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We present a tight-binding-model calculation of the transmission coefficient for elec-

trons incident upon the interface between two metals. The role of the coupling produced

by overlap of wave functions of the two metals is elucidated. The existence of a critical

angle analogous to the optical critical angle is demonstrated. The relevance of these re-

sults to proximity-effect tunneling experiments is discussed.

There is Inuch current interest in inhomogeneous
metallic sytems such as double layers as employed
in proximity-effect tunneling experiments, or
bimetallic superlattices, also known as layered ul-

trathin coherent structures (I.UCS). In such sys-

tems, the metal-metal interface presumably plays a
crucial role in determining the anisotropy of vari-

ous transport properties. It is therefore necessary
to consider the transmission coefficient of an inter-

face between two metals for Fermi-surface elec-

trons incident upon the interface. The purpose of
this Report is to present the results of a calculation
of the transmission coefficient for a single interme-

tallic interface.
It will be assumed that the interface is ideal in

the sense that it is perfectly planar, that the metal-

lic layers adjacent to it are characterized by equal

lattice constants, and that the two metals are sim-

ple cubic, aligned along a common direction in the
cubic unit cell (such as the [100] direction). The
recent report of the epitaxial growth of Nb-Ta
single-crystal superlattices with a high degree of
crystalline perfection indicates that this ideal sys-

tem may be, in fact, an experimentally realizable

situation.
The model adopted here for the metallic band

structures is the tight-binding model. This model

is most appropriate for transition metals, but the
conclusions reached below should be quahtatively

applicable to other metals, as well. The parameters
of the model are as follows:

(1) The ratio R of the tight-binding bandwidths.

(2) The difference v between the Fermi energies

of the two metals in units of the bandwidth of one

of the two metals.
(3) The effective overlap integral T, coupling

atoms of one metal to atoms of the other across
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the interface.
The translational symmetry in planes parallel to

the interface, combined with the tight-binding

model assumption, leads to a quasi-one-dimen-

sional problem involving electron propagation in

the presence of a local potential confined to the in-

terface region. This problem may be solved exact-

ly by the techniques elucidated by Kalkstein and

Soven. Yaniv has shown how to apply these tech-

niques to calculate the exact Green's function

6 (m, n), for two semi-infinite metals with an inter-

face between metallic layers of index i =0 and —1.
The techniques of Refs. 4 and 5 are mathematical-

ly equivalent to those employed by Maradudin and

Wallis to the Montroll-Potts model of lattice vi-

brations. Indeed, the results that will be described

below have been used to determine the transmis-

sion coefficient for phonons incident upon an inter-

face between two different crystals.
If atoms of metal a occupy all lattice planes

m & —1, and atoms of metal b occupy all planes

m & 0, then Yaniv finds that the diagonal Green's

function for m & —1 (i.e., in metal a) is

i 1

2T, sin(P, )

X [1+r(P„Ps)exp(2irrtg, )],
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[exp(i/, )—u, ][exp( i—Ps ) u—s ]
[exp( —i0. ) —u. ][exp( —i0b) —»]—)' '

y=T /(T, Ts) .

The quantities W, s(k~~ ) and T„Ts are related
to matrix elements of the bulk Hamiltonians in the

Bloch-%annier representation ':

Tg, ( k(()= t (nk(( tH, s tn +1, k(() t
.

'rhe quantities u, &
—U, b/T,—&, where U, & is the

change in the self-consistent potential of electrons
near the interface relative to the bulk. The matrix
element T =T(k~~) is given by an equation analo-
gous to (7) for n =—1, except that it is a matrix
element of the full, two-layer Hamiitonian.

We shall first examine the above Green's func-
tion in a situation for which the number of param-
eters is minimal. Hence, we set u, =us =0,

If the interface is perpendicular to the [100]
directions of both lattices, then we find a further
simplification:

Ng +u —3+cos(k„)+cos(k,),

Along the imaginary axis, Img, can be positive or
negative, depending in the sign of ~, . Because
m &0 in (1), we see that allowed values (nonex-
ponentially increasing) of the second term in (1) re-
quire co, &0. Hence, if P, is imaginary, then
co, & 2T,—(for T, p0).

However, if P, is imaginary, then the corre-
sponding E value is not that of a propagating elec-
tron in metal a. Of course, there may exist inter-
face bound states, that have imaginary P„but
these correspond to excitations that are confined to
the near vicinity of the interface. When we consid-
er the reflection coefficient, we envision a situation
in which an incoming electron from a distant re-
gion of metal a approaches the interface and is re-
flected, subsequently being detected in a region far
removed from the interface. If one restricts con-
sideration to this case, one thus obtains the reflec-
tion probability appropriate to a given interface,

In the limit of bulk metal a, where we take

P, =Ps, u, =ub ——0, and y= l. in (4), r vanishes and
the resulting Green's function reduces to that of
bulk metal a, as required. One may therefore iden-
tify the second term in brackets in (1) as being due
to reflection from the interface, the exponential
factor representing the interference between in-
cident and reflected electron waves.

Thus, the reflection coefficient is
t r(P„Ps) t

.
For the "minimal parameter" case introduced
above, one has

Nb —Ru —3+cos(kr )+cos(k, ),
2Tb 2'

Tg

Tb

and T, T„and Tb, are independent of k~~, EF, be-

ing the Fermi energy in u or b. The lattice con-
stants of a and b are assumed to be equal, so we
may use dimensionless wave vectors.

Now, along the real axis, P, is restricted to the
dosed interval

where P, is real, and so
t
co,

t
& 2T, . Using argu-

ments analogous to those presented above for
Img, ~, we find that Imps &0 so that

t
r

t

~ ap-
proaches unity exponentially for Pb moving away
from zero on the negative imaginary axis. Since
the energy values corresponding to such a Ps
represent an exponentially decaying electron state
in metal b, this result is as expected.

To appreciate the results presented below, it
helps to represent the maximum range of allowed
energies in metals a and b as subbands. To obtain
the appropriate subband width, consider -the bulk
electron energies as a function of (dimensionless)
wave vector, and vary the component of this wave
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(so that (I), is real} moves rigidly upward relative to
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because for R & 1, as k~~ [=(kz+k, )' j increases
from 0, the change in u, (b,u, ) is greater than the
change in us (bus). When 2/8+v+A, ut,

+~u. , one is at a c"tic» v»ue fo«I~ above
which there is no transmission. The corresponding
angle of incidence is analogous to the optical criti-
cal angle. This occurs because at the critical k ll~

the bottom of the subband of metal a coincides
with the top of the subband of metal b (cf. Fig. 3).
However, there may be values of u for which no
critical k~~ exists. For example, for 8 =2, u &0.5
there are no critical k~I values. In general, for
u&2 —3/R or u& —1/R and 8 &1, there are no
critical kll values.

Similarly, for R & 1, there may occur critical k
values for which the top of the subband of metal a

ll

coincides with the bottom of the subband of metal

b, so that there is no transmission for larger k
Il

values. The condition necessary for this is

or

so that there are no critical k~~ values only when

u &2(1/R —1) or u & 1.
In Fig. 3 we display the transmission coefficient

versus E/2T, —hv, for 8 =2, y= 1, and u =0.25.
For hu, =0.8, the shape of the curve is quite simi-
lar to that for y= 1 in Fig. 1. Indeed, for
hu~ =0.88, the curve for u =0.25, y= 1 would
coincide with the y=1 curve in Fig. 1, because at
this value of hv„ the subband bottoms are separat-
ed by 0.06, as they are for Fig. 1. The decay of

i
t

~
as the critical kI~ value is approached is also

clearly evident in Fig. 3. The critical value of hu,
in this case is 3.0.
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FIG. 3. Transmission coefficient vs E/2T, —AU, for
y=1.0, u =0.25, R =2.0, and several values of du, . In-
set depicts change in relative subband configuration as
4u increases from 0 (solid lines) to 0.8 (dash-dot lines).
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The model we have presented ignores several

conditions which may be present in a realistic situ-
ation. It does not consider the effects of a mis-

match in lattice constants. It does not treat the ef-
fects of having the two metals in different orienta-

tions, e.g., metal a having [111]direction aligned
with the [100] direction of metal b. This can oc-
cur if there is a lattice-constant mismatch.
Perhaps the weakest point of the model is its as-

sumption that the interface is perfectly planar.
Despite these shortcomings, the essential physics

of the transmission of electrons through a metal-
metal interface emerges from this model in its
description of electron transmission between sub-

bands of two metals. The subband diagram in

Figs. 1—3 will continue to be relevant even after
the features enumerated above are included in the
model.

1E. L %olf and B. Arnold, Phys. Rep. (in press).
2S. M. Durbin, J. E. Cunningham, M. E. Mochel, and

C. P. Flynn, J. Phys. F. 11, L223 (1981).
3I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980).
~David Kalkstein and P. Soven, Surf. Sci. 26, 85 (1971).
5Avishay Yaniv, Phys. Rev. B 17, 3904 (1978).

6A. A. Maradudin and R. F. %allis, Phys. Rev. 148,
945 (1966).

7E. W. Montroll and R. B.Potts, Phys. Rev. 102, 72
(1956).

8Gerald B. Arnold and M. Menon J Ph (P
'

) C
Supp. 12, 377 (1981).


