is noted
that when k = 0, g2 ——g3 ——0 and the Hamil-
tonian H(k) is immediately decomposed into 4
)& 4 and 6 )& 6 matrices. Following the reduction
procedure discussed in Sec. II, one can show that
the determinant function d(k, ) can be written as

ki =(ki+k2 —2k3)/3/6,

k2 ——(ki —k2)/v 2,

(22)

f( —)(k) 2 ] (23)

where

f„'+'(k):—1

and

( )
— i()/2/3K(+v 2k2)a/4
k —= e 2n 63n

i()/2/3k( —v 2f&)a/4+e ~1n &3n

i~2/3 E(a/2—
+ e &1n&2n

(24a)

(24b)

In similarity to the (100) face, the coefficients
f„'+-'(k), when multiplied by the matrix elements

PJ for the nearest-neighbor interaction parameters,
represent the couplings of a given plane with the
adjacent atomic plane located on the right and left
sides, respectively. Here we have assumed that the
atomic plane on the right side is more distant than

where (ki, k2, k3) is the wave vector defined in the
original coordinate system. In the new coordinates
we write the functions g„(k) as the sum as a term

3ik a'/4
proportional to e ' and a term proportional top
e ', where a':—a/3/3 is the distance between
two adjacent atomic layers parallel to the (111)
plane, viz. ,

g„(k)= —, [f„'+'(k)e
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5 4

d(k, )= g C„P+~ g C„„g"=0, (25)

that on the left side. Substituting Eqs. (23) and
(15) into (16},we obtain a polynomial equation as
in (3) with N = 10. The coefficients h' '(k) in
Eq. (3} for the current case are no longer real num-

bers, because of the lack of reflection symmetry for
the (111)face, unless k = 0. However, Eq. (19)
remains valid and (3) can be rewritten as

k) ——k3,

kz=(ki —k2)/v 2,

k, =(ki+kz)/v 2,

(27)

where (kik2, k& ) is the wave vector in the original
coordinate system. The g functions written in the
new coordinates are

n=0 n=0 ] ik/a/4 ik a' —ik a'
g„(k)=—, [e ' (e ' +ei„e2„e '

)

2[4(e~ E)(ef E) —(V~+ V—~y) ]—

[(V —Vy)(3V +Vi, )]
—1. (26)

The analytic expressions for the roots of the cubic
polynomial are somewhat lengthy and, hence, are
not presented here.

C. (110) face

For the (110) face, a convenient coordinate sys-

tem is chosen such that the wave vectors k and k„
which are parallel and normal to the (110) plane,

respectively, are given by

where C„, n =0, . . . , 10 are real coefficients, relat-
ed to the real and imaginary parts of h' ', o
=0, . . . , 5, g:—cos(k,a/v 3), and il = sin
X (k,a/v 3). Equation (25) can be transformed
into a 10th order polynomial equation for the vari-

able g, since i} = + (1—g~)'/.
As for the (100) face, the k = 0 case for the

(111}face is analytic. From Eq. (23) it is noted
that g$ g2 g3, when k = 0, and the Hamil-
tonian H(k ) can be block diagonalized by a unitary
transformation in which the x,yg orbitals are
transformed into the co,u, u orbitals defined by

= 1co:— (x+y+z},v'3

1u= (x —y),V2

1 (x+y —2z).v6
The transformed Hamiltonian is decomposed into
a 4 )& 4 matrix and a 6 )& 6 matrix. Using the
same reduction procedure described above, we can
write d(k, ) as the product of a quadratic and a cu-
bic polynomial for the variable g= cos(k, a/2W3).
The two roots of the quadratic polynomial are de-
generate and are given by

+ f„(k)], (28)

where

(29)

and a'—=o/2~2 is just the distance between two
adjacent layers parallel to the (110) plane. Unlike
the previous cases, the g functions for the (110)
face each contains three terms, the first two being

ik a' —ik a'
proportional to e ' and e ', respectively, and
the third being independent of k, . This is not
surprising. The (110) plane contains both cations
and anions, whereas the (100) or (111}plane con-
tains either cations or anions. The first two terms
in Eq. (28) couple a given atomic (110) plane with
an adjacent one on the right and left sides, respec-
tively. The third term simply represents the in-

tralayer coupling between cations and anions.
Substituting Eqs. (28) and (15}into (16), we then

obtain a polynomial expression for the function
d(k, ) as in Eq. (3) with N = 20. Because the re-
flection symmetry is preserved for the (110) face,
all the coefficients, h' '(k) are real numbers. Us-

ing the property that h' '(k)=h' '(k) [from Eq.
(19}],we rewrite Eq. (3) as

10

d(kg)= g C„P, (30)

where g
—= cos (k,a/2W2).

For the special case k = 0, the Hamiltonian
matrix H(k) can be decoupled into 2 X 2 and 8 X
8 matrices. This is easily seen by transforming the
x and y basis orbitals into the u+ and u orbitals
defined by u+ =(1/~2)(x+y). The determinant
function d(k, ) can therefore be written as the pro-
duct of a quadratic and 8th-order polynomial for
the variable g'. The two roots of the quadratic po-
lynomial are given by



610 YIA-CHUNG CHANG

I+2[(e~ E—)(of E—)]' V~ —V

(V —V~)

(31)

IQ

The expression (31) will be used later to examine
the analytic properties of the associated complex
band structures.

The polynomial d(k, ) in Eq. (3) has been re-
duced to various forms given by Eqs. (20}, (25),
and (30) for the (100), (111),and (110) faces, re-
spectively. Instead of using Eq. (4} to obtain the
coefficients h' ' and transforming them into C„ in
Eqs. (20), (25), and (30), we find it more convenient
to obtain C„directly from the relation

E(ev)

-10—

si[

M —1

g T„'„C„=d„, (32)

where d& are the determinants evaluated using Eq.
(16) at M trial points kz, M = 6, 11, and 11 for
the (100), (111),and (110) faces, respectively. T&„
= cos"(k&a') for the (100) and (110) faces and

cos"(k„a') if n & 5
T'„=' . , „6, . (33)sin(k&a')cos" (k„a') if n & 6

for the (111)face. The coefficients C„are ob-
tained by multiplying (T') ' on both sides of Eq.
(32} and the polynomial equations (20), (25), and
(30) are solved numerically for various faces.

-15
I

I

I

0.5
Imkz

0
I

0.5
Rek,

(
27K

)0

I

0.5
mkz

FIG. 1. Complex band structure of Si along [100]
direction. Real bands (solid curves), imaginary bands of
the first and second kinds (solid curves) are plotted in
the middle, left, and right panels, respectively. The real
portion of complex bands (broken curves) is plotted in
the middle panel, and the associated imaginary portion
(broken curves) is plotted in the left or right panels,
depending on whether the end points are closer to the
origin or boundary of the Brillouin zone.

IV. RESULTS AND DISCUSSIONS
IQ

We studied the complex band structures of the
14 zinc-blende materials including C, Si, Ge, a-Sn,
GaAs, GaP, GaSb, A1As, A1P, InAs, InP, InSb,
ZnSe, and ZnTe for the (100), (111),and (110)
faces. The results for the k = 0 case for some
typical materials: Si, Ge, a-Sn, GaAs, InP, and
ZnTe are plotted in Figs. 1 —6 for the [100] direc-
tion, in Figs. 7—12 for the [111]direction, and in
Figs. 13—18 for the [110]direction. The complex
band structures for the other materials are found
to have similar topological features. For example,
C is similar to Si, InAs, InSb, and ZnSe are similar
to InP, and the rest are similar to GaAs.

We classify these complex band structures into
four categories, namely, (1) real bands (Imk, = 0),
(2) imaginary bands of the first kind (Imk, @0and
Rek, = 0), (3) imaginary bands of the second kind
(Imk, +0 and Rek, =k,„,where k,„ is 2m /a,
v 3n/a, and 2v 2m

. /a for the [100], [111],and

E(ev)

-10

-15
I 0.5 0

Imkz —=I=
0.5
Rekz

(
27T

)0

[

0.5
Irnkz

FIG. 2. Complex band structure of Ge along [100]
direction. The notation is the same as in Fig. 1.
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IQ
10

0

/
/

/
/

/-5—
I

I
I a-Sn [100]
I
I
I

—IQ —I
I

E(ev)

—15
I 0.5

Imkz

[110]directions, respectively), and (4) complex
bands (Rek, +0 or km» and Imk, +0). In Figs.
1 —18, the imaginary bands of the first kind, the
real bands and the imaginary bands of the second
kind are plotted in the left, middle, and right
panels (solid lines), respectively. The complex
bands are denoted by pairs of broken lines, with
their real portion plotted in the middle panel and

IO

I I I I

0 0.5 I 0.5
I Rekz = [= Irnk Z

(
27I

)a

FIG. 3. Complex band structure of a-Sn along [100]
direction. The notation is the same as in Fig. 1.

E(eV)

-IO—

-I5
I

I

I

0.5 0
Imkz

0.5 I 0.5
Rekz

I

= ImkzI

(—)
27r
a

FIG. 5. Complex band structure of InP along [100]
direction. The notation is the same as in Fig. 1.

E(—k,')=E(k, ) =E(k,'), (34)

IO

their imaginary portion plotted in the left or right
panels, depending on whether the complex bands
are connected to imaginary bands of the first or
second kinds.

It should be noted that if k, is a solution associ-
ated with energy E, then both —k,* and k,' are
also solutions associated with E, i.e.,

0

E(eV) Ga
E(eV)

/
/

/
/

/
/

/

ZnTe [100]

-IO—
-IO—

-I5
I

Ir
0

I

0.5
Imkz

0.5 I 0.5
Rekz =, = ImkzI

(
271

)
Q

FIG. 4. Complex band structure of GaAs along [100]
direction. The notation is the same as in Fig. 1.

-I5
2

I

I

l.5
I

I

Imkz

0.5 0 0.5
Rekz

(
27T

)

I

05 I

Imkz
I

FIG. 6. Complex band structure of ZnTe along [100]
direction. The notation is the same as in Fig. 1.
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IO 10

Si
E(eV) E(eV) u-Sn [I II]

-IO— -IO—

-l5
I

I

l

0.5
Imkz

0
I

I

0.5
Rekz

(W&7r )

0.5
rmkz

-I5
0.5
Imkz

I

0.5
Rekz

l

0.5
r. mkz

FIG. 7. Complex band structure of Si along [111]
direction. The notation is the same as in Fig. 1.

where k, denotes the complex conjugate of k, .
The first equality in Eq. (34) is the direct result of
time-reversal symmetry' ' [which states that
E(—k e) = E(k)] and the requirement k = 0.
The second equality is due to the fact that H+(k )
= H(ke) which implies Ee(k) = E(k*)." In

IO

FIG. 9. Complex band structure of a-Sn along [111]
direction. The notation is the same as in Fig. 1.

Figs. 1 —18, only the absolute values of Rek, and
Imk, are plotted. The actual solutions can be in-
ferred according to Eq. (34).

%e may consider the complex band structure as
a collection of N continuous complex functions of
E [kx(E), A, =1, . . . , N] where N = 10, 10, and
20 for the (100), (111),and (110) faces, respectively.
These functions when traced in the complex k,

IO

E(eY) Ge [I I I]
E(eV)

GaAs [III]

-IO—

-I5
I

I

I

0.5
Imkz

0
I

0.5
Rekz

(
Jsvr

)0

I

I 0.5
I

='= —Imk z

-I5
I

I

0.5 0
rmkz

l

0.5
Rekz

(~3m )0

I

0.5
Imkz

FIG. 8. Complex band structure of Ge along [111]
direction. The notation is the same as in Fig. 1.

FIG. 10. Complex band structure of GaAs along
[111]direction. The notation is the same as in Fig. 1.
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IO
IO

E(eV) E(ev)

0

-IO
-IO

-I5
I 0.5

Imk,
0.5
Rekz

0.5
Imkz

-l5
I 0.5

Imk,
0.5

Rekz

(z Jz~)
0

0.5
Imkz

and structure of InP a gion 111]FIG. 11. Complex ban s r
The notation is the same as in ig.direction.

r varies from —eo to ao, are hereaf-p gy
real lines. cine

tures of the complex anthe general fea urea

d roposed severalional systems an pro
rules for the real lines. These ru es are
ized below.
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FIG. 15. Complex band structure of a-Sn along [110]
direction. The notation is the same as in Fig. 1.

point in the complex k, plane.
All these rules apply to our complex band struc-

tures with one exception. In Figs. 1 —18 several
real lines are found to cross each other at complex
k, points with Imk, +0 and Rek, = 0 or k,„.
At these points the energy E has an extremum

IO
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I
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0.5
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(2Wzm )a
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Imkz I

FIG. 1"/. Complex band structure of InP along [110]
direction. The notation is the same as in Fig. 1.

when plotted along the corresponding imaginary
axes. According to Heine, it is vanishingly possi-
ble for E(k, ) to be real and dE/dk, to be zero at
the same point in the sense of Herring, ' unless k,
is on the real axis where the first requirement is
automatically satisfied. However, if the complex
band structure has the reflection symmetry, i.e.,
E( —k, ) = E(k, ), then it can be shown that '
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FIG. 16. Complex band structure of GaAs along

[110]direction. The notation is the same as in Fig. 1.
FIG. 18. Complex band structure of ZnTe along

[110]direction. The notation is the same as in Fig. 1.
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pP+pPE= +
2

gP ~P
+c cos (k,a')+b

(36)

E(k, ) =[E(k,)] (35)

for Rek, = —,goo', where goo& is a reciprocal-lattice
vector in the z direction. Consequently it is no
longer vanishingly possible for E(k, ) to have an
extremum at a complex k, point with Rek, =—,goo]
(i.e., Rek, = 0 or km, „ in the present case).

We now discuss the detailed features of the com-
plex band structures shown in Figs. 1 —18. Note
that the left panels of Figs. 1 —12 all contain five
distinct imaginary bands of the first kind. The
middle three bands are closed loops when plotted
in the E-Imk, plane (including the portion with
Imk, &0), with their maxima and minima connect-
ed to real bands of the same symmetry. The
highest imaginary band has a minimum at certain
nonzero values of Imk, and runs to infinity as E
goes to infinity. The bands indicated by thick lines

are doubly degenerate and are obtained by using
the analytic expressions Eqs. (21) and (26) for the
(100) and (111) faces, respectively. To illustrate
the analytic properties of the bands, we rewrite
Eqs. (21) and (26) in the form

Si[100])or the minimum of the closed-loop imag-

inary band (e.g., InP[100] and GaAs[111]).
It is found that the complex band structure for

ZnTe in the current model is conspicuously dif-

ferent from those for the other materials. In par-

ticular, the complex band structure of ZnTe has a

special feature in which an imaginary band of the

first kind is connected to an imaginary band of the

second kind by a complex loop whose real part
sweeps across the whole Brillouin zone (see Figs. 6
and 12). The part of the complex loop connected

to the imaginary band of the first kind is plotted

in the left panel and the other part plotted in the

right panel of Figs. 6 and 12. The thin dashed

lines in these figures indicate the connection of
these two parts. Another special feature of Figs. 6
and 12 is the existence of a closed-loop imaginary

band of the second kind which connects up two

complex bands 20, 2& The complex band structure

for Si[111]also has a special feature in which two

imaginary bands of the first kind are connected by

a complex loop. This feature is also found in a
previous calculation using a pseudopotential
method.

The complex band structures shown in Figs.
13—18 are considerably more complicated than

those shown in Figs. 1 —12. This is due to the fact

where for the [100] direction, a'—= a/2, b =— V~,
and c=—V~ —V,» and for the [111]direction,a':—a/2v 3, b =—(V~ + V~) /4, and c= (V~

Vjgy)(3$' + Vzy)/4 From Eq. (36), it is apparent
that a brarich point occurs when E=(e, + e,)/2.
This is indicated by an arrow in Figs. 1 —12.

The rniddle panels of Figs. 1 —12 contain mainly
the real bands. For all materials except ZnTe, it is
found that the conduction bands (with h2 symme-

try and A3 symmetry for the [100] and [111]direc-
tions, respectively) have a maximum at k, some-
where in the middle of the Brillouin zone. This
maximum and the minimum of the highest ima-

ginary band mentioned above are always connected
by a complex band (indicated by broken lines).

The major features of the right portions of Figs.
1—12 include (1) two doubly degenerate imaginary
bands of the second kind running to infinity as en-

ergy E goes to —00 or 0o. (2) A conjugate pair of
complex bands running to infinity as E goes to
—ao and (3) closed-loop imaginary bands of the

second kind connecting the real bands at the X or
L point whenever there is a gap. The conjugate
pair of complex bands are either connoted to the
minimum of the (real) conduction band (e.g.,

IO

E(eV)

-l5--
I

I

I

-0.5
Imkz

0
I

I

0.5
Rekz

(
271

)0

0.5
Irnk z

FIG. 19. Complex band structure of GaAs for (100)
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as in Fig. 1.
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FIG. 20. Complex band structure of GaAs for (110)
face with'E = (0.3,0.3)2m/a. The notation is the same
as in Fig. 1.

that the (110) face contains both anions and cat-
ions, thus giving rise to twice as many complex k,
solutions for each energy E as there were for the
(100) and (111)faces. The bands indicated by
thick lines in Figs. 13—18 are obtained using Eq.
(31). The analytic property of these bands can be
readily understood by rewriting Eq. (31) in the
form

(37}

IO

~8 +~1E= ' +[(b+g+b ) +b, ]'/,

where b+ = (V~+V~)/2 and 6—=(e~ e~—)/2 It.
is noted that the function E(k, } has two branch

points at g = —(b +id, )/b+, except when 6
= 0 (true for covalent materials}. This conjugate
pair of complex branch points is sitting on the real
lines where E = (e~ + e~)/2. The real and ima-

ginary parts of the branch points are indicated by
arrows in Figs. 16—18. This is a very special and

interesting feature of the nearest-neighbor tight-

binding model, since in general it is vanishingly
probable for the energy associated with a branch
point being real at a general complex k, point.
The complex band structure for the [110]direction
exhibits several new topological features. For ex-

ample, many imaginary bands of both kinds are
found to be connected together by complex bands.
Furthermore, the minimum of the third valence
band is always connected to the maximum of an

imaginary band of the second kind, and the lowest
two valence bands are always connected together

0
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FIG. 21. Complex band structure of GaAs for (111)
face with /r, = (0.3,0.3)2n/a. The solid and short

dashed lines in the middle panel indicate real bands with

positive and negative values of k„respectively. The
pairs of long dashed lines and dash-dot-dash lines indi-

cate complex bands with positive and negative values of
Rek„respectively.
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FIG. 22. Complex band structure of GaAs for (111)
face with E = (&2/3, 0)2~/a. The origin for Rek, has
been shifted to ko ——m/~3a to exhibit the reflection

symmetry.
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by a complex band rather than an imaginary band
as is the case for the [111]direction.

We have also studied the complex band struc-
tures for general cases with k+0. For illustration,
we plot the complex band structure of GaAs for k
=(0.3,0.3)2n./a in Figs. 19, 20, and 21 for the
(100), (110), and (111)faces, respectively. The
symmetry of the Hamiltonian for k@0 case is re-
duced. This lifts many degeneracies of the real
bands and creates additional energy gaps at various
values of k, . Each energy gap is connected with a
closed-loop imaginary band of either kind of com-
plex band depending on whether the associated
band extrema are located at k, = 0, k,„,or a
general value. For the (100) and (110) faces, the
reflection symmetry is preserved and the complex
band structures are quite similar to those for k
= 0 case. The refiection symmetry no longer ex-
ists for the (111}face with a general value of k.
We therefore expect that k, and —k, are in gen-
eral associate with different energies. In Fig. 21,
the real bands associated with negative values of k,
are denoted by dashed curves. It is also found
that, because of the lack of refiection symmetry,
all real band extrema no longer occur at the zone
edges. Consequently, all imaginary bands of Fig.
10 turn into complex bands when k becomes
nonzero. Furthermore it becomes vanishingly pos-
sible for two real lines to cross, except at real
values of k, as required by Heine's rules. All these
features are illustrated in Fig. 21.

For special points in the (111)surface Brillouin
zone, such as k=(/2/3, 0)2m/a (the M point in
Ref. 21), there exists a hidden symmetry ' with

E(k, ko —k, }=E(k,ko+k, ),

where ko ——m/~3a or —2n/~3a. If we rede-
fine the origin of the k, as ko, then the reflection
symmetry is recovered. In Fig. 22, we plot the
complex band structure of GaAs for the (111)face
with k = (&2/3, 0)2m./a. The origin of the k, has
been shifted to ko ——~/v 3a to exhibit the refiec-
tion symmetry. As shown in this figure, many im-

aginary bands of both kinds occur and some of
them have extrema at complex values of k, with
Rek, = 0 or k,„(i.e., Rek, =m/~3a or —2m/
~3a if the origin had not been shifted).

We conclude this section by making a few re-

marks. The nearest-neighbor tight-binding model
used to obtain these band structures is qualitatively
reliable only for the valence bands and the lowest
one or two conduction bands. Therefore, the com-
plex band structures arising from the higher con-
duction bands should not be taken too seriously. It
is, however, interesting to see what kind of topo-
logical structures this simple ten-band model can
provide. It is rather gratifying that such a wealth

/
/

/
/

Rekz

-Rekz Rekz
Irnkz

P
-Imkz

FIG. 23. Three-dimensional complex band structure
illustrating the topology for an imaginary band and a
real band being connected by a complex loop.

FIG. 24. Three-dimensional complex band structure
illustrating the topology for an imaginary band of the
first kind and an imaginary band of the second kind be-
ing connected by a complex band {dashed curve) and for
two complex bands being connected by a closed-loop im-
aginary band of the second kind.
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of information about the complex band structures
can be learned from studying this simple ten-band
tight-binding model. The results presented in Figs.
1 —22 have provided many examples of all possible
topologically distinguishable structures of the com-
plex bands for zinc-blende semiconductors. We
find several novel topological structures which
have not been reported in previous studies. This is
best illustrated in a three-dimensional plot, with E,
Rek„and Imk, being the three coordinate axes.
One example is shown in Fig. 23. In this figure, a
complex loop (as the edge of a saddle) is connect-

ing up one imaginary band and one real band at
four complex k, points. This is quite different
from the commonly understood topology in which

two real bands are connected by a complex loop at
two complex k, points. Another interesting exam-

ple is shown in Fig. 24. This plot is a portion of
the complex band structure shown in Fig. 6. In
this figure, a pair of complex bands emanate from
the maximum of an imaginary band of the first
kind, then reach the minimum of an imaginary
band of the second kind (the two imaginary bands

of the second kind shown are equivalent since they
differ by a reciprocal-lattice vector). This pair of
complex bands therefore form a closed loop in the
sense they begin and end at the same point. This
figure also illustrates a topology in which two

complex bands are connected by an imaginary
band of the second kind (a closed loop).

V. SUMMARY AND APPLICATIQNS

We have developed a theoretical method for cal-

culating the complex band structures for solids.
The complex k solutions to the total Hamiltonian

for (100), (111),and (110) faces have been comput-

ed for 14 zinc-blende materials. This study has

provided much valuable information about the hid-

den electronic properties associated with the bulk

materials through their complex band structures.
Our results exhibit a large collection of interesting

topological structures for the complex bands of
solids and provides some fundamental understand-

ing of them.

The method employed to obtain these complex
band structures for solids is quite simple and effi-
cient, while maintaining the reality of the materials
studied. It can be used to study the electronic pro-
perties of solid surfaces, interfaces, and superlat-
tices. For example, one can find the surface (or in-

terface} states by expanding the total wave function

in terms of linear combinations of the propagati-

ing and evanescent Bloch states associated with a
given energy in the bulk materials on both sides of
the boundary plane. The expansion coefficients
can be determined by matching the total wave

function at the boundary plane according to ap-

propriate boundary conditions. This calculation

typically involves finding the zero of an N-dimen-

sional determinant as a function of the energy E,
where N is the number of independent tight-

binding orbitals per plane times the number of sur-

face (interface} layers which deviate from the bulk

layers due to lattice relaxation. This method,
therefore, has a considerable advantage over the
method which involves finding the solutions for a
large slab. 2'3

Besides the large-slab approach, there also exist

theoretical calculations for surfaces and interfaces

using the Green's-function method. ' The size of
the matrix required to find the surface (or inter-

face) states by using the Green's-function approach
is comparable to that for the matching method us-

ing the evanescent states. The conventional tech-
nique for obtaining the bulk Green's function in-

volves numerical integration over k, in the Bril-
louin zone for each fixed k and E. The Green's
function usually has very sharp structures when

plotted versus the energy E. The conventional
technique cannot produce these sharp structures
accurately unless a large number of mesh points
for k, is used. Allen ' has realized that the in-

tegration over k, in the bulk Green's function can
be considered as a contour integral in the complex

k, plane, which can then be reduced to the sum

over some finite number of complex k, solutions to
Eq. (1) (the poles of the integrand). For example,
the retarded Green's function for fixed k can be
written as "'

P(r;kki )g+(r ',kki }
Go+ (r r ', kE) =—2n.i g sgn(z —z'),

u, (kki )

where the k~'s are the complex wave vectors asso-
ciated with the Bloch states propagating (if ki is
real) or decaying away (if kx is complex) from the
plane z=z',
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and P(r;kkx) is the Bloch wave function associat-
ed with the wave vector (k, kx). With the tech-
nique developed in this paper, an accurate evalua-
tion of the surface-adapted Green's function [see
Eq. (3S)] becomes readily feasible. From Eq. (3S)
it is noted' ' that the Green's function (and,
therefore, the local density of states) has singulari-
ties at the energies E where the group velocity
U, (kkx) vanishes. This must occur at the ex-
tremum points in the complex band structure. As
we mentioned previously, if the reflection symme-

try exists, the complex band structure will have ex-
trema at some complex values of k, for which
Rek, is at the zone center or boundary (i.e., Rek,
= 0 or k,„). The topology of the complex band
structures therefore plays an important role in

determining the singularity structure of the Green's
function with fixed k.

The application of the complex band structures
to problems related to solid surfaces, interfaces,
and superlattices is planned to be reported in fu-
ture publications.
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