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The concept of the thermal potential, introduced in earlier publications in connection with cal-
culations of elastic properties, thermal expansion, and melting temperatures, is shown to be a
unifying principle connecting the thermodynamic properties of the solid and molten states. Re-
cently discovered extrapolations connecting the thermodynamic properties of the solid and mol-
ten states are demonstrated to be governed by the characteristics of the thermal potential. A
simple model of the melting entropy is presented and combined with previously derived expres-
sions involving parameters of the thermal potential to quantitatively connect the heat of fusion
with the volume change at melting. The melting entropy is calculated for a group of cubic crys-
tals with the use of the derived expressions, and good agreement is found with observed values.
A principal conclusion of this work is that the shear modulus, heat content, and volume, which
are discontinuous at the melting temperature, are continuous functions of each other and relat-

ed through the parameters of the thermal potential.

I. INTRODUCTION

One of the long-standing problems in physics is
developing an understanding of the nature of the
first-order phase transformation associated with the
melting process. It has been known for a long time
that there is a discontinuous change in the heat con-
tent of materials (the latent heat of fusion) at the
melting temperature T,,. In recent years, more atten-
tion has been given to two other discontinuities,
namely, the discontinuous changes in shear moduli
and volume at the melting temperature. Discontinui-
ties always represent a difficult problem since their
existence implies that an interface exists, in this case
between solid and liquid phases, which require on
each side different physical and mathematical treat-
ments which must somehow be joined at the discon-
tinuity.

One of the early important contributions to the
theoretical study of this problem was published by
Born.! Noting that a crystal is subject to shear while
a liquid is not, he proposed that a theory of melting
should consist of an investigation of the stability of
the lattice under shearing stress. In a cubic crystal,
there are two shear moduli, C44 and C' = (Cy;
—C13)/2. Born’s mathematical treatment was
for the body-centered-cubic lattice (bcc), and he pro-
posed that the cubic crystal would melt when the
condition C44=0 is fulfilled. Within a few years,
however, it was found that NaCl, which has the
face-centered-cubic structure (fcc), behaves as an
elastic solid right up to the melting point, and that
Cy4 does not vanish. This finding prompted Thomp-
son? to make a detailed theoretical study for the NaCl
structure. He arrived at the important result that this

25

structure becomes unstable because of the condition
C' =0 if the lattice parameter is increased by an
amount slightly greater than would be achieved by
the total thermal expansion from 0 K to 7, in
several alkali halide crystals. Subsequent experimen-
tal studies® for individual alkali halide crystals, as well
as solid solutions of two different crystals having
both fcc and bece structures, confirmed the results.
For those crystals having the fcc structure, C' has the
smaller value as the temperature increases, but it
maintains a finite value at the melting point; for the
crystals having the bce structure, C44 maintains the
lower value, but again the value is nonzero at T,
The latter finding partially confirms Born’s conjec-
ture.

In many respects, these results are not surprising.
Born, for example, noted a comment by Brillouin*
that a theory which considers melting as a vanishing
of shearing elasticity does not lead to a latent heat,
but concluded that such a theory is not in contradic-
tion with the existence of a latent heat. However, if
a shear modulus were to vanish at T, then at some
arbitrarily small increment of temperature below T,
the crystal would display an arbitrarily small resis-
tance to a shearing stress. This is in contradiction to
all available experimental evidence. Instead, the ex-
perimental evidence indicates an underlying connec-
tion between the discontinuities in heat content,
shear modulus, and volume at T,.

One important connection of this type was reported
by May.’ If the shear modulus for fcc metals is plot-
ted versus volume expansion, one finds a nearly
linear relationship between the two. More important,
May found that if the linear relationship is extrapolat-
ed to C' =0, corresponding to the molten state, the
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extrapolated value for the volume expansion associat-
ed with melting agrees well with experimental values.
The importance of this result, then, is that it suggests
that measured properties of the solid state (C’ and
volume expansion) can be used to predict a property
of the molten state, namely, the volume change at
melting.

This question was subsequently reexamined for the
alkali halide crystals by Tallon, Robinson, and Smed-
ley.® Once again, they found that the shear moduli
are continuous with respect to volume through the
melting expansion, with C’ falling continuously to
zero for the fcc crystals, and C44 displaying the same
behavior for the bce crystals. Tallon’ later made a
similar examination for a different series of materials
and found similar results. This prompted the sugges-
tion that the Born hypothesis is correct if modified to
state that the appropriate shear modulus falls to zero
for the melt at T, rather than in the solid.

The problem with this suggestion is that it defeats
Born’s original idea of characterizing the thermo-
dynamics of materials in terms of a microscopic lat-
tice dynamical theory, since the relationship between
the solid and molten states is left unanswered. In
this work, a characterization of properties for both
liquid and solid phases will be made using the model
developed earlier for calculations of elastic properties,
thermal expansions, and melting temperatures. In
the next section, it will be demonstrated that the con-
cept of the thermal potential, introduced as part of
the model, explains the extrapolation discussed
above, as well as other related ones which have not
previously been presented. Next, an expression for
the melting entropy will be derived from a simple
model, which involves the parameters of the thermal
potential. This will be used to quantitatively demon-
strate the connection between the heat of fusion and
the volume expansion at melting. Finally, the melt-
ing entropy will be calculated for a group of cubic
crystals and found to agree favorably with observa-
tion. These results suggest that there is a simple
underlying principle, the thermal potential, describing
the thermodynamic properties of materials, including
the melting process.

II. THERMAL POTENTIALS AND THE
EXTRAPOLATION OF SOLID STATE
PROPERTIES TO THE MOLTEN STATE

The extrapolation of shear moduli to the molten
state discussed above implies a connection between
the properties of the solid material and the changes
that take place upon melting. For example, in the
case of the fcc metals, the consistent ability of a
linear plot of C’ versus volume expansion to predict
the volume expansion at melting with good accuracy

indicates that there should be a unifying principle
governing these and all related material properties.
An analysis of the temperature dependence of the
shear moduli in the cubic metals has been made by
means of the localized-continuum model.? Initially,
the motivation behind this model was to follow the
spirit of the approach suggested by Born,! who
described a demonstration by Debye that the thermal
expansion can be viewed as the shift of the mean po-
sition due to the asymmetry of the amplitude of os-
cillation in an anharmonic potential. The vibration
about the shifted mean position can, however, be
considered harmonic. Therefore the model retains as
much as possible of the usual picture of harmonic vi-
brations between atoms in the crystal, while at the
same time introducing an anharmonic potential
whose descriptive parameters characterize both ther-
mal expansions and elastic properties. The potential
was chosen to have the form of the Morse potential
V(r) =D {1 —expl—a(r —ry)1}? since the quantum-
mechanical solutions are known. The parameters of
the potential were originally determined for the cubic
metals from low temperature elastic data.® Subse-
quently, the model was applied to the calculation of
thermal expansion in insulators’ with empirical rules
set forth for the determination of the relevant
potential-well parameters without experimental data.?
In contrast with the earlier works on elastic proper-
ties, these calculations identified the interatomic po-
tential with a thermal potential maintaining the stabil-
ity of the solid, with the potential depth given by

D = Qs+ Q, where Qs is the heat content of the solid
at T, relative to 0 K and Q is the latent heat of
fusion. A check of this concept was made for the cu-
bic metals,!! and the values of D calculated from
low-temperature elastic data were found to compare
well, within the limitations of the calculations, with
experimental values of Q; + Q.

Since the analysis of the temperature dependence
of the shear moduli in the cubic metals indicates that
to a first approximation, there is a linear dependence
of the shear moduli on the volume expansion,® the
linear extrapolations of May suggest that the thermal
potential can describe the properties of the molten
state as well as those of the solid state. In particular,
if one uses the linear Eq. (16) of Ref. 8 for C'(T)
versus linear expansion for the fcc metals, sets
AC'(T) =C'(0), since the total change in C' from 0
K to the melt at T, is just C'(0), and uses the calcu-
lated values of the Morse potential parameters, one
obtains a value for the total linear expansion going
from the solid at O k to the melt at 7,,. The values
so obtained agree fairly well with observation for
aluminum but the agreement is rather poor for the
other fcc metals. The reason for this is that this
equation and the others derived in Ref. 8 are approx-
imate, since they include only nearest-neighbor in-
teractions, and the Morse potential is not an exact fit
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to the real interatomic potential. Consequently, the
calculated Morse potential parameters are a
compromise fit to the low-temperature thermal data,
and give C'(T) curves that differ from the experi-
mental curves. However, somewhat different values
of the Morse potential parameters can be chosen
which give an accurate fit to the C'(T) curves, thus
giving semiquantitative agreement with May’s extra-
polations. ‘

If this analysis is correct, then different but related
extrapolations should be possible. For example, as
discussed in earlier papers, there is generally an inti-
mate connection between heat content and thermal
expansion, so that a plot of heat content versus
C’'(T) for the fcc metals should also be approximate-
ly linear. Moreover, the extrapolation to the molten
state should this time predict the heat of fusion. This
turns out to be true for the fcc metals as is illustrated
in Fig. 1 for the case of lead. The C'(T) data used
in Fig. 1 was published by Vold et al., 12 while the
heat content data was taken from the Bureau of
Mines tables.”> We note here that the linear extrapo-
lation to the molten state (C'=0) gives a heat con-
tent H, such that H,— H,, =2Q, where H,, is the
value for the solid at 7,,. This same result is ob-
tained with fairly good accuracy in all of the fcc met-
als.

The explanation of this somewhat surprising result
is fairly straightforward. In the fcc metals, C'(T) di-
minishes somewhat more than 50% in value from 0
K to T,,, while the total volume expansion of the
solid from 0 K to T, is somewhat greater than the
volume expansion on melting. In contrast, as dis-
cussed earlier,”!! the heat content of the solid at T,
relative to that at 0 K is about 70% of D = Q,+ Q,
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FIG. 1. Elastic shear modulus C'(T) vs heat content for
lead. Linear extrapolation beyond the melting point gives a
value H, corresponding to C’'=0 (the molten state). The
difference between H, and the heat content at the melting
point H,, is approximately twice the latent heat of fusion.

while Q is about 30% of the total. This means that in
the plot of H(T) vs C'(T), (H,— H,,) is slightly less
than [H, —H(0)] so that H,— H,, =2Q. In Ref.
11, the condition for melting was derived in cubic
crystals from the condition Q;=0.7D, which is based
on empirical observation. We can see that this condi-
tion is consistent with the analysis here. However,
while this has resulted in a semiquantitative explana-
tion of the related linear extrapolations and the role
of the thermal potential in the melting process, a
quantitative description requires a specific model for
the entropy of fusion.

III. MELTING ENTROPY AND THE -
THERMAL POTENTIAL

It is evident that a theoretical confirmation of the
analysis of Sec. II as well as the previously deter-
mined condition for melting in cubic crystals, re-
quires an explanation of the conditions Q, = 0.7D
and Q = 0.3D on other than empirical grounds. This
in turn requires a quantitative description of the
melting entropy. One of the early suggestions con-
cerning the entropy of fusion was made by Hirsch-
felder, Stevenson, and Eyring.!* Their model, which
has since become known as the so-called communal
entropy, results from the idea that in a solid, the N
atoms are confined to small compartments, equal in
volume. The liquid with the same volume corre-
sponds to the situation where the compartments no
longer exist, and each atom is free to move to any
part of the total volume. If one further assumes that
the atoms in the liquid behave as a perfect gas, then
one can use the partition function for a perfect gas to
calculate the entropy of the liquid. The partition
function for the solid differs because there are N'!
ways that the N atoms can be permuted among the N
compartments. It is an easy matter to show from
these simple arguments that the entropy difference is
AS;= Nk =R for a mole of a monatomic material, or
more generally nR if there are nN atoms per mole.

For some time, there was doubt that the communal
entropy accurately represents the melting process.
First, even though the communal entropy can be
shown to arise when using a partition function for
the liquid different from that for a perfect gas, there
was uncertainty as to whether every part of the total
volume is equally accessible to each atom of the
liquid at T,,. Second, hard-sphere calculations had
not yielded such a result. However, recent Monte
Carlo calculations for liquid KCI by Woodcock and
Singer,'’ using a realistic interatomic potential, indi-
cate that in contrast with hard-sphere liquids, the en-
tire communal entropy appears at fusion. In addi-
tion, there is a well-known empirical rule known as
Richard’s rule'® which states that the entropy of
fusion is given by AS;= 2 cal/g-at. K. This value is,
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of course, just the communal entropy.

A closer examination of heat content data reveals,
however, that Richard’s rule is generally a lower
bound to the melting entropy rather than an accurate
value. The reason for this is rather obvious. The
communal entropy does not allow for any volume ex-
pansion at melting. Such expansion, of course, in-
creases the entropy. This contribution can be ac-
counted for quantitatively by a simple extension of
the argument discussed above. If the volume of the
solid is Nv where v is the cell or compartment
volume, then the increase in volume can be inter-
preted as an increase in the number of compartments
each of which maintains the volume v. If the frac-
tional increase in volume is 8, then the total in-
creased volume is Nv(1 +8), and the number of
compartments in the larger volume increases by a
factor (1+ ).

According to our previous discussion, the N com-
partments associated with the volume of the cell at
T, are filled, each with one atom. After melting, the
volume expansion produces additional N8 compart-
ments, according to this model, which are not filled.
For each arrangement of these N8 holes, there are
N! ways of permuting the atoms among the remain-
ing compartments. There is an additional factor of W
arrangements for the holes associated with the
number of ways of arranging N objects of one type,
N of another in N (1 +8) compartments, one to a
compartment, where

INO+B)]!
NIUNB)!

Using Stirling’s formula N! = (N/e)", one gets

a+p)+)"
Bk )

W=

W=

The entropy difference between the liquid having the
volume Nv and that having the volume Nv(1 +g) is
then given by S,=k InW or

S,=Nk[(1+8)In(1+8)—BInBl . (¢))
For fractional volume changes In(1 +8) = g, so that
S,=Nkg(1+8—1ng) . )

Therefore, according to this model, the melting en-
tropy per mole for a material having nN atoms per
mole is

AS;=nR[1+B(1+8—1nB)] . €))

In an earlier publication,!! the heat content of the
solid at T, relative to 0 K was set equal to a fixed
fraction K of the depth of the thermal potential. In
particular, the universal constant K =0.7 was used to
calculate the melting temperatures of a wide range of
cubic monatomic and binary crystals. Recalling the
relation D = Q, + Q, this implies that the heat of
fusion is given by Q = (1 —K)D. If the earlier
analysis is correct, then Q should be approximately
0.3D at least for many cubic crystals. Equation (3)
can be used to check this conclusion. Expressing the
quantities in units of energy per atom, then

Q =TwAS;=(1—K)D =kT,[1+8—1nB] . (4

Equation (4) can be used to calculate (1 —K) from
experimental values of B8 and the previously deter-
mined values®™!! of D. These are compared in Table
1 with values determined from experiment.!* The ex-
perimental values of B used are those reported by
Schinke and Sauerwald!” for binary cubic crystals,
and deduced from the volume data of Borelius'® for
the cubic metals. Both calculated and observed
values of (1 —K) are generally quite close to the
value 0.3. Moreover, the average of both sets of

TABLE 1. Calculated versus observed values of (1 —K) for various cubic crystals.

kT, (eV) D (eV per ion) B (%) (1-K)(calc) (1-K)(obs)
Cu 0.117 0.55 5.7 0.26 0.28
Al 0.080 0.19 6.4 0.52 0.33
Au 0.115 0.71 6.2 0.20 0.27
Pb 0.052 0.35 3.0 0.17 0.27
Ag 0.106 0.49 5.8 0.27 0.28
LiF 0.096 0.52 29.4 0.32 0.35
NaF 0.109 0.47 27.4 0.38 0.35
NaCl 0.093 0.39 25.0 0.39 0.35
KF 0.088 0.41 17.2 0.32 0.35
KCL 0.090 0.36 17.3 0.38 0.34
AgCl 0.063 0.40 8.9 0.21 0.28
AgBr 0.061 0.38 8.2 0.21 0.21
Average 0.30 0.30
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TABLE II. Calculated vs observed melting entropy for various cubic crystals. The values are

expressed in calories per degree mole.

0.3D

B (%) T, AS(calc) AS;(obs)
Cu 57 2.80 243 2.30
Al 6.4 1.41 247 2.76
Au 6.2 3.67 2.46 221
Pb 3.0 4.03 2.26 1.90
Ag 5.8 2.74 2.44 231
LiF 294 6.44 6.92 5.1
NaF 274 5.15 6.77 6.25
NaCl 25.0 5.02 6.59 6.38
KF 17.2 5.56 5.98 5.97
KCl1 17.3 4.75 5.99 5.85
AgCl 8.9 7.60 5.21 4.23
AgBr 8.2 7.43 5.14 312

values is 0.30. These results confirm the earlier con-
clusions and the role of the thermal potential in con-
necting the heat of fusion and the volume change at
melting as indicated by the extrapolations discussed
in Sec. II.

Equation (3) can also be used to calculate the melt-
ing entropy. Comparison of these calculated values
versus the observed values'® is presented in Table II,
and the agreement is generally quite good. In addi-
tion, values of the quantity 0.3D/T,, are included.
This should approximate the melting entropy based
on a universal constant (1 — K) =0.3 if the ideas
presented here are correct. As can be seen from the
table, these values do not agree as well with observa-
tion as those calculated from Eq. (3) because of un-
certainties in the values of D and fluctuations in the
values of K about the mean value. However, the
agreement is good enough to confirm the ideas
presented here on the role of the thermal potential in
the melting process.

IV. CONCLUSIONS

The primary conclusion reached in this paper is
that a single unifying principle, the thermal potential,
governs the thermodynamic properties of the solid
and molten states. In a previous paper,!! the max-
imum thermal expansions and melting temperatures
of a wide range of monatomic and binary cubic crys-
tals were calculated in terms of a model involving the
thermal potential. However, the use of the universal
constant K =0.7 remained empirically based and
somewhat mysterious.

In this work, the picture is now completed. Melt-

ing occurs when the sum of the harmonic and elastic
energies and the heat of fusion equal the depth of
the thermal potential D. The heat of fusion arises
from the contribution of the communal entropy and
the volume expansion at melting, which in turn is
determined by the value of (1 — K)D, while the
solid-state heat content at T,, is DK. Empirical ob-
servation, as well as the calculations presented above,
indicate that for at least a wide range of cubic mona-
tomic and binary crystals, K =0.7. Further, we can
now see how the underlying action of the thermal po-
tential explains the extrapolations of the solid to the
molten state from which properties of the solid state
can predict parameters associated with the change of
state at melting.

One of the advantages of a unifying principle is the
degree of simplicity that it introduces. By means of
the thermal potential, a wide range of thermodynamic
properties of materials can be explained quantitative-
ly, and in a simple and straightforward manner. The
only remaining question is whether or not the ther-
mal potential is in fact ‘‘real.”” This concept is a
surprising one, and differs considerably from the in-
teratomic pair potential. The melting transition is
generally explained in terms of the action of the free
energy, which in turn is determined by the values of
the entropy and the internal energy. However, this
paper and the previous publications strongly suggest
that the aggregate of atoms in the condensed phases
behave as if subject to a thermal potential which
governs the elastic, expansion, and melting proper-
ties. Demonstrating the existence of this potential
from first principles may prove to be quite difficult,
but the evidence accumulated so far strongly suggests
that it is real.
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