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The antiferromagnetic oxide crystals behave rather unusually in respect to many physi-

cal properties, and the various attempts to understand them in terms of models which sa-

tisfactorily describe the simple ionic solids show conspicuous discrepancies between theory

and experiment. One of the major difficulties common to all the existing calculations is

that it is not possible to give a consistent description of the elastic properties and the

dispersion of phonons of such a crystal in the antiferromagnetic phase within the frame-

work of a single model. Moreover, so far, the magnetic and the mechanical properties of
these crystals have been studied, one independent of the other. Apart from this difficul-

ty, a simultaneous description of the dielectric properties and the phonon dispersion with

the existing models also presents several problems. In a previous work we have suggested

a model which is based on a microscopic analysis of the energy expression of an assembly

of ions. Assuming a specific form of the superexchange interaction that is suggested by
various experimental and theoretical investigations and incorporating the same in the

above model, we have been able to reduce significantly the discrepancies mentioned above

for the case of NiO crystal. In addition to this, it has also been possible to present a uni-

fied description of the magnetic and the mechanical properties of this crystal with a sin-

gle model. The specific properties that we have attempted to correlate with a single set

of model parameters are: the cohesive and the stability properties, the elastic and the

dielectric properties, the dispersion relation of phonons and magnons, and the sublattice

magnetization properties. We also indicate the rough order of magnitude of the different

interactions implied in the model and the relations that they bear to the unusual features

of this solid. Some of the limitations of the present model and the directions of further

refinement are also discussed.

I. INTRODUCTION

Although the various physical properties of the
antiferromagnetic transition-metal oxides receive
increasing attention, the theoretical lattice-
dynamical studies of them have mainly been con-
cerned with the dispersion of phonons. In order to
contribute to a better understanding of these crys-
tals we should attempt to correlate simultaneously
the static and the dynamic properties of a typical
crystal belonging to the group within a single
model, in particular by incorporating the properties
characteristic of the group. %e have emphasized
elsewhere' the importance of the unified study

of the different properties of a crystal including
the vibrational ones in the framework of a single
model and with a single set of parameters. In 'fact,
for the simple ionic solids such unified studies
have firmly established the validity of the phe-
nomenological models. Under suitable approxima-
tions it has been possible to derive the values of the
parameters of such models directly from the ionic
wave functions which describe the lattice-dynam-
ical behavior with fair accuracy. '

But the situation with the more complex ionic
crystals, in particular the transition-metal oxides, is
rather unsatisfactory. It is because of the fact that
so far there has been no attempt to develop a uni-
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fied study similar to what has been done for the
alkali-halide crystals. Moreover, there exist sys-
ternatic discrepancies between the present calcula-
tions and experiment that cannot be removed either
by increasing the number of parameters or by ad-

justing the existing ones within reasonable limits.
However, until the advent of a first-principles cal-
culation the phenornenological study can be made
more meaningful and may help probe the physical
processes present in a crystal in two ways. From a
microscopic analysis of the problem we may identi-

fy the terms that are responsible for the different
interactions. But as is well known, such calcula-
tions are too difficult to push rigorously to deliver
number. Instead we model the different terms at
this stage and the complete model is applied to
correlate the major aspects of the statics and
dynamics of the solid. Again, as it is not possible
to include all the relevant properties (either for
want of observation for some of them or prohibi-
tive computational difficulties for others), we usu-

ally work with a finite number of properties and
hence, it is vitally necessary to supplement the
model by some microscopic justification as men-
tioned above. It is needless to mention that such
calculations are more advantageous than pure
phenomenology in not only projecting the precise
limitation of our present understanding but also in
indicating the directions of refinement of the
model at the microscopic level. In fact, by follow-

ing the procedure outlined above, we have recently
done such a model calculation for the AgC1 crys-

tal, where the majority of terms have some
a priori justification. In this work we attempt
such a calculation which will reproduce the broad
features of the NiO crystal, a typical antiferromag-
netic oxide.

Before we discuss our work let us briefly review

the major peculiarities of the antiferromagnetic ox-

ides in light of the investigations already done.
The various versions of the shell model have been

usually used to fit the lattice dynamics of these ox-

ides. The number of fitting parameters in the
models varies between 8 to 16. One difficulty
which is common to these calculations for all the
oxides is that with reasonable values of parameters
they fai1 to reproduce the lowering of the trans-

verse-optical (TO} branch in the (111)direction
which is quite pronounced compared to non-

transition-metal oxides. The discrepancies at the
L point reported by various workers are above ex-

periment by about 20% for CoO, 10% for NiO
and MnO, and 15%% for FeO. The reason for

this discrepancy is attributed to neglect of the qua-
drupolar distortion of the charge cloud of the posi-
tive ion by Haywood.

Kugel et al. ' observe that the quadrupolar de-

formation probably has to be considered for better
agreement of the dispersion of phonons for FeO, in
particular the lowering of the TO branch in the
(111)direction. But so far no attempt has been
made to include the effect of this deformability on
the lattice-mechanical properties. In this context it
may be recalled that Kleppmenn et aI."have
shown that the quadrupolar deformation is inti-
mately connected with the d electron, and the me-
tal ions in the oxides with unfilled 3d shells appear
to be candidates for generating pronounced
quadrupolar-charge deformation.

Another common feature for all these oxides is
that if one forces the model to simultaneously fit
the dispersion of phonons and the dielectric pro-
perties, some of the parameters of the shell model
assume unphysical values. In order to fit the
zone-boundary frequencies, in particular the
longitudinal-optical (LO) branch in the (111)
direction without disturbing the fit for dielectric
constants, the shell charge of the positive ion as-
sumes a positive value. Even with this unphysical
parameter the low-frequency dielectric constant be-
comes 10%%uo higher than experiment for NiO, to
quote a typical discrepancy. ' Similar discrepan-
ries are noted for others also. However, for a dif-
ferent interpretation of this point we refer to the
work of Bilz et a/. ' Further, with the same set of
parameters, the calculated cohesive energy and the
elastic constants show discrepancies generally well

outside the range of experimental error.
Apart from the difficulties mentioned above, the

problem of reproducing the elastic constants in
these models needs special mention. All the
transition-metal oxides undergo an antiferromag-
netic ordering below the Neel temperature accom-
panied by a slight distortion of their normal sodi-
um chloride structure. This phase transition does
not affect all the properties equally. The most in-

teresting effect from the point of view of the
present study is a sudden increase of CIi by about
20 to 307o when the temperature is varied across
the Neel point. For NiO (Ref. 14) it is seen that

C» increases by about 20% in going from the an-

tiferromagnetic to the paramagnetic phase, whereas
there is no appreciable change in either Clq or C44.

The situation in the case of CoO (Ref. 15}is
particularly interesting where we find a small

change in the value of CIq in addition to a large



change in C~~, and C~ remains unaffected. For
neither of these two oxides has it been possible so
far to simultaneously fit both phonon frequencies
and the elastic data within the same model and
with the same set of parameters. The best-fit
parameters obtained from the phonon data give the
value of C, , which is larger than experiment by
about 25% for NiO and 40% for CoO.

In both cases the phonon frequencies and the
elastic data refer to the antiferromagnetic phase.
This observation clearly indicates that some mag-
netic interaction not envisioned in any of the
present models must be responsible for this differ-
ence. This is further strengthened by the fact that
for the same crystal, namely CoO, when fit is or-
ganized for the same properties in the paramagnet-
ic phase, the maximum discrepancy for C~~ is less
than 3%. For the MnO crystal in the paramagnet-
ic phase this discrepancy is less than 2%. The ef-
fect due to slight distortion from the cubic symme-
try of these crystals in the antiferromagnetic phase
(for NiO, the cell angle changes from 90' to
90'+3.5'), is too small to account for the large
discrepancy mentioned above. On the other hand,
the high Neel temperatures of NiO and CoO,
namely, 523 and 293 K (compare the same for
FeO and MnO which are 198 and 116 K), imply
strong antiferromagnetic interaction between the
ions which, we presume (if properly taken into ac-
count), may resolve file incompatibility mentioned
above.

In addition to these properties, measurements for
several magnetic properties 1nclud1ng the spin-wave
dispersion relation in the symmetry directions are
also available for these oxides. Until now these
two aspects, namely, the mechanical and the mag-
netic properties, have been studied one independent
of the other. It appears that an attempt to unify
these two aspects will be highly instructive.

In the next section we shall present an energy
expression of an assembly of ions based on the mi-
croscopic analysis of the problem. Of the terms,
we shall especially mention the two types of short-
range polarization mechanisms, the quadrupolar
distortion polarizability, and shall discuss in partic-
ular the term arising out of the superexchange in-
teractions. Further, we shall see that this antifer-
romagnetic coupling between the ions provides a
natural link that unifies the mechanical and mag-
netic properties. Our choice of the crystal has
been motivated by the fact that the nickel oxide is
a prototypical fcc antiferromagnet which orders
below the Weel temperature in a type-II fcc spin

pattern. ' Moreover, with the direct-exchange in-
teraction between the nickel ions compared to in-
direct superexchange being negligible, the type-II
magnetic order may be considered as four uncon-
nected interpenetrating simple cubic lattices, and
this leads to a considerable simplification.

Further accurate measurements for a large num-
ber of properties are available for this crystal. The
specific properties that we shall try to correlate are
the following: the cohesive energy, the static lat-
tice structure, the phase-transition properties, the
second-order elastic constants, the high- and low-
frequency dielectric constants, the phonon-dis-
persion relation in the symmetry direction, the sub-
lattice magnetization properties, and the magnon-
dispersion relation. %e shall also try to point out
the relation between the characteristic features of
this crystal and the different interactions together
with a rough order of the estimate of their magni-
tudes.

II. MODEL

A. Effective interaction between the ions
via superexchange mechanism

Anderson ' has studied the theory of indirect
exhange between the ions having d or f electrons
in the presence of a diamagnetic lattice characteris-
tic of the transition-metal oxides. The essential
features of the superexchange theory as formulated
by Anderson' may be briefly described as follows.
In a crystal like NiO the influence of the diamag-
netic oxygen ion on the d electrons of the neigh-
boring Ni + ion is considerably large because of
strong overlap interaction. The d functions of
Ni + ions are thereby strongly altered, and the fi-
nal states, Anderson assumes, are closer to the lo-
calized Wannier functions obtained from the Bloch
wave functions corresponding to the d band of the
crystal. And as a result these localized %annier
functions are a better starting point for a perturba-
tion theory rather than the Bloch wave functions.
The Hamiltonian for these d electrons in second-
quantized notation may be written as

H=ge(k)S*-„gp +&
k, o

where S'k is the creation operator for a d-band
electron with spin o in a Bloch state and e(k) is
the corresponding energy interpreted here as a
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quasiparticle kinetic energy. V~ is the electron-
electron interaction term. Bloch wave function di-

agonalizes the first term in (la) but the electrostat-
ic energy is strongly nondiagonal. Using the rela-
tion'

S'z —— ge ' " ' S'(R,o),
N

the same Hamiltonian can be written in terms of
localized quasispin states where S'(R,o) are the
creation operators for the electrons in the localized
%annier states at the lattice site R. By dropping
the branch index in S*(R,cr) which distinguishes
between the five branches of the d orbitals we are,
in fact, using the simplified version of only one or-
bital per spin. The above relation reduces Eq. (la)
to

H = geoS'(R, o )S(R,o )
R,o

+ g b(R —R')S'(R, cr)S(R,cr)+ V„
RQR', a

(lb)

In this scheme the major part of V is diagonal
and the only nondiagonal term is the second term,
which Anderson calls the transfer integral, between
R and R' ions. The parameter b depends upon the
overlap of the atomic d functions with the diamag-
netic (oxygen) electron functions. The logic in
favor of using the localized quasispin as the start-

ing point is the fact that the second term in Eq.
(lb) has much weaker nondiagonal elements than
the second term in Hamiltonian (la).

Next, using the second term as a perturbation

energy one can immediately write the dominant
term in the second-order energy as

ib(R —R')
i S,(-

R+R', g, &'

xS(R',cr)S'(R', o')S(R,o'),

(lc)

where U represents the energy due to mutual repul-

sion of electrons on the same ion. This energy hE
vanishes unless both R'o. and Ro' are occupied
states [because of the two destruction operators in

(ic)]. In the present approximation of one orbital

per spin it means that each orbital in d states must
be half full. Introducing the spin operators the
above expression is simplified, and apart from a
constant term is given by

&
I bit it-I'--

Sii Sg ——QISit Sz .
RR' RR'

(ld)

flu
Blnr

The dependence is the same for both J~ and Jq.
Again, Johnson et al. have calculated the overlap
integral between Ni + and 0 ions. Their results
were later confirmed using more accurate Clementi
wave functions by Drickamer. ' Both obtain the
following r dependence of the overlap integral

81nS
Blnr

The latter work further corroborated the same re-
sult by measuring the pressure dependence of. 10
Dq for MnO and NiO. Since bz R ~S~ z both
the relations independently imply

—5 (4)

The empirical observations suggest that relation

Here S~ denotes the spin value at R site.
Since the introduction of the concept of superex-

change there has been intensive investigation (both
theoretical and experimental) to estimate the size
of this effect. ' All these lead us to conclude that
a pair of metal ions interacting via the common
nearest-neighbor oxygen ion can have two different
configurations for the NaC1 structure. For exam-

ple, the nearest-neighbor (NN) and the next-
nearest-neighbor (NNN) Ni + ions in the NiO
crystal are connected, respectively, by simple 90'
and 180' Ni +-0 -Ni + paths involving one inter-
mediate 0 ion. The exchange integral between
NN Ni + ions is usually represented by J& for a
90' superexchange path. J&+ and J~ denote in-

tegrals corresponding to six NN with parallel spin
and antiparallel spin. The 180' superexchange in-

teraction involves the exchange integral J2.
In order to study the effect of this interaction on

the lattice-mechanical properties the dependence of
J on the interionic separation (r) is needed, which
implies the r dependence of the transfer integral,
since U is independent of the lattice spacing. This
dependence of J has been thoroughly investigated
both theoretically and experimentally. The stu-
dies on the pressure dependence of the ordering
temperature and the magnetization and effect of
thermal expansion behavior of magnetization for
various antiferromagnetic materials (including the
oxides in question) yield the result
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(4) is not only applicable to the transition-metal
oxides but is approximately valid for other systems
as well. Using the above result we may write
down Eq. (ld) in the following form:

in the paramagnetic phase even though J remains
nonvanishing.

B. Energy expression

which represents an effective three-body interaction
between the ions in a lattice due to the mechanism

of superexchange. This interaction is nonvanishing

only when j is an oxygen ion and i,k represent two
nickel ions, both being nearest neighbors of j. The
constant k is a joint property of the overlapping
ions and the value of this parameter will be dif-

ferent for the two different configurations. Due to
thermalization the spin ordering becomes random

above the Neel temperature and the energy associ-
ated with it given by Eq. (ld) completely vanishes

The details of the energy expression excluding
the superexchange part of it, have been discussed
by Ghosh et al. This approach is advantageous in
contrast to that of a mechanical model (such as the
shell model) in two ways. Firstly, we may dispense
with the concepts of the shell charge and the
spring constants which are difficult to justify
microscopically. Secondly, we can trace the origin
of each term occurring in the energy expression
from the fundmental considerations. Including the
magnetic interaction, the total energy expression in
the present model for the antiferromagnetic phase
is given as

Pp Pp

+ —,
'
gbexp ij j,+ —,gb'exp

ij

V2r,, + —,QQA(k)exp
P

Pij +Rim k~
+2XX 5 5r

(6)

where we have used the same symbols as in Ref. 6.
The first four terms represent the pure electrical
interaction including the self energy. Here the to-
tal dipole moment p; =p; +p;, where p; and p;
arise because of the first-order exchange interaction
and perturbation of the wave function, respectively.
The fifth term represents the interaction between
the moment developed due to the quadrupolar dis-
tortion of the charge cloud and the monopole and
dipole fields. The details of the evaluation of this
term have been discussed by Ghosh et al. ' The
next three terms represent the van der %aals in-

teraction, the change in overlap due to perturbatiom
of the wave function and the usual overlap term.
The second-neighbor overlap between the oxygen
atoms is given by the ninth term. The tenth term
gives the energy due to scalar deformation of the
charge cloud, and the last term is due to magnetic
interaction. Finally Eq. (6) and the adiabatic con-
dition

completely describe all the lattice mechanical as
well as the magnetic properties of the crystal.

The present model contains eleven adjustable
parameters, namely: b and p, the short-range over-

lap parameters; A, , b' and p, the second-neighbor
overlap parameters; c and p' the parameters con-
nected with the deformation dipole p;, arising out
of the first-order exchange interaction; po; and a,
the parameters controlling the dipole moment p;
due to the perturbation of the wave function (only
the perturbation of the negative-ion wave functions
considered); A (1) and A (2), the scalar-deformation
parameters; d+ the quadrupolar distortion parame-
ter of Ni + (the quadrupolar distortion of the
negative ion is neglected), and k, the parameter
for the 180' Ni +-0 -Ni + configuration su-

perexchange interaction (since in the final calcula-
tion we neglect the interaction for the 90' configu-
ration). The values of the parameters have been
determined by the usual procedure and k is ob-
tained from the difference in the values of C]~ just
above and below the Neel temperature. The values
of the parameters are quoted in Table I. Since we
are not interested in an exact fit of properties and
would rather investigate how far it is possible to
provide an overall description of different proper-
ties in terms of a single set of parameters, the ap-
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TABLE I. Value of the parameters.

Parameter Values

p {10 'cm)
b (10 9 erg)
b' (10 erg)

A{1)(10 6erg)
A (2) (10 erg)

@02(D)
a2 (10-'4 cm')

c (10 s)

p' (10 cm)

d+ (10 dyncm )

k~(10 ~ dyncm")
c (10 ~ ergcm )'

c+ (10 erg cm )'

0.3150
1.9415

—2.1980
0.1279

—0.1401
3.2800
4.0586
0.7623
0.7250

—3.3000
—0.9770
65.5

8.4

'The van der Waals coefficients are estimated from po-
larizabilities as given in Ref. 25. c++ is neglected being
small compared to c+

proximations mentioned here will not seriously af-
fect the conclusion.

III. LATTICE STATICS AND ELASTIC
PROPERTIES

N A
Ncaa =Pea+ tI)csa ~

with

(9)

4k (180') 24k (90')
~Csa =

iO + 1O
NN ~NN

(10)

In the above expression (10) we have assumed that

In order to discuss cohesion and stability we give
below the energy per unit cell for the static lattice
structure (in the antiferromagnetic phase) for both
sodium chloride and hypothetical cesium chloride
structures from Eq. (6):

N
PNaC1 PNaC1+ PNaCl ~

with

3kM(180') 12k (90')
NNacl ip + ip

Tp Tp

where P is the nonmagnetic part of the interac-
tion given in Ref. 6 and P" is the contribution of
the superexchange interaction to lattice energy.
k (90') and k (180') are the superexchange con-
stants for the two configurations. Similarly, for
the hypothetical cesium chloride structure the ex-

pression is

60k (180') 140k (90')
C11—

13 + 13
fp fp

CM 50k (90')
12 13

fp

C44 ——0 .

(12a)

(12b)

(12c)

The total expression for the elastic constants are

given by adding to the above equations the non-

magnetic contributions given in Ref. 6. It is in-

teresting to note that the above equations qualita-

tively corroborate experimental results. Both the
magnetic contributions vanish in the paramagnetic

the potential parameters remain unaltered. This is
not strictly true for the parameter corresponding to
the 90' configuration. Since the energy involved is
very small and in the final calculation we have

neglected it, it is not going to affect the result.
The equilibrium nearest-neighbor distance in this
structure is obtained by numerically solving the
equation

ddcscl =0
«NN

Using the computed r with and without the
magnetic interaction it is found that in both cases
the observed structure is predicted. The phase-
transition pressure at T=0 is obtained in the usual

way by equating the Gibbs free energy. The calcu-
lated values for the transition pressure and volume

together with the contribution from the individual

interactions and how they are altered with the
change of structure are given Table II. Since in
the absence of any observation for the transition
pressure the prediction cannot be checked, it may,
however, be remarked that the order estimated lies

around the range recently reported for other ox-

ides, namely, the CaO crystal which is about 500
to 600 kbar. Since such pressure is experimentally
realizable it will be interesting to check the predic-
tion against observation. The implication of the
transition pressure without magnetic interaction

(see Table II) is that in the paramagnetic phase a

higher pressure will be required to bring about the
structural change.

Next we calculate the second-order elastic con-
stants. In the following we explicitly write down

the contribution to the elastic constants only from
the magnetic interaction. Starting from the energy
expression (6) and using the theory of homogene-

ous deformation the expression for the elastic con-
stants for the sodium chloride structure is given by
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TABLE III. Second-order elastic constants and Debye temperature.

Property Present
calculation

Calculated by
Reichardt et ah. b

Antiferfo. 3.2417

dyn/cm

Ci2
ParaIQag.
Both phases
Both phases
Antiferro.

3.80
1.11
1.10

3.6517
1.0060
1.0333

508

1.26
1.19

Paramag. 523

'Reference 14.
Reference 12.

'Reference 16.

phase. Experimentally it 1s found that C44 does
not change discontinuously either for NiO or CoO.
And the change of CII is negligible for NiO but
exists for CoO where k (90') is not negligible.
O~en et g1.23 theoretically discussed the relative
magnitudes of the exchange integrals correspond-
ing to both 90 and 180' configurations for the
transition-metal oxides. Their investigations indi-
cate that the contribution corresponding to 90' is
vanlslllllgly slllR11 colllpRI'cd to 'tllRt of 180 111 tllc
case of NiO. More conservative estimates may be

obtained from the vvork of Hutchings et al. ,'

which implies from the ratio of exchange integrals
obtained by fitting of the neutron data that
k (90') ls Rpploxlnlatcly twcllty tllllcs less tllR11

k (180'). Hence in our final calculation we have
totally neglected it. The values obtained for the
elastic constants are given in Table III for both
phases together with other calculations. Also the
Debye temperature at OK (O~z), evaluated from the
elastic constants vnth and without the superex-
change effect, are compared in Table III.

i

0 0.2 0.4 0.6 0.8 ) 00.8 0..6 0.4 0.2 0 0.2 0.4

PHONON OI8 Pe g S toN CugvES Foe e~ 0
FIQ. 1. Solid lines show dispersion curves of NiID calculated from the present model; experimental points are taken

from Ref. 12.
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TABLE IV. Dielectric properties.

Property
Calculated by

Reich ardt' Present calculation Expt. '

6'p

TO
Lo

5.7
13.0
71.94X10"

103.29)( 10~2

5.7
11.75
75.40' 10"

108.26&( 10'

5.7
11.75
72.88

108.70

'Reference 12.

IV. LATTICE DYNAMICAL AND DIELECTRIC
PROPERTIES

The dynamical equations are obtained by the
usual procedure by expanding Eqs. (6) and (7)
about the equilibrium configuration (see Ghosh
et al. ):

[(Z+D)c(Z+Dr)+R'+Q"'] U

+[(Z+D)c R'p, o '+—Q' ']p, = tmoU,

(13)

[—c(Z+D }—po 'R'+Q' ']U

V. SPIN-WAVE DISPERSION AND MAGNETIC
PROPERTIES

Our main intention in this section is to investi-

gate how far the different magnetic properties, in

particular the spin-wave dispersion relation in the

symmetry directions, are reproducible with the set

of parameters which give a more or less satisfacto-

ry description of the mechanical properties. We
shall treat the Ni + ions in Ni0 in the weak-field

approximation. We also neglect the slight distor-

1 500

+[c+~ +po R po iV=0

where Z, po and m are the usual 6X6 diagonal
matrices and U =(Ui, U2} and p, =(pi,p2) are the
ionic-displacement and dipole-fluctuation vectors.
The matrix R' is given by

1 000

8

500

R'=R+H+ V+T+M, (14)
0, f 0.2 0.'3 P.4 05 0.6 0;7

where R, K, V, T, and M represent the NN over-

lap, 0 -0 overlap, the van der Waals, the
three-body, and the magnetic-interaction matrices,
where R, H, V, T, and M represent the NN over-

lap, 0 -0 overlap, the van der Waals, the
three-body, and the magnetic-interaction matrices,
respectively. The deformation-dipole matrix D(ij }
is defined as follows (see Ref. 6):

p~= g D(j t') UJ —— gm; (r,~}-
j NN of i

D(ij } involves two parameters mk and mk. Here
we set mk ——ce ' ~ and calculate parameters c and
p'. Equations (13) have been solved in the symme-

try directions to give the phonon frequencies which
are shown in Fig. 1. The dielectric equations are
the same as given in Ref. 4. The results of our
calculation are shown in Table IV.

f5OO

f 000

e
QOo

O. f 0.P 0,3 Q4. O.g 0.6 0.7

SPf N-WAVK Ql S P E R SION OF H to

FIG. 2. Solid lines show calculated spin-wave disper-
sion curves; experimental points are taken from Ref. 16.
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tion in structure and treat the lattice in the antifer-
romagnetic phase as pseudocubic. So, in the
present phenomenological spin-wave model the
Hamiltonian may be written for a given domain
with S=1 as

TABLE V. Comparison of various estimates of J'S
(K).

Source

H =+ex+canis ~

where

H,„=g+J,s, .s, +gj

and

(15a)

(15b)

Neutron diffraction
Expt. '
Raman scattering
Expt. '
Superexch ange
Present work

—15.7

Small
Small
Small

Small
Small
Small

221

213
230
225

.=gD) (Sp)'+ QD2(S,")' . (15c)
2 I

In the above expression Z lies along the spin
direction and x is at right angles to the ordering
plane. (i,5J ) indicates the summation over the
distinct pairs of ions at r; and r;+5J. coupled
through an exchange interaction. Various theoreti-
cal and experimental estimates show that in the
case of NiO

~
Jq

~
&&

~
J&

~

. Since other exchanges
are smaller than

~
J~

~

we neglect all of them.
Similarly the anisotropic terms (D'S) may be disre-
garded for NiO for all values of the wave vector
except for q =0 for their small size. Brushing
aside the finer points which cannot be meaningful-
ly treated in the present crude model, we write
below the dispel'sion relation

Ef(q)=(A —8 +D, )(A +8 +D2) (15d)

E2(q) =(A —8 +Dp)(A-+8 +D) ), (15e)

where A -P-, and D
& +2 are quantities defined

in Ref. 16. In this simple model we have only one
parameter, namely J~, which is evaluated from
Eqs. (ld) and (5) by using the value of the parame-
ter kM (180') given in Table I. Equations (15d)
and (15e) are now solved for the symmetry direc-
tions to give the magnon frequencies which are
shown in Fig. 2. The solid line represents the
theoretical calculation, and this is a single curve
because in the approximations made, all the curves
for the four different domains are degenerate. The
experiment also cannot distinguish between them
except at q =0 (not shown in Fig. 2). In view of
the drastic approximations made, the agreement is

quite satisfactory. This has been possible in the
case of NiO because the dominant interaction
represented by J~ is significantly large compared to
other relevant interactions. In Table V we com-

pare the value of J2 obtained in the present calcu-
lation with those obtained from different experi-

'Reference 16.
Reference 17.

Sg p~ (1+C, /r+ C, /r'+ ),
7

where the constants C&, C2, and ~ are

3ko 2
Ci —— = —6J2 and Cp ———,CiS(S+1) (16b)

3kT
S(S+1) (16c)

Both the RPA and molecular-field theories en-

visage

Y(T~)=Ng ps/12',
and the Neel temperature T~ is given by
molecular-field theory

T~ JZS(S+1)/3k . ——

(17)

(18)

The calculated values of the above quantities are
compared with experiment and more accurate cal-

culations of Hutchings et al.,' in Table VI.

ments. It is seen that the present estimate of Jz
from the mechanical properties compares quite
favorably with the more reliable determination of
the same.

Next we calculate some magnetic properties with
this value of J2. We employ the molecular-field
theory to estimate these quantities. However, the
more accurate random-phase-approximation theory
advanced by Lines' can also be used. Since the
expression for the susceptibility at T~ is the same
in both the approaches and the major discrepancies
between theory and experiment are similar, we use
the simpler molecular-field theory in which the
high-temperature expansion of the magnetic sus-

ceptibility is given by
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TABLE VI. Magnetic properties.

Property Present Hutchings et al.' Expt. '

8 (K)
C) (K)
Cg (K)
~N (K)
X(&~)

(emu/gm)

—900
—1350

9.11)&10'
900

9.21 X 10

—757
—1135

6.45y10'
886

10.1)& 10
523

11.7&& 10-'

'Reference 16.

VI. DISCUSSION

An examination of the results of the present in-

vestigation given in Tables II to VI and Figs. 1 and
2 indicates that the present phenomenological
model based on the energy expression (6), where all
the terms have some a priori justification from mi-
croscopic consideration, is capable of giving a
rough overall description of both the mechanical
and magnetic properties of the NiO crystal with a
single set of parameters. Moreover, except for
some of the magnetic properties, no large scale
discrepancy between calculation and experiment is
noticeable anywhere.

Next we discuss some of the major interactions
considered whose contributions to the energy are
given in Table II. The contribution of the superex-
change interaction to the binding energy is quite
small but this is indispensable for a simultaneous
description of the dispersion of phonons and the
elastic properties in the antiferromagnetic phase on
one hand, and the dispersion of magnons and the
different magnetic properties on the other. Its
direct effect on the phonon frequencies is quite
small except at very low q values. Hence if one
concentrates only on the fit of the phonon frequen-
cies, one is forced to conclude the absence of any
sizable magnetic interaction in the antiferromag-
netic phase. It is only when we attempt a unified
description with a single set of parameters that its
importance is clearly demonstrated. Again in view

of the fact that the magnon dispersion relation is
fairly reproduced, whereas for some of the other
magnetic properties the discrepancy is larger, it is
reasonable to conclude that it is the molecular-field
theory which needs refinement and not the funda-
mental energy expression used here. This conclu-

sion is because in the derivation of the magnon
dispersion relation we have not used the
molecular-field theory. However, it should also be

noted with Hutchings et al. , ' that one should be
sure of the experimental results in this region be-

fore attempting any revision.
Next we find that the quadrupolar interaction

which contributes nothing to the cohesive energy is
important for producing the lowering of the TO
branch particularly in the (111)direction. Its
contribution to the elastic constants is also substan
tial. Its effect on the TO branch in the (110)
direction is also quite large, being of the order of
about 15%. Lastly, the two types of short-range

dipolar distortion we have used are necessary for
reproducing the dielectric properties, while at the
same time keeping the fit for phonons undisturbed.

Theoretically there is also no reason to exclude the
effect of the first-order exchange interaction while

retaining the second-order exchange effects. This
point has been discussed in detail in our previous
work.

Although we have obtained an overall fit of the
different quantities, there still exist some minor
discrepancies apart from those in the magnetic
properties: The T~O branch of the phonon-

dispersion relation in the (110) direction near the

zone center is about 5% above experiment and

there is a somewhat similar discrepancy in the TO
branch in the (100) direction. In the (110) direc-

tion the spin-wave dispersion relation is above ex-

periment between wave vectors q =0.3 to q =0.5
by about 5 to 10%. In the case of the spin waves

it is expected that the inclusion of the exchange in-

teraction other than J2 will improve the agreement.

It is, however, difficult to point out the causes of
discrepancy in the phonon dispersion. Further re-
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finement might be possible if we can include the
small covalency effect the evidence of whose ex-

istence is provided by the direct measurement of
(Sz ) by neutron diffraction experiment.
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