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The Kondo model with a spin-S impurity is formulated using a generalization of the

Bethe- Yang approach. The exact relation between high- and low-temperature dimension-

al scales is obtained for arbitrary S. The formalism is further generalized to include two

species of electrons. It is found, contrary to expectations, that the screening of the

impurity's magnetic moment is not dependent on the number of species: The spin of the

dressed impurity is S—
2

in both cases. To ensure that no states have been overlooked

the completeness of the basis is examined in some detail.

I. INTRODUCTION

A number of exact results in the Kondo
model' have been obtained recently using the
Bethe-ansatz technique and quantum inverse
scattering methods. As a result, we now have a
greatly improved understanding of phenomena
such as the screening of the impurity's magnetic
moment, the scaling property of thermodynamic
functions, and the crossover between weak- and

strong-coupling regimes (including the exact nu-

merical relation —%'ilson's number —between high-
and low-temperature scales). Although the original
methods were specifically designed to treat the
Kondo model with spin- —, impurity, Fateev and

%iegmann have been able to derive the basic
equations for the experimentally more relevant

spin-S case, and have shown that there is only par-
tial screening of the impurity spin (the ground
state llas spul S—

2 ), 111 collforlnlty wltll tile pl'ed-

ictions of Ref. 6. In their solution, imposition of
periodic boundary conditions requires diagonaliza-
tion of an operator which may be expressed as a
trace of a product of transfer matrices, the latter
having been analyzed by Baxter and later by Fad-
deev et al. in the context of the quantum inverse

scattering method.
In the present work we wish to answer several

questions which remain concerning the Kondo
model with arbitrary spin. First, we want to see
whether the modified Bethe-ansatz approach of
Yang, exploited by Andrei in the S=—, case, can

be further generalized to handle arbitrary impurity
spin. In addition to providing a conceptually

somewhat simpler construction than Ref. 4 (lead-

ing, of course, to the same equations), such an ap-
proach may provide new means for attacking one-
dimensional. models which have not yet yielded to
traditional Bethe-ansatz methods. In Sec. II we
show that a generalized Bethe-Yang solution of' the
problem of diagonalizing the Hamiltonian is indeed

possible, and in Sec. III we discuss the classifica-
tion and counting of basis states.

Our second goal in this article is to generalize to
arbitrary S the calculation of Ref. 2 of Wilson's
number. In Sec. IV we first summarize briefly the
exact treatment of the zero-temperature magnetiza-
tion curve,

'

which can be obtained using the same
methods as in the S=—, case. In contrast to the

latter case, where two distinct scales To and T&
govern, respectively, the regions 0&& To and
H ))Tp at T =0, we now have a single scale for
T=0. Hence the ratio of high- to low-temperature
scales is accessible to a perturbative calculation,
which we carry out. This gives us the analog of
Wilson's number for arbitrary S.

As a final item of interest, we turn our attention,
in Sec. IV, to the modifications (surprisingly few,
it turns out) that occur when one has two electron
species interacting with the spin-S impurity with
the identical coupling. Of primary interest is
whether the new quantum number (which we refer
to as isospin) produces additional screening (be-

yond the half-unit of spin screened in the single-
species case) of the impurity spin. Previous work
on the subject has concentrated on the determina-
tion of the ground-state spin. Abstract theorerns
and numerical calculations ' in the manner of
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Wilson" indicate that if one has k species of elec-
trons, k &2S, then the ground state will have spin
S —k/2. In our opinion, these results are an un-

reliable guide to the extent of screening in the
model, for two reasons: (a) For finite volume L,
the alleged ground state differs in energy by
amounts of order L ' (or less) from a number of
other states of different total spin. The positions
of these levels can easily depend on the cutoff
prescription and boundary conditions adopted;
which of these levels, if any, corresponds to a sin-

gle "dressed impurity" is not always obvious, and
must be determined from the structure of the spec-
trum (straightforward for one electron species,
much less so for two species). (b) The spin of the

lowest-energy state in the absence of a magnetic
field is not necessarily the same as the spin of the
dressed impurity as revealed by the response of the

system to a weak magnetic field. The former is

found by studying energy levels with excitation en-

ergies of order L ', whereas the latter is derived

from a study of states with excitation energies of
order pH, where L ' &~pH gg Tq.

In Sec. V, we determine unambiguously that the

spin of the dressed impurity in the two-species case
is S ——,, just as in the single-species case. This

can be seen both from the structure of the low-

lying spectrum and from the asymptotic weak-field

behavior of the zero-temperature magnetization
I

curve. Interestingly, the value S——, differs from

the ground-state spin of S —1 calculated in Ref.
10, and also from the value S of the spin of the

lowest-energy state in our own construction.
The skeptical reader may worry that our pro-

posed Bethe-ansatz basis may not be sufficiently
rich to describe all physically relevant states in the
spin-S Kondo model with two electron species. In
other ~ords: Do the Bethe-ansatz states constitute
a complete set of energy eigenstates7 We believe
that we have satisfactorily answered this question,
in the affirmative, in Sec. VI and the Appendix.

II. DIAGONAI. IZATION OF THE
HAMII. TONIAN

Our system consists of N electrons (spin- —, fer-
mions) on a line segment L/2 &—x &L /2, with a
spin-S impurity fixed at x =0. The Hamiltonian is

8 +2J+5(X.)Cr 'S
j i BXJ. (2.1)

%'e wish to construct a complete set of mutually
orthogonal, antisymmetric wave functions, which
are simultaneously eigenstates of A, P', and P'„
where P' is the total spin,

P' =S+—, g O.
J .

j=1

We assume the following form for the basis
wave functions of distinguishable electrons:

where 0 J /2 is the spin operator of the jth electron
and S is that of the impurity, with

(o/2) = —,( —,+1),
S'=S(S+1) .

—Pf/2 k
1+1+k2+2+ +kN+N

~ ~ ~ ~
VL e +8(XQ] & (XQ~ (0 (XQ(~+ /) ( ( QN )fg . . . g

Q, v

(2.2)

a; =+—, (spin index for electrons), —S &a (S(spin index for impurity) .

The sum over Q runs through all permutations of the X electrons, whereas v, which marks the position of
the impurity within the sequence of electrons, runs through the integers from 0 to X. The coefficients

P, . . . , and momenta are to be determined by applying the eigenvalue equations and periodic boundary
Ql QN

conditions.
Assuming that a comp/ete basis of this type can be constructed, we shall obtain immediately a complete

basis for fermionic electrons by antisyrnrnetrization. The basis wave functions will have the form

r

'(&!) ' ' g( —1) ~ " ' ' " +8(XQ)( (XQ„&0( ~ ~ ~ (xQN)g
Q, v
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with k] & kz & k]v. Note that in this basis, the plane-wave part of the wave function is antisymmetric,
and this leads to the simplifying feature that all k; must be distinct.

Postponing until later the question of completeness, let us now see what constraints the energy eigenvalue
equation places on a wave function F of the form (2.2):

igk]x~

kj F=+5(Xi)8 g 8(Xg]( ' ' ' (X]=0(Xg(~+])( ' ' ' (Xgiv)
j=l i =1 Q, v

Qv=i

&&[(rag] - agNa lag] agua)

+J(~), ~ (s)..("-'.. . , . . . ,+P . . . , . . . .)].agog„ag ] ag„- ag]], a' ag ]
. ag„ag~ a'

(2.4}

If F is to be an eigenstate of H, the coefficient of each 5 function in (2.4) must vanish, which implies

NQg)
' '

clgN C VCg)
' '

DAN c a&+ gv aa Va 1' ~ ~ -a& a Nn' ~a& ~ ~

a&
~ a a' (2 &)

v ikL v—l
4aaa e kaaa ~

J J
(2.6)

where a stands for any collection of E—1 indices.
Equations (2.5) and (2.6) together imply that g, a

satisfies

This provides a set of linear relations which allow
one to calculate all P in terms of g . A second
such relation is a consequence of the perodic boun-
dary conditions, namely, for all j,

F I,.=-L, =F
I i=+I,

and so we must have, from (2.2),

and the eigenvalue is

ik L
A, =e ' (2.8}

yM

Equation (2.7) is quite similar, but not identical,
to the discrete eigenvalue equation which arises in
other models (in particular in the S= —, Kondo
model' ). There one could regard a spinorial tensor
])I]a . . . , , with a; =+1 and ga; =X—2M, as a

wave function on a one-dimensional lattice of X
sites:

Zg =A,g, Z= Yp~P,

where Yp]v and P are matrices defined by

Yo~ ——r1+soxzSz

+ , s (iriv ~—S +]riv S+),
J+i[1+S(S+1)J]
J+i [I+S(S+1)J']

2JS=
J+i[1+S(S+1)J]

Ir+sSI =1,
(Pf)a . . a =Ca a . . a

1 N —1

(2.7)

with

0ai .
aN a=%a(yl~ i yL } (2.9)

a+ —,X —L, =P', =S+—,1V —M .

In terms of the wave functions (2.9), Eq. (2.7) takes
the form

31&32& '

where yj is the position of the jth downspin. The
eigenvalue equation analogous to (2.7) could then
be solved by the Bethe-ansatz method, as modified
by Yang. In order to generalize-this procedure to
include impurity spin S) —,, we write

~]pa(y]~ iyL, ]E}=(r—as)]pa( i,y] + 1, . . . , yl. ]+1)

+s&(S+a)(S—a+1)]p ](y]+1, . . . ,yI, +1), (2.10)
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Xq).(y, , . . . ,yl &iV) =(r +as}q,(y)+ 1, . . . , yI. +1)
+sv'(S —a)(S+a+1)y~+~(l,y~+1, . . . , yl. +1),

where

(2.11)

r+sS
r

r+sS
2JC=

r"+s S S+—, +ic ' 1 —S(S+1)&'

In addition, the condition

(2.12)

which we may impose without loss of generality (since basis states may be obtained from those with P', =P'
by multiple application of P' ), takes the form

v'(S —a)(S+a+1)tp (y&, . . . , yL, )= — g y +&(y|, . . . ,y, . . . ,yl. ), —S—1&a&S .
1 (J'X3'J.

(2.13)

By interpreting the arguments a, y|, . . . , yl of our wave functions (2.9}as specifying the positions of M
identical down spins, S —a of them located at site 0, we are led to the following ansatz:

S—a L

(p (y&, . . . ,yl. )=v ~p g@(Xp;)gf(Xp~s +p~y, )
P i=1 j=l

(2.14)

where the summation is over all permutations of M =S a+I. sym—bols, 4 and f are single down-spin wave
functions (the former associated with site 0), and Ap and v are coefficients. We find that Eqs. (2.10),
(2.11), and (2.13) may be satisfied by wave functions of the form (2.14), provided that we have

1/2

(2S)
—(s—a)&a= S—a

XJ +i /2
f(X;,y)=pj~ ', p, =

j

(2.15a)

(2.15b)

@(X)=
v'2S X——

2

X+—+Si1

c

2J
1 —S(S+1)J'

(2.15c)

+p' Xpj Xp'j
pj'=p(j +1), p'(j +1)=pj .

~p Xpj Xp'j + ~

The parameters Xj, j =1,2, . . . , M must satisfy the coupled equations

Xi+ t /2 Xi +1/c +St. ~ Xi —Xk + t

Xi i /2 —XJ + 1/c Sl k ) XJ——Xk i—
Once a solution set I X|, . . . , X~ I of (2.16) has been found, the corresponding eigenvalue A, of Z is

M
~=e +pi, e =r+Ss

j=1

which yields for the momenta

2m ~ 1
k; = n;+ ~——g (2 tan '2Xi+sr), n; = integer

j=1

(2.15d)

(2.16)

(2.17)

(2.18)
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and for the energy (relative to the ground state)

N 2~ N ~ M
E= gk;= NK—+ gn, ——g(2 tan-]2XJ+]r)+

l —1 i —1 j=1 I. (2.19)

where K is fixed by the condition that the ground-state energy vanishes.

The remainder of this section will be devoted to showing that Eqs. (2.10), (2.11), and (2.13) are indeed

satisfied by wave functions of the form (2.14) with (2.15), (2.16), and (2.17).
Proof of (2.13). Suppose y~(y], . . . , VL) has the form (2.14) for all a and I.. Since f(XJ,V) is simply a

power of pj, the summation over y can be performed explicitly using the standard formula for geometric
series. One obtains

fag](y'2& ~y~ ~ ~ ~ ~yi. )

S—a—1=..„~,g e(X„), gf(X,J,VJ),
'+ g gf(XP,',VJ+])

P 1=1 j—2g(j
gf(X,y„)

L —1
N

gf (X )
PPM PPM

(2.20)

wherei'=i+S —a —1. Now (2.15d) and (2.16) imply the following identities for the coefficients Ap.

J j j J
I P(j —1)I Pj J P(j —1)f Pj

Ap
ppj l pp(j —1)

+QPni
J j J jPPj Pp(j —1) PPj pp(j —1)
—pp(j 1) 1 —ppj

(2.21)

where Pj =P"(j —1) and P(j —1)=P"j, and

Ap
~p =~P2P3. . . PMP1-

(]op] p])

where

XJ + 1/c+Si

XJ + 1/c Si—

(2.22)

With the aid of (2.21) and (2.22) and some algebra, the right-hand side of (2.20) can be considerably sim-

plified:

0'a+ ](y ]. .y~ VI).
1 &f%3'J.

S—a L l 1pe(X )gf(x J,yJ) (2.23)
p ]—] J 2 (1—]Mp]')4(XP] ) ]op]C(Xp])(1—pp])

Substituting the expressions for 4, ]uJ, and pJ in terms of XJ, the quantity in large parentheses in (2.23)
reduces to

l l S—a —1
1

v'2S (Xp] —Xp]+2Si)= g (Xp]J+]]—XPJ+i) (S+—a+1) . (2.24)

Substituting (2.24) and (2.23), one finds that only the last (X-independent) term in (2.24) survives the sum
over P. We thus end up with
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5+a+ I
g +1(yl y .yl. )= —

2
"+&E «II@(X» IIf X«j'»i) (2.25)

Since by (2.15a)

(S+a+2)v +~
——&(S+a+1)(S—a)v

1

2S

we obtain, finally, Eq. (2.13). Note that in the case a = —S —1, the left-hand side vanishes.

Proof of (2.10) and (2.11). Before proceeding to the general case, let us set M =1 and o.'=S, so that (2.10)
and (2.11) reduce to

&f(X,X)=(r as)f(X—, 1)+sv'2S 0 {X),

)f (X,y &E)=f (X,y+1) .

(2.26)

(2.27)

Equations {2.26) and (2.27) are easily verified using the definitions (2.15b) and (2.15c) and the relation (2.16).
The generalization to a=S and arbitrary M is trivial. From here one proceeds by induction on 5 —a. Sup-

pose (2.9) is valid for all impurity spin projections &a. Then for 1&yKIy„y2, . . . , yi &,X I we have

A% (y&, . . . , y, . . . , yL, „E)=(r—o's)% (l,ye+1, .y+1 yL, —&+1)

+su'(5+a)(S —a+1)tp~ i(yi+ I, . . . ,y+ I, . . . , yL &+ I) . (2.28)

If we now sum both sides of (2.28) over y, omitting y„y2, . . . ,yl ~ and N, and substitute (2.13), we obtain
(2.10) for spin projection a —1. Equation (2.11) is proved in a similar fashion.

ID. CI.ASSIFICATION OF STATES

In this section we discuss the physically relevant solutions of (2.16). Since much of the ground has been

covered before, in the S=—, case and in Ref. 12, we shall keep the discussion quite brief. We begin by res-

tricting our attention to solutions of (2.16) for which all XJ are real. It is convenient to take the logarithm

of both sides of the equation to obtain

x+c-'
2N tan '(2X)+2 tan —2+ tan '{X—XJ ) =2~J(X) . (3.1)

We are interested in those solutions X of (3.1) for which J(X) takes on one of the values

(3.2)

M of these solutions comprise the set I X~, . . . , X~ },and are known as 1-strings (the terminology will

become clear shortly); the remaining X+ 1 —2M solutions are called 1-string holes. As in the S= —, case,

the ground state corresponds to an absence of holes (provided, as we shall assume, X is odd). Hence we

have

1 1M=
2 (%+1), P'=S ——, , (3.3)

so that for S ~ —,, the ground state is 2S-fold degenerate. To determine the 1-strings in this state, we exploit

the fact that the solutions of (3.1) become dense on the X axis for X tending to infinity, so that for suffi-

ciently large N it is an excellent approximation to replace the summation in (3.1) by an integral,

+tan '(X —XJ.)~ JdX'o(X')tan '{X—X') .
j
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If holes are located at X&, . . ., XM„, then o(X) is related to J(X) by

MI,

=0(X)++5(X—X,". ) .

Differentiating (3.1) with respect to X and inserting (3.4), one obtains

MI,

0(X)+ JdX'o(X')E(X X') =—f(X) +5—(X—X")

&(X)=—,, f (X)=1 1 1 X/2 S
(-,')2+X' S'+(X+c-')'

(3.5)

which may be solved by Fourier transformation:

(3.6)

N eip/e —(S—1/2) ~p ~

Oo(P) =
2 cosh(p/2) 2 cosh(p/2)

+'
(3.7)

~ h
M& &X p

o(p) =00(p) —Q
, 2cosh p/2

The first term in (3.6) corresponds to the ground-
state distribution

l

corresponds to an absence of holes. Placing a hole
in the 1-string distribution will, of course, cost
some energy, but if H is large enough and the hole
is far enough to the left on the X axis, the net ef-
fect is to decrease the energy. The ground state
will then have holes from —Oo to 8, and only 1-
strings to the right of B. (There are, of course,
other states, with nonreal XJ, with the same total
spin P' as this state; these states would have addi-
tional holes and higher energy. ) The distribution
0(X) for such a state would then be given by

Formula (3.6), when substituted in (2.19), allows
us to compute the energy contribution of each
hole, i.e.,

~(X)+f, dX'o(X')E(X X') =f(X—), (3.9)

(3.g)

Since this is positive, we verify that the state
without holes is indeed the minimum-energy state
(among those with only real XJ). More detailed
analysis shows that, as in the S= —, case, the ener-

gy relative to the ground state Is always given by a
sum of contributions (3.8); moreover, in order to
have nonreal XJ., one must have at least one 1-
string hole, hence positive energy relative to the al-
leged ground state. Note that there is no mass
gap: The energy contribution of a hole at the ex-
treme negative end of the X axis is only of order
1/I. .

In the presence of a magnetic field H, it is no
longer true that the minimum energy state

an integral equation which can be solved by the
Wiener-Hopf technique. The results of this calcu-
lation are summarized in Sec. IV.

The classification of general excited states of our
1

system is completely analogous to the S= —, case,
and will not be treated in detail here. %e do wish
to convince ourselves, however, that the spinorial
basis which we have constructed completely spans
the (2S+ 1)X2 dimensional space of tensors

,„,. To this end, we follow Takahashi' and

make the assumption (whose consistency has bmn
thoroughly checked for states with a macroscopic
number of 1-string holes, i.e., M~ ~I.) that apart
from corrections of order exp( —IrI.), a. & 0, each XJ
in a solution set t XI, . . . , X~ I of (2.16) is a
member of an n-string, i.e., a family of XJ with the
same real part, of the form

I X„& X„+i(n+—1 —2.1)/2, X„J real, 1=1,2, . . . , n I, j=1,2, . . . , M„. (3.10)

Writing Eq. (2.16) for each member of such a string and taking the product of these n equations, one ob-
tains, as the generalization of (2.10) of Ref. 13,
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min{2S, n)

e"(2X„,/n) g e ' = g &„(X„,—X k), j=1,2, . . . , M„
I 1

2S+n+1 —21 { k)~{ ~

)

e e
fn —m

f

X 2

fn —m f+2
e , num

m+n —2 m+n

X 2 X 2 X X
e —e —. . .e n=m

2 4 2n —2 2n

e(x) =(x +i)/(x i) . —

The logarithm of (3.11) gives

min{2sn) 2g .+2g
NB + g 6

n I, 2S+n +1—2l

where 8(x)=2tan '(x) and

M„

=2~J„(X„,)+ g pe„.(X„,—X,),
m =1k=1

9 X +29 X + ~ ~ ~ + x +9 X

fn —m
f fn m f+2- n+m —2 n+m

29 —+29 —+. . . +29 +9X X X X

2 4 2n —2 2n

A general solution of these coupled equations
has not been achieved. However, by treating the
roots of the equations statistically, with the aid of
densities 0.„,o„I, of n-strings and n-strings holes,
one can reformulate the problem of computing
thermodynamic quantities at finite temperature as
that of solving a set of coupled integral equa-
tions. ' *' Our interest will be mainly in counting
the number of independent solutions. According
to Takahashi's argument, ' J„(X) in (3.12) takes on

at least

N —gt„jMJ.+min(n, 2S),

2minI n,j I, n~j
PtJ

2n —1, n =J
values, M„of which correspond to n-strings, the
remainder to n-string holes. The total number of
combinations 1s thus at least

X gt„/MJ +min(—n, 2S)
J

total spin P' ( = ,E+S—M)—isbounded below by

formula (6) of the Appendix. In the Appendix we
show that the counting of roots yields precisely the
right number of mutually orthogonal basis vectors
for eacI' ~aloe of P',

IV. SCALES AND UNIVERSAL NUMBERS

In this section we follow the procedure devised

by Andrei and I.owenstein in order to determine

the dimensional scales parametrizing the magneti-

zation ~/8 in different asymptotic regions of the

(T,H) plane, where T is the temperature and H is

the magnetic field expressed as a multiple of p, the

magnetic moment of a single electron.
1

Let us first summarize the case S= —,. The for-

mulation of the finite temperature thermodynamics
with the assumption T g~D (scaling regime),
where D is the ultraviolet cutoff, leads to a univer-

sal function for the impurity part of the free ener-

gy

F' = —Tf'( T/T0, H /T),

and thos the total number n ~ of solutions of the
full set of equations for a given value of the

where To Dexp[ —m/c (J)] is ——the dynamically
generated scale. By comparing the high-tempera-
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ture expansion of the susceptibility in this formula-
tion and the one calculated using usual perturba-
tion theory it is shown that the coupling constant
defined by the cutoff procedure of the present for-
malism and the one defined conventionally using a
momentum cutoff have a nonanalytic relationship.
Hence, the expression for To in terms of the cutoff
and couphng constant clearly depends on the par-
ticular scheme of regularization. On the other
hand, there are various scales characterizing the

(I) T=0, H «To,
(II) T=0, H » To,

(III) T» To, H « To .

(4.1)

More specifically, for the magnetization M' the
following expansions are valid:

thermodynamic functions in different asymptotic
regions, such as:

M'(I) -pm
To

M'(ll)-pI 1 ——,[ln(H/TH)] ' ——,[ln(H/TH)] '1nln(H/TH)+&([ln(H/TH)] ')
I

M'(III)-p —
I 1 —[ln(T/Tx )] ' ——,[ln(T/Tx )] lnln(T/Tx )+d'([In(T/Tx )] ) I,

where To ——TI, T& ——T», Tz ——the Kondo tem-

perature = T»t. Notice the absence of the term of
O([ln( )] ) in the last two expressions: It has
been absorbed into the definition of the scales.
Now the ratios of the scales such as T»/T&,
T»t/T», and T»t/Tt are universal numbers, in-

dependent of the particular choice of cutoff pro-
cedure. The first ratio is calculated from the exact
formula of the magnetization at T =0 and arbi-

trary H: TH /To (tr/e)'i . T——he ratio TE /TH is
calculated with the help of perturbation theory:

Tx/TH =2@re ""
[P and y given in Eq. (4.17)]. Combining the two
ratios above, the third one T~/To is obtained:

W = Tx/To =213''i e i, (4.3)

which is the analytical expression of the number
calculated numerically by Wilson. "

Turning now to the higher spin system, the for-
mulation of the finite temperature thermodynamics
follows analogously and the scaling property can
also be shown. Considering the same asymptotic
regions (I), (II), and (III) above, the behavior of the
magnetization function Mi" can be studied.

=MS +M', (4.6)

We proceed with the computation of the ratio

T»/Tt. The system at T =0 and arbitrary H is

characterized by a density 0(X) of real X's

(Ref. 1S) satisfying the generalized equation de-

rived from Eq. (3.12) in the preceding section:

0 (X)+f, ,
& (X X')tr(X—')dX' =f(X), (4.4)

where the S dependence enters only through the
driving term

(X)=—,+ zs
1+4X' (2S)'+4(X+c ')'

(4.S)

and E(X) is as before'

K(X)=—1
~ 1+12

Equation (4) can be solved using the same method
as in S = —, case, giving for the magnetization the
following:

M=p N+2S 2f, dXo—(X).

' 1/2

~a+a —') B 0 (4.7)

p 2S —m sin(2nSt)e —+ +' "e' ""'I ( +t) 0&—8+c '& c2

Clo t(lnt —1)
p, 2S—1+23i2+(—1)tf —sin[(j+S)2mt], e + +'

I ( —,+t)
B+c '&0, Sp —, .

(4.g)
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The electron's part M' can similarly be identified with the free-electron system, namely,
' 1/2

~e P~H 2 I T ~8+e —I]" ~e
(4.9)

thus relating B with H. Hence, the B dependence in the integrand of (4.8) can be written as follows:

+2+8+e 1)t

exp ' —t ln
e
. 1/2

TG, H~ TG

TG/H, H~TG .
(4.10)

Expanding the rest of the integrand around t =0, one can obtain asymptotic expansions for H && TQ and
H ~~ To (still H g&D). Absorbing the [ln( )] term into the definition of scale, we get

A/'(I) =p(2S —I ) I + l

In TH/H

lnln(TH/H) TH+0 ln
4 [ln(TH/H)]

(4.11)

with
' 1/2

TH TG
e

L

In ln(H/TH ) TH
Mi"(II)=p2S I— + +0 ln

In(H/TIr ) 4[ln{H/T )]' (4.13)

with the same scale TH. Therefore, for 5 y —, there is only one scale TH characterizing the behavior at
T =0 for both H ~g TG and H ~g TG, in contrast to the case 5= —, where a new scale T~ ——TQ is present for
low field region.

The above observation implies that T~n/T~ ——Tuq/Tn ——T~/Tir for S & —,, and consequently it is suffi-
cient to calculate the ratio TH/T~ which is accessible to ordinary perturbation theory. Therefore, we have
calculated the impurity part of the free energy up to second order in perturbation theory. The asymptotic
magnetization formulas in regions II and III can be derived from the free energy formula, expressed in
terms of the momentum cutoff & and coupling constant g:

M'(ll) — p2S I ——g —2 — In +O(g')
T/H-+0 2H

S'~&H, T

(4.14a)

or, equivalently,

M'(ll)-p2S I— 1

TH ———Q'e
2

(4.15)

2

M'(III) — p—H 2S(S+I) 2 g1 ——g+2 — ln
H/T —+09p&H, T ~p —7/'4 (1—4S(S+I)/3j/10 +0(

a
(4.16a)
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of

Af'(III) -p,— 1 — + ' ' '

In(T/Tir )
(4.16b)

where

faye
—7/4~ [1—4S (S+ 1 )/3] /10~ e

—1T/2g
g =~pe cx

1

in13= I dx(1 —x )x[n csee (1rx)—x ]=0.662122. . . ,

1

Ina= dxx[n csee (mx) —x —(1—x) ]=0.841166. . . ,0

(4.17)

in@=0.577216. . . (Euler's constant) .

Thus, combining (4.15) and (4.17),

T
213 e

—7/4~(1 —4S(S+1)/3]/10
TH

Details of the perturbative calculation are planned to be presented in a separate publication.

(4.18)

V. ADDITIONAL SPECIES OF ELECTRONS

How are the results of Sec. II modified if a second species of electron is added, without modification of
the Hamiltonian (2.1)? Does this lead, as certain theoretical work suggests, to the screening of an addition-
al one-half unit of the impurity s spin? The investigation of these questions, which fortunately requires only
minor modification of the formalism, will occupy our attention in this section.

%e now assume that each of our N electrons has a new quantum number, which we call "isospin, " and
that the Hamiltonian retains its isospin-independent form (2.1). Our ansatz for energy eigenstates, analogous
to (2.2), is now

—N/2 [kl 1+'''+ N N)L e +61(xg1( ' ' ' (xg~(0(xg(~+11( ' ' ' (xg1v) p~ . . . gb . . .b, (5 1)
Q, v

where the indices of the Nth rank isospin tensor
take on values + —,. The remainder of the notation

coincides with that of (2.2).
The analysis leading to (2.7),

mute with the total isospin operator W, it is con-
venient to classify our states according to eigen-

values of W and%, . Without loss of generality,
we may limit our attention to those states with

W=W„ imposing

requires no modification, but is now supplemented,
to ensure periodic boundary conditions, by the rela-
tion

W+(=0 . (5.4)

To solve simultaneously (5.2) and (5.4), we may
proceed as before, writing

(I g)b1 b~ =gb~b1b2 b~ 1
~ kb1 ~ ~ b~ ~

b . . . b ——g(Z1, . . . ~ZM)
1 N

(5.5)

with (2.8) replaced by

AA, '=exp(ik/L) .

(5.2)

(5.3)
z ———,N —M (5.6)

where zj is the position of the jth negative isospin,
and

Moreover, since both A and the total spin P' com- In terms of the discrete wave function
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g(zI, . . . , z, . . . , z~ )=0,
1&z+zJ

(5.9)

which allow Bethe-Yang solutions

with

f (co,z) =

P j=1

CO+ l /2
CO —I /2

z —1

(5.10)

Bp~ COpJ
—COp&j —l

Bp COp —COpi +lJ J

pj'=p(j +1), p'(j +1)=pj

CO). +l /2
N

CO] —I /2

r

CO; —COJ +l
j=1 l JCO —CO —l

i =1, . . . , M' (5.11)

COj + l /2

CO- —l /2J
(5.12)

The proof that (5.10)—(5.12) yield solutions of
(5.7)—(5.9) parallels completely the spinorial case
treated in Sec. II. We note that Eq. (5.11) is pre-

cisely the same as the corresponding equation in
the Heisenberg model. '

Owing to the decoupling of the discrete eigen-

value problems, the classification of states is not
difficult. With an appropriate choice of chemical

g(z&, . . . , zM ), Eqs. (5.2) and (5.4) become

A, 'g(zi, . . . , zM, ,N)

=g( l,z, + l, ,zM t+1), (5.7)

A, 'g(z, , . . . , z~, (N) =g( zI+1, . . . , z~ + I),

potential E, the eigenvalues of A —EE may be
written

MI~

E = g (n~ n—
J )+ gE(XJ".)+ QE(co,"),

j=1 j=1 1=1I.
(5.13)

where E(X) is given in (3.8), nJ, j= 1, . . . , N are
successive integers, and nJ are distinct integers
satisfying nJ+» nJ )nJ . Each basis state, labeled

by integers nJ, j =1, . . . , X, and 1-string holes pj,
j = 1, . . . , M1I„and coI, l = 1, . . . , MI, may be in-

terpreted as a scattering state containing the fol-
lowing.

(i) A fixed dressed impurity of spin S ——,.
(ii) MIp, spin- —, neutral, isoscalar particles in-

teracting with each other and with the dressed im-
purity, with momenta =energies=E(XJ) when far
separated from one another and from the dressed
impurity.

(iii) M Is isospin- —,, neutral spinless particles in-

teracting only with each other, with momenta
=energies=E(co~) when far separated from one
another.

(iv) Noninteracting charged particles and an-

tiparticles, bearing no spin or isopin, corresponding
to the quantum numbers nJ.

The picture described here differs from that of
the single-species case only in the presence of the
particles associated with isospin, and these decoup-
le from the dynamics of the spin-bearing particles
(i) and (ii). There is, however, an important selec-
tion rule: The sum M1~+M1~ must be an odd in-

teger. Thus there is no state containing only the
dressed impurity. In the single-species case, there
is such a state and it is the ground state of the sys-
tem. With two species, the low-lying spectrum is
not so tidy. There are three candidates for
"ground state, " none of which is presumably a nor-
malized state in the continuum limit. They are
(omitting details) as follows:

(I) N= even integer, M&q ——1, MIq =0, M=M'=M', = , N, MI ——M—(non-strings, n &1),

total spin ~=S, isospin &=0,

Energy E=
+O(L '), S = —,

1 — +O(ln LTp), S & —, .
2L ln LTp
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(II) N= even integer, M)b= 1, M)b =0, M) ———,N —I, M') ——M'= —,N,
r

M= N—+1 one 2-string at 7'= 1 — X"+ ( —c )
1 1 I, 1
2 2S 2S

P'=S —1, W=O,

E= 1+ +O(ln (LTD))
2S+1

Tp

Note: case (II) applies only to S & —,.

(III) N = odd integer, M)b =0, M)b =1, M =M) ———,(N +1), M'=M) ———,(N —1),
1 1P'=S ——,W= —,
2 2

Clearly (I) and (II) are the lowest-lying states
containing the dressed impurity and one spin-

bearing particle; in (I), the spins are aligned,
whereas in (II) they are opposed to one another.
On the other hand, (III) is the lowest-lying state
containing the dressed impurity and one isospin-
bearing particle. The three states are essentially
degenerate, differing in energy by an amount only
of order (LlnL) ', with state (I) (spin S) slightly
lower than the others for S p —,. As discussed in

the Introduction, there is no compelling reason

why the spin of lowest-energy state should be equal
to that of the dressed impurity alone, and here we

see that the two are indeed different.
From the structure of the spectrum, we have

concluded that the spin of the dressed impurity is
S ——,. This can also be seen from the first term

of formula (4.11), which remains the same for the
two-species case.

VI. COMPLETENESS OF THE BETHE-ANSATZ
BASIS

To establish the completeness of our basis (5.1)
of energy eigenfunctions, we must show that it

spans the entire Hilbert space

~=~x 3~spin 8 ~isospin ~

where A is the space of square-integrable func-
tions on the line segment [ L /2, L/—2], A,&,„ is
the (2S + 1) )&2 -dimensional space of tensors

P, . . . , ~ with the inner product

a1, . . . , uN, a

and P osp is the analogous 2 -dimensional vector
space of tensors gb . . . b„Suppose .we have found

complete bases j fi I, {(()~ I, j g„J of each of the
three spaces. Then an arbitrary element of A can
be expanded in terms of the product states

fi 34 (6.1)

It will be sufficient to show that every wave func-
tion of the form (6.1) may be written as a linear
superposition of the basis functions (5.1). With the
aid of (2.6) and (S.3), the latter may be written in
the form

.]kl (q„x„(x), . . . , x„;a), . . . , az, a;b), . . . , bN)
N

2' g x x ( /L)) (gx&/L)+v
g[)((X))(,'(~)] '
Q, v

a) ' ' ' & a «g( +) ) « ' ' ' xgb()(~ (() [ & I ). ~(J '
gI ~ ] )b

QP gpv

where for any permutation P (6.2)

ap—=ap]apz ap~, bp=bp] ' ' ' bp~ .

The spin tensors P[ X ) are the simultaneous eigenstates of Z, P' and A, constructed in Sec. II, and the
isospin tensors g[ co ) are the simultaneous eigenstates of P, Jr, and W, constructed in Sec. V. Here the
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symbols X and co represent solution sets X(, . . . , XM, co&, . . . , coM of Eqs. (2.16) and (5.11), respectively.

Without loss of generality, we may choose the product basis functions (6.1) to have the form

(g~)x„(x(, . . . , x~,a (, . . . , a~a;b(. . . . , bN)=fg~(x(, . . . , x~)(P' /{X j), (W g{ co j)b
k 1

QP gpv

(6.3)

where the functions f~„~(x(, . . . , xz), m =1,2, . . . span the space of square-integrable functions over the
sector

L L
(QQ1 ( (+Qv + ( (+Q

The completeness of the spinorial basis P'" P{X j is shown in the Appendix; permuting the indices with

QP" does not affect the orthogonality and completeness relations. The isospin basis is identical to that of
the one-dimensional Heisenberg model, and its completeness was treated by Takahashi. '

Suppose we are given an arbitrary member r(&„~r ~(of the basis (6.3). We may apply Fourier analysis to
kl

write

v gx; /L— —

fg„(x)(A,{X jA, '{ co j) ' =L g CP" „„x„exp 2nignJ.
Ig]p ~ ~ ~ p HN J

Then we obtain the desired expansion,

kl ~ Qvm ~.kl
+(Qvm)Xco ~ CnXco 'PnXco

~]p ~ ~ ~ p ~Q

This establishes the completeness of our basis in
the case of two species of electrons. Deleting the
isospin tensors, one obtains at the same time the
completeness of the basis in the case of a single
species.
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ZP=A(X)P,

ZP'= A,lX')P',
(Al)

will be a consequence of the unitarity of Z, provid-
ed that A,(X)+A,(X'). By continuity, it will be suf-
ficient to show that in every open interval of the
real half-line of coupling parameters, c y 0, there is
at least one value of c for which A, (X)QA,(X').

Suppose the contrary, i.e., that for all c in some
open interval, l(X) =A,(X'), and hence, from (2.16),

{

combinatorial proof used by Takahashi in the
Heisenberg model. '

Orthogonality proof. Let X= {X(, . . . , Xbt j and
X'= {XI, . . . , XM j be two distinct solution sets of
(2.16). The case M'+M is trivial; we therefore as-
sume M =M'. Orthogonality of the corresponding

P and P', satisfying

APPENDIX: COMPLETENESS OF THE
SPINORIAL BASIS

X;+c '+S(
X;+c —Sl

M' g' +c '+Si

i=& +i +C Sl

We wish to show that there exist (2S+ 1)X 2
mutually orthogonal tensors P (with components

«, a;=+ —, , a= —S, . . . , S) in the basis

constructed in Sec. II. The argument proceeds in

two steps: First we show that different solution
sets { X(, . . . , Xbt j of (2.16) yield tensors which

are orthogonal to one another; then we are left
with the problem of counting the solutions of
(2.16) which will be solved by generalizing the

(A2)

This equation holds as a relation between analytic
functions in the complex c ' plane. Now let
c '= —XJ Si for som—e j. The right-hand side of
(A2) vanishes, which implies X; =XJ for some i.
Repetition of this procedure shows that X=7', a
contradiction. This establishes our result.

Counting argument. We shall show that for
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fixed N and M (hence fixed total spin A= , N-
—M +S) the number n ~ of distinct solution sets

{X». . . , XM I of (2.16) is

ways in which N electron spins can be added to
give ~„we have

M M —2S —1
(A3)

M N N (A4)

That this is the desired result may be seen as fol-
lows: For given P' and S, the total electron spin
P', can take on the values P' —S, P' —S+1, . . . ,
A+S. Since there are

r

N N 1Me= pN —Ae
e e

which is nothing but (A3). The total number of
mutually orthogonal basis vectors is then obtained
by summing over all W, with weight factor
2P'+ 1:

N/2+S N/2+S
n= g (2P'+l)n~= g (N 2M+2—S+1) M

—
M 2S 1

—(2S+]))&2N.
P'=0 M=0

(A5)

The first steps in deriving (A3) are identical to those followed by Takahashi in Ref. 13. We omit the de-
tails and merely state the important formulas using the notation of that reference. The reader who has tak-

en the trouble to make his way through the Appendix of Ref. 13 will have no problem supplying the miss-
ing steps. The starting point is the analog of Eq. (Al) of Ref. 13, namely

a&+2a2+ +M~M ——M i =1

N —gt jaj+min(i, 2S)
J

where

2min{ ij I, i'
fJ

2l —1 l=j
Following Ref. 13, we reexpress n~ as the coefficient of x in

00 2S —1

)N M+1 +(—1 u
—1) N+2M —(2s+11—~ (1

—1)2$—j
J LA. j

J =2 J=2

where

~ ~ 1+xf =(a~+' —a J ')l(a —a '), a = 1+ 1—
1+x

—2 —3 2 2 —1 —2
u2 ——x, ui ——x (1+x)(1—x), u& fj t 1 uj =——fj 1

—f1+1 fj
' 1/2 ' 1/2

(A7)

(A8)

' j/2
1+x ~ j+1

J 4& ~~d .

(t —1)/2

I

Inserting (A8) and (A9), one obtains for the products over 1 —uj in (A7) the expressions

' 1/2 —1

2S —1

(1
—1)2S—j (1 2)2S 2f2S —3f—2S+2f —

2
—2S(1+ )2S —1 ~ 2S+1

J 2 3 2S— +&
J =2 t odd 1+x

(A 10)
(t —1)/2
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Substituting (A10) and (A7) and expanding in powers of x and 1+x, we obtain that n~ that is the coeffi-
cient Of x + 1Il

2S+1 r —1/2 (r —1)/2
'

( 1)q+r+g N —2M+2S+1 s/2
'

t q q S T
toddq, rs '

We now observe that the only term in the summation over r which has a nonzero coefficient of
x + +' is that with r =N —M+2S+1 —q. In addition, we may simplify (Al 1) using the following
lemma (essentially the second half of the Appendix of Ref. 13):

Lemma AI. If p )m +a and b & 0 then the coefficient of xi' in

2
—II +2Nlg( 1 )ttl +S n S /2 ~ ++( 1 + )

—$ —i

S
S

is equa1 to

p —m —a+& 2m —n —1
m-1

With the relevant substitutions, (Al 1) becomes

t —1

n~=g g + 2
todd q=O '

( 4)q-s N+2S —2q' N+2S 2q-
M —q M —q —1

To proceed to the conclusion of our argument, we need two combinatorial lemmas which are not found in
Ref. 13:

Lemma A2 (proof given below). If 2S and q are integers with q &S, then

2S+ I (r —1)/2 4s q 2S —q
- q -' q

Lemma A3 (proof by mathematical induction on 2S and I) If 2S and. I are integers, with 0&I &2S+1,
then

1)q 2S q I
I

0&q&S

2S —q I —1

l —1 . q

1, I=O
0, 1=1, . . . , 2S
—1, I =2S+1 .

With the aid of these lemmas, we obtain the final result:

2q —2S —1 X+2S—2q N +2S —2q
q . M —q . M —q —1

0&q&S

2q —2S —1

0&q &S l=0
2S —2q

I —q
2S —2q
I —q —1 M —I

I
1)q 2S —q I

l =0 0&q &S

Proof of Lemma A2. Define

2S —q I —1 X N
I —1 q M —I M M —(2S+1)

'

p+1 'k p+1«P q)= & .2k+1k=o +. q.
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We wish to prove, for all q &p/2,

C(p, q) =2~
q

Our proof is by induction on p. Suppose the lemma has been established for C(p', q), p' &p. Using the iden-

tity

we have the following recursion relations:

C(p, q) =C(p l,q)+—D(p l,q)—,
D (p —l,q) =D (p 2,q)—+C (p —2,q)+ C (p 2,q ——1) .

Iterating the second of these formulas yields

(A14)

p —2 p —2 p —2

D(p —l,q)=D(2q, q)+ g [C(r,q)+C(r, q —I)]= g C(r, q)+ g C(r, q —1), (A15)
r =2q r =2q r =2(q —1)

where we have used

D (2q, q) =2q + 1 =C(2q —l,q —1 }+C (2q —2,q —1 } .

Thus by (A14) and the induction hypothesis

p —2 p —2

«P q)=C(P —l,q)+ g C(r,q)+
r =2q r =2(q —1)

where, using ( )& to represent the coefficient of x in the following expressions in parenthesm,

(A16)

(A17)

sr q = 2m~+q
r =2q r =2q qm=0

(A18)

p — —2
2m(1 &)

—m —1

m=0

1 1—
1+x

'p —2q —1

2

1 —x

Similarly,

p —2

C(r, q —1)=
r =2(q —1)

and

—x 1—
1+x

'
p —2q+1

2

1 —x . q

(A19)

1 2
C(p —l,q) =

1 —x 1 —x

'p —1 —2q
'

. q

(A20)

Substituting (A18), (A19), and (A20) into (A17), we obtain

C(p, q) = 1 2
1 —x 1 —x

p —2q'

=2p4-q ~ —q

which is what we wanted to establish. To complete the induction argument, we observe

,2k+1 0 1 0
2k 2102

k 0 '
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