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Monte Carlo renormalization-group study of the two-dimensional Glauber model
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A recent Monte Carlo renormalization-group study of the two-dimensional kinetic Ising

model is extended to obtain renormalized time correlation functions from initial lattices of
16 x 16 and 32 x 32 spins. Different ways to estimate the dynamical exponent z are discussed,

with our "best" estimate of z ——2.23 being consistent with the original study.

An important, open problem in critical dynamics
involves the development of a valid real-space
renormalization-group theory. "The Monte Carlo
renormalization-group method" (MCRG) seems to
provide a promising new approach which can be sys-

tematically improved. In this paper we extend the
original work of Tobochnik, Sarker, and Cordery'
(TSC) on the two-dimensional Glauber model' to ob-
tain more data for the time correlation functions and
to explore the effects of larger lattices. We study the
renormalized auto and "nearest-neighbor" time
correlation functions for kinetic Ising models whose
initial lattices contain 16 x 16 and 32 x 32 spins,
respectively, as compared to the original work' per-
formed on 8 x 8 and 16 x 16 lattices. Although there
are discrepancies between our results and the original
results for the 16 x 16 lattice, our estimate that the
dynamical exponent z = 2.23 is consistent with the
original study, However, as we discuss below there
seems to be no unique way to analyze our data and
hence we regard our estimate of z as somewhat in-

conclusive. Nevertheless, we believe our work to be
the most systematic real-space renormalization-group
study of the Glauber model performed so far.

The basic idea of the dynamic Monte Carlo
renormalization-group method has been adequately
discussed by Tobochnik et al. and we follow their
calculational procedure. Namely, we determine z by
"matching" one or more time correlation functions,
say

E(N, m, Tz, t) = E(Nb4, m +1,Ti, b*t)

and

C(N, m, Tz, t) C(Nb, m +1,T),'b*t)

where

and

C(N, m, T;t) =(N'~') ' ( XS,'~'(t)S, '~'(0) ) r~, (4)

using the notation of TSC. We generate a sequence
m = 1, 2. . . of block spin configurations by a sequence
of majority rule transformations on an initial Ising
lattice with nearest-neighbor interactions, whose re-
duced Hamiltonian is 3C= T 'X&,&) S;SJ. Since we

are concerned with a fixed point solution, we have
chosen T& = T2 = T„where T, is the critical tempera-
ture of the infinite system. (We have not considered

any small shift in T, arising from finite-size effects. )
We have computed the time correlation functions (3)
and (4) using periodic boundary conditions and em-

ploying 1.80 && 106 Monte Carlo steps (MCS) and

4.0176 x 10 MCS for the 16 x 16 and 32 x 32 lattices,
respectively. In contrast to TSC, we have performed
these averages using several independent runs, with

20 runs of 9 x 10 MCS and 64 runs of 6.48 x 10
MCS, respectively, rather than using one long run.
Thus we are sure we have statistically independent
runs from which to compute our averages and esti-
mate our errors. Our results for E(t) and C(t) for
the two different lattices are sho~n in Tables I and

II, together with our estimates for the corresponding
errors as calculated by standard methods. In general
our errors are comparable to those reported in Ref. 3.

We have encountered some ambiguity in obtaining
z from the matching conditions (3) and (4), an un-

certainty which is also present in the results of Tobo-
chnik et al. However, since they only determined
E(t) and C(t) for two values of the time t, this am-

biguity is less obvious in their case. The difficulty is
that if one uses the data shown in Tables I and II to
estimate z from (3) and (4), one obtains values of z

which depend on the value of t at which one
matches. To some extent, at least, this simply re-
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TAl)LE 1. Results for the correlation function E(t) defined in Eq. (3). The Quantities W, m, and
t are the number of spins on the original lattice, the number of renormalization transformations,
and the time (in Monte Carlo steps), respectively.

E(0) .

E{120)

E(180)

E(30O)

1.4336 f0.0003
1.4287 +0.0006
1.4642 +0.0012
1.5442 +0.0022
1.7138 +0.0028

1.9133 +0.0046
1.2465 +0.0055
2.6308 +0.0070
3.0091 +0.0098
3.4059 +0.0114

1.8133 +0.0058
2.1340 +0.0070
2.5183 +0.0085
2.9382 +0.0104
3.3740 +0.0124

1.7629 +0.0070
2.0766+0.0082
2.4563 +0.0024
2.8885 t 0.0118
3.3384 +0.0129

1,7278+0.0078
2.0377 +0.0093
2.4134 +0.0119
2.8471 +0.0129
3.3019 +0.0148

1.7025 +0.0086
2.0060 10.0102
2.3765 +0.0120
2.8072 +0.0138
3.2613 +0.0155

1.6781 a0.0095
1.9778+0.0112
2.3435 +0.0133
2.7756 +0.0154
3,2318 +0.0170

E(0)

E(10}

E{20)

E(30)

E(40)

1.4519 i0.0009
1.4680 4 0.0018
1.5439 i0.0032
1.7121 f0.0044

2.3247 k 0.0063
2.6821 f0.0076
3.0263 + 0.0096
3.4063 f0.0112

2.1971 f0.0069
2.5672 + 0.0083
2.9667 +0.0105
2.3832 +0.0132

2.1320 + 0.0077
2.5002 +0,0090
2.9184+0.0103
3.3597 f0.0118

2.0888 +0.0083
2.4548 + 0.0099
2.8799 +0.0120
3.3308 t 0.0129

2.0574 +0.0089
2.4193 k 0.0105
2.8479 l 0.0125
3.3017 i0.0141

2.0087 +0.0101
2.3648 +0.0118
2.7924 g 0.0142
3.2469+0.0154

1.6592 +0.0100
1.9556 f0.0118
2.3185 +0,0140
2.7440 +0.0163
3.1876 +0.0177

1.9883 +0.0107
2.3405+0.0125
2.7634 +0.0147
3.2184 +0.0165

fleets the inaccuracy in our data and possibly finite-
size effects. This problem is most acute if one fits
the data to a simple exponential decay, e.g.,
E(t) =He 't', which is in fact an excellent represen-
tation of the data for sufficiently large t, as shown in-

Fig. 1 for E(t). The best fit then yields amplitudes

which are slightly different for the two lattices
(16 && 16 and 32 x 32). That is, if lnE(t) = b —mt for
sufficiently long times, one finds bi6=1.2374 and
b32 =. . -1-;-2398. This means that one does not really
have an exact fixed point solution. Thus the z that
one obtains from this fit and Eq. (3) varies with t,
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TABLE II. RCSQlts f01' the coÃelatloQ fUQct10Q C(f) dcfiQed 1Q Eg. (4), QS1Qg the saIQc QotatiOQ

as iQ Table I.

N -32 ~32

2

8
16

0.4788 + 0.0011
0.5637+0.0013
0.6663 i0.0016
0.7793 10.0020
0.8768+0.0023

C (10) 0.5845 +0.0016
0.6838+0.0018
0.7928 +0.0020
0.8826 t 0.0024

C {180)

0.4535 +0.0015
0.5342 10.0017
0.6327 +0.0020
0.7454 10.0024
0.8564 +0.0026

0.4408 +0.0017
0.5195 Z0.0020
0.6156 10.0024
0.7268 +0.0028
0.8406 +0.0030

0.5505 +0.0017
0.6470+0.0020
0.7586 Z0,0023
0.8643 +0.0029

0.5336+0.0019
0.6276 X 0.0022
0.7387 + 0.0024
0.8509+0.0028

0.4323 +0.0020
0.5095+0.0023
0.6040+0.0027
0.7142 J0.0031
0.8285 +0.0035

0.5225 t 0.0021
0.6151 z 0.0024
0.7250 +0.0029
0.8389 +0.0031

0.4256 f0.0022
0.5016+0.0025
0.5946 +0,0030
0.7033 +0,0034
0.8170 10.0037

0.5146 2 0.0022
0.6056+0.0026
0.7151+0.0030
0.8289 + 0.0034

C(360) 0.4195 +0.0024
0.4945 + 0.0028
0.5860 f0.0033
0.6934+0.0038
0.8087 +0.0042

0.5023 + 0.0025
0.5914 + 0.0029
0.6991 +0.0034
0.8129+0.0037

0.4148 f0.0025
0.4890 +0.0029
0.5798+0.0035
0.6866+0.0041
0.7975 i0.0045

0.4971+0.0027
0.5853 +0.0031
0.6916 +0.0036
0.8057+0.0041

e.g., it decreases from z =2.23 at f = 67 to z = 2.17
as t ~~. A similar effect holds if one analyzes E(t)
for the renormalized 4 & 4 lattice and C (t) for the
2 x2 and 4~4 data. In fact the effect is least severe
for the results shown in Fig. 1. On the other hand, it
seems clear that a sensible analysis of E(t) and C(t)
should require a fixed point behavior if a meaningful
z is to be deterIQined. Thus we have analyzed the
behavior of E(t) in Fig. 1 subject to the constraint
that b~6 = b32, in which case it follows from (3) and
the exponential form that z -ln(m t6t'm32)/ln2. We

have in fact found that our data for E(t) is con-
sistent with such a constraint, within our statistical
error. %e have determined that there is a range of
such fits, for paranMters in the domMn bye~ 532
=1.2374 —1.2398, m~6=8. 56 X10~—8.95 @10~„

—1.8»10 . The value of zis
essentially constant within this range and is given by
z =2.24. %e have also performed a similar analysis
of our data for C(t) renormaHzed down to a 2 x2
lattice. In this case, for parameters in the range

6&6 = 632 —0.1403 to —0.1386 we find 1' &6
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= —9.50 X 1Q to —9.74 x 1Q, m32 =2.03 X 10
—2.08 x 10~. This leads to a z of 2.22. Together,
our data for C(t) and E(t) would yield an average
value of z = 2.23. This estimate is in good
agreement with the estimate of Tobochnik et al.
that z = 2.22 +0.13 with a most probable value
of z = 2.17. This agreement is in fact somewhat
surprising, given that there exists a discrepancy
between our results for E(t) for the 16 x 16 lattice
and those of TSC, as shown in Fig. 1. We have at

FIG. 1. Plot of lnE(t) vs t for a renormalized lattice of
2 & 2 spins. The data for initial lattices of 16 x16 and
32 && 32 spins are denoted by circles and crosses, respectively.
The results from Ref. 3 are indicated by squares.

the moment no explanation for such a discrepancy.
Except for the possibility of a small error in the corn-
puter program, the only possibility for such a differ-
ence is that the TSC study involved averages comput-
ed over one long run, rather than over several runs
of shorter duration, as in our case.

We conclude with two observations. The first is
that given the uncertainty in determining z, further
theoretical attention should be given to improving the
MCRG method. The second remark is that even
with this qualification the MCRG seems to be the
first real-space method proposed so far powerful
enough to provide a systematic theory of critical
dynamics. Our study has not indicated any major dif-
ficulty with this method, apart from suggesting the
need for very accurate statistics and care in interpret-
ing the results. Applications of this method to non-
critical behavior. and to other systems would seem
most worthwhile.
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