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Excitations of modulated crystals near the commensurate-incommensurate transition
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The discommensuration (i.e., domain wall) lattice which appears when a modulated crystal

(e.g., a crystal containing a charge or spin-density wave, etc.) undergoes a commensurate-

incommensurate transition can introduce many closely spaced narrow gaps in the
commensurate-state phonon and electron band structures. The locations of these narrow band

gaps and the conditions under which they occur and are observable is discussed. Application to
various incommensurate systems, including doped polyacetylene, is also discussed. In the case
of doped polyacetylene, this band and gap structure may play an important role in the oc-
currence of a metal-insulation transition.

I. INTRODUCTION

During the past few years a good deal of effort has
been devoted to the study of phase transitions in
crystals which possess a modulation potential incom-
mensurate with the crystal lattice (e.g. , crystals con-
taining charge' or spin-density waves, 2 mercury chain
compounds, etc.). In particular, much attention has
been paid to the transition between thc state. in which
the modulation is incommensurate and the state in
which it is commensurate with the lattice. There has
not been much work, however, on the behavior of
the elementary excitations of such systems in the vi-
cinity of the commensurate-incommensurate transi-
tion. Away from the transition, however, thc excita-
tions are well understood. ' Aubry showed that a
one-dimensional tight-binding model with a sinu-
soidal modulation potential commensurate with the
crystal lattice has a metal-insulator transition for
modulation strength equal to the bandwidth. 5 In the
insulation regime the wave functions are exponential-
ly localized, whereas in thc metallic regime, the states
are extended and the band structure is Cantor-sct-
like (i.e., the bands are broken up by a hierarchy of
band gaps, most of which are negligibly small ).
For the modulation potential strength small com-
pared to the bandwidth, almost all gaps are negligibly
small, and thus, we ~ould expect the system to
behave as a normal metal. For potential strength just
smaller than the bandwidth (the point at which the
metal-insulator transition occurs), we expect the
bands to be almost completely fragmented. 6 Unfor-
tunately, for most samples, the modulation is rela-
tively weak compared to the bandwidth, and hence,
the unusual band structure due to incommensurabili-
ty is simply never observable in most real experimen-
tal systems. Rather, the band structure is not much
different in the incommensurate phase from that ob-
served in the commensurate phase.

It should be remembered, ho~ever, that Aubry's
model assumes a purely sinusoidal modulation poten-
tial, whereas when the system is nearly cominensu-
rate, the modulation is riever sinusoidal. Rather, it
consists of an array of domain walls or discommen-
surations, separated by large regions in which the lat-
tice and modulation potential are commensurate. '0 '
The domain-wall lattice has a periodicity given by the
difference between commensurate- and incommen-
surate-state wave vectors. Since such a potential has
many Fourier components, it could perhaps produce
the same multigapped spectrum, as occurs in the Au-
bry model for potential strength comparable to the
bandwidth, but for much weaker potentials.

In this article a model for such a nearly commen-
surate system is studied. For an incommensurate
state close to the

2 registry, a series of very narrow

bands appear in the commensurate-state gap when
thc system undergoes a commensurate-incommen-
surate transition. For all other registries, a structure
consisting of very narrow bands separated by narrow
gaps will appear at the commensurate-state band
edges. For the —, and higher-order registries, this

structure will only appear if the modulation strength
is comparable in magnitude to the bandwidth. In this
article, the conditions under which such effects ap-
pear will be discussed. These effects were already
discussed for a sinusoidal modulation in Refs. 6 an 7.

II. LOCALIZATION OF THE I'HONON AND
ELECTRON SPECTRA OF THE FRENKEL-

KONTOROVA MODEL DUE TO THE
DISCOMMENSURATION LATTICE

Our model is the much studied Frenkel-Kontorova
model (which consists of a chain of harmonically in-
teracting atoms in a sinusoidal external potentiao. 'c

The eigenvalue equation for the phonons in this
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model is

rp u = cr(2u„u„—t u„+/) +A.(cosgx„) u„

where x„ is the atomic equilibrium position in the
ground state, u„ is the displacement from equilibrium
of the nth atom in the chain, o. is the interatomic
force constant, A. is the strength of the force constant
due to the sinusoidal potential divided by the ionic
mass and g =2rr/a, where a is the period of the
sinusoidal potential. Equation (1) could also be an
approximate Schrodinger equation describing elec-
trons, moving in the potential due to the modulation
in the lattice. In this case, we identify u„and cu with
the electron wave function and eigenvalue, respec-
tively, and n and A. with the hopping matrix element
and strength of the potential, respectively.

Aubry has argued using the KAM (Kolmagorov,
Arnold, Moser) theorem that when the mean intera-
tomic spacing b is incommensurate with a and the
sinusoidal potential in the Frankel-Kontorova
model' is sufficiently weak, x„ is of the form

minimum-energy equilibrium configurations, separat-
ed by maximum-energy configurations, as a function
of the phase variable $." The location of regions of
allowed energy bands have been determined for
values of the phase corresponding to maximum and
minimum atomic configurations, using the continued
fraction method outlined in Ref. 6. The results are
shown in Figs. 1 and 2. We see that as b/a is ap-
proximated by higher-and-higher-order rational
numbers, the energy spectrum becomes more and
more independent of phase for )t/x ( 2.1; for
)t/x ~2.1 the reverse is true. Following the argu-
ments of Ref. 6(c) we may argue that this result im-
plies that the eigenfunction u„ is an analytic function
of n for )t/u (2.1. For h/n ~. 2.1 the states are
probably localized. Although we cannot rule out the
possibility that there exists a small range of potential
strengths over which there are both localized and ex-
tended states separated by a mobility edge, there is
no evidence for its existence.

x„=nb +$+g(nb+/) (2)

where $ is an arbitrary phase and g(x) is an analytic
periodic function of period a whose form can depend
only on b and the strength of the sinusoidal potential.
This result implies the existence of a continuously
degenerate ground state (i.e., we go from one ground
state to the next by changing $) and of a zero-
frequency sliding mode. " If we substitute Eq. (2)
into Eq. (1), we obtain a Schrodinger difference
equation for a particle on a lattice in a potential of
period a. We may always write b as b = b0+Ab,
where bp is chosen so that bp/a is of the form l/m,
where I and m are integers chosen so that I/m closely
approximates b/a Then E.q. (1) becomes

rp'u„= u(2u„—u„ t
—u„+t)

+h. csog [ nb p y+g+( nb p y+) ]u„, (3)
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where y = n/3. b+P. Clearly, by appropriate choice of
b0, we may make Ab arbitrarily small, and hence
make y a slowly varying function of n. Treating y as
independent of n to lowest approximation, Eq. (3)
may be diagonalized to obtain eigenvalues which we
denote by cp (k,y) where n is a band index and k is
the wave vector. Following Ref. 6(b) we may use
these "classical" trajectories to generate a quasiclassi-
cal treatment of the incommensurate problem, pro-
vided the bands found by diagonalizing Eq. (3) be-
come independent of the phase y in the limit as I andI because infinite (i.e., as I/rn better approximates
b/a). We may find the equilibrium ionic x„by solv-
ing the difference equation for the equilibrium con-
figuration numerically by the methods of Ref. 14.
For sufficiently weak sinusoidal potential in the
Frenkel-Kontorova model there exist high-symmetry

FIG. 1. Band structure from Eq. (3) (shaded areas are re-
3 10

gions of allowed energy) for Q=(a) ]p (b) 33 and (c)
33

]09 && 2 m/a, which are successive approximations to

0 = (2e/a) (I + I/[3+ I/(3+ ) ] l

for (1) X/n =2.1, (2) k/n=1. 5 The band structure is given
for the two values of the phase variable y which give
maximum- and minimum-energy lattice configurations, The
two sides of each dotted line represent different values of y.
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one gap in the spectrum. Higher in the spectrum
where the continuum approximation is no longer
valid, there should be the familiar multigapped spec-
trum. s To examine this, Eq. (1) was diagonalized for
several high-order commensurate systems. The
equilibrium positions x„were determined by solving
the equilibrium difference equations numerically. '"
The allowed bands of Eq. (1) were then found nu-
merically using the continued-fraction method of Ref.
6. The results are illustrated in Fig. 2. For the vicin-
ity of the fundamental registry (i.e., b nearly equal to
a) near the top of the spectrum, we may again use a
continuum approximation in order to obtain analyti-
cal results. Near the top of the band we may write
u„= (—1)"v„, where u„ is a slowly varying function
of n. Since u„ is a analytic function of n, as argued
earlier, we may write

1 d 1 d
v +~+ v ~

= 2cos — v = 2 1 —— + ~

i dn
" 2dn2

t

-2-

FIG. 2. Band structure from Eq. (3) for g = (2n/a) 2t,
20

which approximates an incommensurate state which has
wave vector close to the fundamental registry (i.e.,
Q 2n/a) =for (a) k/n=0. 6169, (b) h/a=0. 3948.

III. BAND STRUCTURE FOR A SYSTEM
WHICH IS CLOSE TO THE

FUNDAMENTAL REGISTRY

Let us now consider the band structure which oc-
curs when X/n (2.1 (i.e., in the extended state re-
gime). We will first study the case of a modulation
whose period is nearly equal to that of the lattice,
which is easier to visualize than high-order registry
cases. Furthermore, as we shall see, near the top and
bottom of the band the continuum approximation
may be used, and the equations of motion in the
continuum approximation may be solved exactly.

When Eq. (1) is taken to be the equation of
motion for phonons in the Frenkel-Kontorova
model, A. must have the value A. = (2n/a)2 Vc, where
Vp is the strength of the sinusoidal potential in the
Frenkel-Kontorova model. ' This is precisely the
value for which, in the continuum approximation
[i.e., when the difference operator in Eq. (1) replaced
by a second-order differential operator'o] Eq. (1)
possesses only two phonon bands. " Thus, near the
bottom of the phonon spectrum, where the continu-
um approximation should be valid, there can be only

V(n) = —lt 1— 2

cosh'[(lt/n) n ]' '

According to Ashcroft and Mermin'

cos(KL/b+8) = iticoskL (6)

where K = (e/n)', L is the separation between
centers of adjacent domain walls, k is the wave vector
of the band states, t is the transmission amplitude,
and 5 the phase of t. According to Landau and
Lifshitz, '

( KIV)'

cosh'-,' mv 7
(7)

for this potential near the top of the band where E is
small, and IV = Un/his the width of a .domain wall.
Combining Eqs. (6) and (7), we find that the allowed

for states near the top of the band (at which point
u„gt =—u„). Substituting this result in Eq. (1), we
obtain the following Schrodinger equation

d2

, u„+ V(n) u„= (e —lt) u„,
n

where e = A. +2x —ca' and V( n) is the negative of the
potential term in Eq. (1) (i.e., —

A. cosgx„). In this
case, the potential maximum occurs inside the
domain walls instead of in the region between them.
For such a case, the bands may be found using the
method of Ashcroft and Mermin, which determines
the energy bands for a periodic array of potential bar-
riers. ' %hen the domain walls are far apart, it is
easily shown that V(n) is given in the continuum ap-
proximation by'
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energy bands occur for

[(2n +1)
2

w —8]b [(2n +1)
2

m —5]b
k

where

=0.09844
cosh

2
n J7

Clearly, as e 0, and the transmission coefficient
goes to zero, the phase of the Eq. (8) must reduce to

—,m, so that the allowed energy bands occur at the1

energy levels for a particle trapped between two infi-
nite energy barriers, i.e., there exist very narrow
bands centered at energies

~n2~2b2/L 2

For example, for 2H-TaSe2 (Refs. 18 and 19) at
100', the domain-wall spacing has been observed to
be about 100 lattice constants, which gives energy
levels of the order of E —n210 3u. (We have
chosen 2H-TaSe2 only as an illustration of typical
domain spacing. Our results, of course, do not apply
to TaSe2 because it has a two-dimensional modula-
tion. ) For the electronic case, the potential strength
is usually not equal to one of the particular values for
which the transmission coefficient is unity, "and
hence there should exist a similar gap structure at the
bottom of the band as well. Of course, Eq. (9) is

only valid when e is much less than the potential
strength.

IV. SPECTRUM NEAR HIGHER-
ORDER REGISTRIES

In many systems containing incommensurate
modulations, we are not interested in the vicinity of
the fundamental registry (i.e., b —a). Rather we are
interested in the vicinity of a higher-order registry,
i.e., b/a = l/rn, where l and m are small integers
(such as 1, 2, 3, etc.) To study such cases we use
the quasiclassical methods of Ref. 6. Such a study
begins with the "classical trajectories, "which are
found by studying the energy-level structure as a
function of the phase variable y in Eq. (3). The
"classical" trajectories for the case of a sinusoidal po-
tential [i.e., x„=nb in Eq. (I)] of wave vector

Q =(2m/a)(l/m) +q with q « Q are found by

treating qnb as a constant phase in Eq. (1) and di-

agonalizing Eq. (1) for the resulting commensurate
problem. The resulting secular deterfninent is easily
shown to be of the form

cal" trajectories. For small X/u, this turns out to
also be a good estimate of the "classical" trajectories
for the domain case discussed earlier. The gaps in-

troduced by the fact that the system is incommensu-
rate are found by solving the quantum-mechanical
problem which results from replacing the difference
operators in Eq. (1) by differential operators, i.e.,
u„+ t

—cos[(qb/i) d/dy 1 u (y), where the position
variable is y = qnb and u (y) = u„. The resulting
infinite-order Schrodinger equation has qb playing the
role of f, and hence, if qb is small we may apply the
WKB approximation. In Ref. 6(b) it is shown that if
we do this, formally diagonalize the resulting com-
mensurate problem and then requantize the %KB ap-
proximation equations, we find that we must solve
the effective Schrodinger equation

r

a) — —,y u(y) =o) u(y)qb d
i dy'

where co'(k, y) is one of the solutions to Eq. (10).
This is simply the conventional way of treating the
problem of electrons in a solid in the presence of an
external field as discussed in most textbooks. ' The
quasiclassical methods used by Zilberman ' may now

be applied directly to this effective Schrodinger equa-
tion. We find that the gap structure comes about pri-

marily because there exist localized classical trajec-
tories which get broadened into narrow bands and be-
cause gaps are introduced in those extended trajec-
tories which lie close in energy to the local trajec-
tories. ' On the other hand, in most incommensurate
systems studied to date h./a = 10 ', and hence, we

see from Eq. (10) that the position dependence of
the "classical" trajectories will be negligibly small for
m «3. In such a case there will be practically no lo-
calized trajectories, and hence, almost no observable
gap structure introduced when the commensurate-
incommensurate transition occurs. For h./u =1, the
structure will be observed but the system is more
likely to be locked into the commensurate phase.
For example, for the fundamental registry case (i.e.,
m =1) if A./u =1, the system locks into registry for
~b

—a ~/a ~0.2. '0 For the case in which there is a
discommensuration-lattice potential rather than a

sinusoidal potential, we may use the the methods of
Refs. 14 and 6 in the way described in Sec. II of this
article to find the allowed energy bands. The result-
ing band structure shows no gap structure for m «3
if h. /n is as small as 10 '. The band structure for
k/a = I is illustrated in Fig. 3 for the m =3 case.

The m =2 case, however, is special because the
classical trajectories are given by

~[cu —oP~(k) ] +2(X/2n) ~(1 —cosmqbn) =0, (10) cu =2a+(4ncos 2kb+A. cos qbn)'i

where co', (k) are the band frequencies for n =0.'
The solutions of this equation for co' give the "classi-

for the sinusoidal potential case with Q = (m/b) +q
(q « Q). Thus, no matter how small we make
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FIG. 3. Band structure from Eq. (3) calculated for
10

Q = (2s /a) 3t, which approximates an incommensurate

state close to the 3 registry for (a) A/n=0 9. 638, (.b)
1

h./a =0.3448.

FIG. 4. Band structure for h./a =0.61685 for
15

Q = (2rr/a) 3t which approximates an incommensurate state

close to the 7 registry for (a) the domain model and (b) the
sinusoidal potential for comparison.

A/a, the gap in the spectrum will vary from 0 to )t as
we move through the crystal. This implies the ex-
istence of localized "classical" trajectories, no matter
how small the potential strength A.. For co near the
center of the gap, the trajectories are approximately
elliptical. To see this, expand Eq. (11) about the
point k = n/2b and qbn =

2
n. Using the quasiclassi-

cal method outlined in Ref. 6(b), it can be shown
that the quantization condition for a closed orbit
"classical" trajectory is that the area of the orbit be
equal to 2mqnb, where n is a positive integer. The
reason that we get n rather than n +

2 is that the

quasiclassical wave function is proportional to6'

~
'

AX

e "'"' exp
'

J k(x')dx (12)

where x = qnb and k(x) is the result of solving Eq.
(11) for k. When x is analytically continued about
the classical turning points to obtain the connection
formulas, 22 the exponentiai prefactor in Eq. (12) does
not give the phase factor as occurs in the usual WKB
method, for which the prefactor -[k(x) ] ' '. Thus,
following the methods of Ref. 22, we get n instead of
n + 2. The area of the elliptical trajectory is found to

be m(aP —2n)'/2a)t and hence the quantization

method given above gives

ru'=2n+(2a) qbn)' (13)

V. CONCLUSIONS

It has been shown that when a one-dimensional
crystal with a modulation undergoes a commensu-
rate-incommensurate transition, there will appear
structure consisting of narrow bands separated by
narrow gaps. This structure will occur only at the

for n =0, the expansion of Eq. (11) about the point
k = rr/2b, qbn = rr/2, is certainly valid. For n = 1, it
will be valid only if (2&x)tqb)'/' is much less than the

gap energy, which is equal to P. Thus, it is clear that
this method will only be valid for qb very small. This
method, of course, neglects the broadening of the
levels into bands, and hence, will only be valid if the
bands are extremely narrow. For the discommensu-
ration-potential case we must again resort to the nu-
merical methods of Refs. 6 and 14 outlined in Sec. II.
Some resulting band structures are shown in Fig. 4.
%e see that the band structure is no longer sym-
metric about the center of the gap and there are more
levels inside the gap than for the pure sinusoidal po-
tential case.
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commensurate-state band edges for all except the —,
1

registry, for which narrow bands will also appear at
the center of the commensurate-state gap. Most
modulated systems studied to date have a commen-
surate phase which is of higher order than the

2
re-

gistry and have modulation potentials that are too
weak for this structure to be observable. Stronger
modulation potentials will occur, however, for ionic
conductors such a hollandite, for example. The
fundamental and —, registries were shown to exhibit

observable structure, even for weak modulation po-
tentials. Examples of materials with a fundamental
and

2 registry, respectively, are thiourea and (NH4)2

BeF4. " Another important example of an incom-
mensurate system which is close to the —, registry is

doped polyacetylane, "which is believed to possess a
soliton lattice. '6 ' The single-soliton case possesses
an electronic bound state at the center of the band
gap." According to the results of the present article,
there might be several very narrow bands appearing
inside the gap of polyacetyline when it is doped and
hence possesses a soliton lattice, ' although the
present model is not precisely applicable to this ma-

terial. This band structure can have important effects
on the optical and transport properties of this materi-
al. The narrow-band states inside the
commensurate-state gap should become localized
states if the ordered-to-chaotic state transition
predicted by Bak and Pokrovsky occurs. ' The reason
for this is that the bands that occur inside the
commensurate-state gap are essentially due to states
localized in the. domain walls. When the domain
walls form an ordered array, these states get
broadened into narrow bands. In the chaotic phase
the domain ~alls have random spacing, which will

tend to localize these states. This localization transi-
tion could play a role in the observed metal-
insulation transition. ' Such phenomena will be dis-
cussed in more detail in future publications.
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