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One-harmonic structures in the two-dimensional incommensurate solids
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%e compare the one-harmonic incommensurate configuration derived from the many-wall

solution of the sine-Gordon equation with that found within the discrete model in the weak-

pinning limit. %e show explicitly that they coincide in the long-wavelength regime where there

is no pinning and discuss the stability of the pinned short-wavelength deforrnations. General
structure of the ground state and the experimental evidence of weak and strong pinning in

periodically modulated superconductors are also discussed.

Experimental investigations of two-dimensionally
(2D) modulated systems reveal a great variety of
structures. Commensurate (C) and incommensurate
(IC) phases have been observed in monolayers ad-

sorbed on a crystal substrate' and in periodically
modulated superconductors. "3 In the present paper
wc study thc long period stI'uctuI'cs of thc 20 solids
on an anisotropic substrate at zero temperature. Let
N particles be at the positions r I, weakly coupled to
the substrate, which creates the periodic potential

where q is the modulation vector of the amplitude

q =2' jr., q r 0 defines the phase with respect to
modulation, and ~ is the pinning energy per particle.
We assume that the interaction V( r, —r, ) between
the particles on a smooth substrate produces a hexag-
onal lattice. This "natural" lattice is not stationary
on the anisotropic substrate except when they are
commensurate, i.e., when q = g (matching configura-

tions), 2q = g, . . . etc. , where g is one of the
reciprocal-lattice vectors. ' However, the particle
configuration may accommodate to the pinning po-
tential by forming in the vicinity of each matching a

C phase which is stationary for any value of the mis-

fit p = q —g.4 6 For the simple commensurability
this is a lattice of isoscelles triangles of height L; oth-

erwise, it consists of rows of particles along each two,
three, . . . , etc. , potential minima lines. The domain

of stability p ~p, of the C phases is calculated in the
weak-pinning (WP) limit by Pokrovsky and Talapov. '

Our aim is to study the IC phase which appears
when p )p„comparing that found in the continuum

model7 with the one-harmonic solution of the discrete

stationarity equations. "%C show that these config-
urations coincide exactly when p P p„except if p is

very close to p, . %hen p increases, the one-harmonic
structure may persist as the ground-state configura-
tion even in the short-wavelength regime p —q.

In the discrete model the displacement
6 r; = r; —r; of each particle with respect to its

original position r; is approximated by a single har-
monic

Ar;= usinq (r, —re) (2)

; t 8XI IIXls

X, Xs(u, p = I, 2) denote the Cartesian coordinates
in the system of the lattice (Fig. I).
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FIG. l. Geometrical relationship between q, g, and p is

illustrated for a hexagonal lattice close to the principal

matching configuration q g &.

where the amplitude ~
u ~ is assumed to be small com-

pared to the substrate periodicity L Physically, this
means that the above approximation applies only
when the pinning forces are much smaller than the
restoring forces. The displacement field 4 r

&
is then

determined by the linearized stationarity equations '
(DU —eq)sinq. ( r; —r e) =0,

~here D is the dynamical matrix with components
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The configuration obtained with (2) is stationary
whenever sinq ( r; —r o) W 0.4 The gain of the po-
tential energy (per unit area) associated with the har-
monic distortion is'

A3E=—nuDu(1 —8,- -cosq r o)

where n is the particle density.
In the above approximation the only pinned har-

monic configurations are the so-called Bragg con-
figurations, 5 obtained by distortion of the hexagonal
lattice with g =2q. We do not go beyond this ap-
proximation since the pinning of a general C state
drops rapidly with the order of commensurability.

Let us now examine the behavior of the above
solution in the vicinity of a given matching, taking as
an example q =g~. Assuming that pis small,

p/q —p/g « 1, we explicitly calculate the com-
ponents of D and u in the XOYsystem (Fig. 1). In
this long-wavelength regime the dynamical matrix
D & is related to the elastic deformation of the "na-
tural" lattice. Using its periodicity in the reciprocal
space

D p(q+g) =D p(q) =D.p(p)

it is easy to show that for p/g « 1

the minimum energy configuration'

Px
sing =——,cosp =1

whereas the angle P between q and p vectors (cf.
Fig. 1) is practically equal to 3n/4(g~ ) q.) or
7~/4(g& & q), since

sin P=2= 1 =1
1+ (q/g)' 2

With the same accuracy we find

px = p cos(P + Q) = +
2

pr=psin(p+p) =+ —p

Thus the positions of the particles are

r~=r~+usin p (—X. +Y;)

where

(10)

(12)

Dll =Dg2 = (it+3@)p1

271

D)g=Dg) =— ("+p)p',1

2'

(6)

D~~cosp —D~~stnl 1 ~Qy= 6g
detD 2 p p

where A. and p, are the usual Lamme coefficients of
the hexagonal lattice in two dimensions.

The deformation amplitude components, given by
Eq. (3), then become

r, = {XP,YP j =—{n~J3,rn, )

and u is given by (7).
Until this point we have discussed the results of

the discrete approach. One important difference
between the discrete and continuum cases is that in
the latter there is no rotation (/ =0). Since p is
taken to be collinear with g, one in fact works in the
coordinate system related to q =g+p. In order to
compare the results of the continuum model' with
the above one-harmonic approximation, we ~rite
Eqs. (12) in coordinate system xOy, with Ox axis
along q

Qy Qg

where e = n ~ and P is the rotation angle of the natur-
al lattice with respect to the q axis (Fig. 1). The cor-
responding energy gain is

Q Dt~ sin'Q —Dtq sin2$ +Dqq cos'Q
LIE= ——q e

4 detD

x;=X~ —
Y~ + —~~ —sin p (Xo Yo)p PX p 1

q
' 2p'p,

y;= Y~ + X~ + —~~ —sin P (X, —Y; )

(13)

Sp~p,
(8)

The divergence occurring in (7) and (8) when p ~0
does not bother us, since we expect our IC phase to
make sense only for p greater than p, = q(e/2p, )'~' as
otherwise uy would be greater than q '. Consequent-
ly, small p in the IC phase implies (s/p, )'~~ && 1.

For p small, the rotation P is small as well, and in

We now turn to the results of the continuum limit
where the discrete lattice is treated as an elastic con-
tinuum with the Lamme coefficients X and p, ,
whereas the pinning potential is taken as local. '
When A. ))p„ the IC phase consists of nearly reg-
istered regions, separated by the walls inclined at the
angle 8 = ~/4 with respect to the modulation axis.
Using the nome expansion of the elliptic integral oc-
curring in the phase of the displacement field it can
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bc shown that thc particles arc situated at ' Ak

0.25-

0 1
Jx + 29?

X
q 6'

+ 4
X

Q* . 2rrqx's

q, I s(1+Q")

0 1 + Px + 2m'

q (P
(14)

]

]

]
1

O.P.O-

+ 4 ~™ Q' . 2mqx's

q, I s(1+Q")

x'= —xosine+yocosq= (—o+ o)x
O.IO

and the coordinates x and y correspond in the
discrete picture to x; =(a J3/2)nl, y& =(a/2)ml,
respectively. The nome Q =exp[ —E'(k)/E(k)] and
the wall density Il/O'I - n/2l okE( )kare expressed
via the elliptic integrals E'(k) and E(k), where k
runs from 1 (its value at the C-IC transition) to 0
and lo = Iran'2p, /a. When A. » p„k is related to p„by
the equation

E(k)
x PQg k

where

0,05

2.0

1/2

Ip I
= Ip. (k =1) I

=——'
p

Physically, one expects that the IC phase can ban c
escr&bcd by a single harmonic distortion when the

distance between walls I5'I is comparable to the waH

width kl0. 8 This occurs for small k, whenen px pre
and tlM 11OIIle Q ls SIIlali (cf. Flg. 2). Uslllg tile
asymptotic formula' for the elliptic integrals E(k)
and E(k) valid for small k, we find

tion is given by

2 + 8 E (k)
k m2 k

(21)

FIG. 2. The nome Q (dashed line) and the relative ener-

gy gain —hE/e (full lines) are plotted as functions of p„/p
Line 1 gives AE/a according to —Pokrovsky-Talapov
theory, and linc 2 shows the'corresponding result of the
single-harmonic approximation [Eq. (20)].

2m' Pxc

64 p„
(18)

x =x ——y +—— sinp„(xo o)0 Px 0 1 a q

q 4pp2 " y

+—x +—— Slnpg(x — ) ~

Px 0 1

q 4pp2 " y

In the same limit the energy gain is

(19)

(20)

~hereas the general result of the Ref. 7 in our nota-

The comparison between (20) and (21) (see Fig. 2)
shows a fairly good agreement when p /p„, & 1.S.
Since Ip„, I itself is assumed to be small, I I/

p ~/ %1/2
Pxc—~&a~'p. 'j && 1, the one-harmonic IC configuration

derived from the many-wall solution of the sine-
Gordon equation may be compared to that found in
the discrete case for p small. Comparing Eris. (13) to
(19) and (8) to (20) we see that they are identical if
we take p„= yp/W2 [cf Eti (11)] A sim'1 lt

'

obtained in the 10 case in the %P limit. One im-

portant difference is that in the 2D case there is a ro-
tation of the whole ground-state configuration with

respect to the modulation axis. This rotation is taken
into account explicitly in the discrete case [via the
terms linear in p„/q in Eris. (13)],whereas the con-
tinuum model it enters via the angle 8 between the
wall direction and q axis.
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In the above calculation we obtained the one-
harmonic approximation analytically when

p„& 1.5p . Actually, it can be used even much
closer to p since Q is considerably smaller than one
when p„& l.lp (cf. Fig. 2). This makes the whole
picture of the ground state in the %P limit very sim-
ple. The strong nonlinearity of the problem causes
the divergence of the linear solutions near the transi-
tion to the C phase but this nonlinear region is very
narro~ and the equilibrium configuration can be ap-
proximated reasonably well by the one-harmonic
solution even close to p, . In the short-wavelength re-
gion (p —q) some harmonic configurations (e.g. ,
Bragg configurations) are pinned as we have seen.
This is a consequence of the discrete nature of the
lattice: in the simple version of the continuum
theory7 the walls separating the nearly commensurate
regions do not "see" the substrate potential. «~ It is
necessary to include the interaction between the fluc-
tuating walls as well as their interaction with the sub-
strate in order to reach the pinning transition. ' The
pinning of the Bragg configurations 2q = g (and of
higher-order commensurabilities) may be seen exper-
imentally in the WP case only, i.e., for e/p, small.
The domains of stability of the first-order commen-
surate phases are then narrow and do not cover the
higher-order commensurabilities. Moreover, the
stable Bragg configurations are only those with small
distortion amplitude, u ( q . This condition, result-
ing from the force balance [Eq. (3)], is in fact very
similar to the analycity-breaking criterion used by
Aubry in his study of the 10 epitaxial problem. " If
the pinning is strong enough, this requirement can-
not be satisfied even far from the matching config-
urations, as can be seen from (3).

The above conclusions appear to be in accordance
with recent numerical results by Bak, '2 for a similar
model in one dimension, except for the absence of a

chaot1c phase between C and IC conf lgul'at1ons.
These chaotic regions, which become narrower as the
pinning weakens, cannot be reached by the above an-
alytic approach. However, they certainly may exist in
the two-dimensional case, too. For the latter we ex-
pect that in the %P limit they are also narrow. Out-
side the first-order C phases and the adjacent chaotic
phases, the equilibrium configuration can be obtained
by rotation, translation, and harmonic distortion (in-
cluding higher harmonics when necessary) of the ori-
ginal lattice.

Experimentally, both weak and strong pinning have
been observed in periodically inhomogeneous super-
conductors, 2' where the shape of the critical current
density curve as a function of magnetic field j,(H)
reflects the nature of the pinned flux lines configura-
tions. On the ground of a previous calculation'3 we
find that in the experiments by Martinoli et al. on
thin supercoriducting films of modulated thickness
e/p, is very small. For the relevant parameter values
in the experiment' and using the corresponding bulk
value' for the shear moduls p„we obtain e/p, =0.01.
This is corisistent with the experimentally observed
weak pinning with narrow principal peaks and a
broader Bragg peak. 3

In the experiments by Raffy et aI. on supercon-
ducting alloys with modulated impurity concentration,
high and broad principal peaks indicate the existence
of strongly pinned C phases. '5 This is in accordance
with our estimate of e/p, —1 in the relevant range of
parameters, ' in particular for the average Ginzburg-
Landau parameter K between 2 and 3. However,
since e is proportional to the free-energy density of
flux lines' it decreases rapidly with the increasing K.

Thus, we expect that the pinning in a modulated al-
loy with K -10 should be similar to that observed by
Martinoli et aI. , 3 with Bragg structures more pro-
nounced than in small K alloys.
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