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In evaluating the critical properties of lattice spin systems in the real-space renormalization-

group theory we use the cluster variation method. A configuration in the transformed system is

constrained and the probability of occurrence of this configuration is calculated both in the

transformed system and in the original system. By equating the two probabilities and forming

ratios of two such equalities (for two or more constrained configurations) the fixed point of the

renormalization transformation is evaluated. The method can avoid the trouble due to different

singularities in the original and transformed systems, and hence can obviate the possible

development of spurious singularities in the transformation at low temperatures. The two-

dimensional triangular Ising model is treated with numerical results comparable with those ob-

tained by the cluster treatment of Niemeijer and van Leeuwen who used more and larger cluster

types than those we introduce.

I. INTRODUCTION

We present a new implementation of Niemeijer
and van Leeuwen's' real- (i.e., coordinate) space
renormalization-group transformation for discrete
spins on lattices. In this methodology one bundles
groups of spins s~ together (d is the dimensionality)
into cells and uses a rule that gives a composite cell
spin, o.' = + I (as determined by the directions of the
original sd, often by a majority rule) at the center of
the group. The new spins are distributed on a lattice
isomorphic to the starting lattice but with a separation
s times the old lattice distance. All quantities pertain-
ing to the cell spin system will be denoted by primes.
The number of cell spins, N' is related to the original
number of spins, %by

N's~=N .

This is a transformation termed nonlinear in the
literature' since the cell spin is not linearly related to
the site spins of the cell. Transformations that
linearly relate the cell spin to the site spins are
dependent upon a parameter p appearing in the linear
relation and this has been exploited to obtain excel-
lent numerical results for critical-state property ex-
ponents in certain cases. ' However, this linear
method can lead to the development of spurious
singularities in the transformation4 perhaps related to
a failure to preserve all the symmetries of the initial

Hamiltonian, 5 H (for which the usual Boltzmann fac-
tor —P = —I/ks T has been included as multiplicative
factor). It is of course essential in renormalization-

group transformations from H to H' that not only the
partition function be preserved but also that the free
energy of the cell system exhibit the same singulari-
ties (if any) of the site system. The latter criterion is

difficult to ensure for nonlinear transformations. In
this work, we have been able to explicitly avoid this
difficulty (to our knowledge for the first time) by us-

ing the technique suggested by van Leeuwen' of
computing the free energy of the site spins under the
constraint that the cell spins are either all of one sign
or predominantly of one sign such that via the major-
ity rule the site spins as well will always be predom-
inantly of the same sign. Thus, we prevent the possi-
bility of a magnetization in zero external magnetic
field arising spontaneously (since it is always present)
for both cells and sites. This obviates the possibility
that the critical state for the sites will differ from that
of the cells in the sense of having different critical
point values for their respective nearest-neighbor in-

teraction parameters. We treat the renormalization
transformation as one from interaction parameters
K to renormalized parameters E' where 0, labels in-

teraction types for even numbers of spins. From the
behavior of this transformation, linearized about its
nontrivial fixed point, we determine the Ising-model
critical point and thermal exponent (and follow this
with a determination of its magnetic exponent) in the
usual way. '

It is generally agreed" that cluster calculations are
superior to finite-lattice and cumulant expansion
methods for the calculation of E' in terms of E . In
this paper we apply the cluster variation method
(CVM) 8 '0 to approximately evaluate the free energy
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for the site spins on. a triangular two-dimensional lat-
tice. The cells between which renormalized interac-
tions occur are triangles of three-nearest-neighbor
spins such that s = v5 (see Fig. 1). From our results
it is of particular interest to note that in order to ob-
tain a fixed point it is necessary to work with clusters
in the CVM at least as large as the cell chosen, i.e., a
triangle in the present case, and it is necessary to
correct the usual CVM entropy expression for the
site spins to reflect the constraint that the cell distri-
bution is fixed.

Denoting schematically a certain constrained spin
distribution in the cell system as C~ we calculate the
probability P(C~) that the configuration C~ appears.
This is proportional to exp[H'{ C~, IC ) ]. The same
P( C~) is calculated in the site system as a partial
sum of the partition function

P(C~) CL X expH(o, E )

where the summation goes over the site spin config-
urations consistent with the cell spin distribution C~.
Thus we can write

exp[G(SC.)+H'{C,,SC.')l= X exp[a(~, Z.)l .

(1.3)

For any other constrained cell spin distribution C2 we

have another equation similar to (1.3) with C~ re-
placed by C2 such that in forming a ratio of the two

equations G(E ) drops out. Taking the logarithm of
Eq. (1.3)

bution the 0' is explicitly written in terms of the E'
and the numbers of the various interacting cell
groups (first nearest-neighbor pairs, second nearest-
neighbor pairs, etc) which numbers are either im-

mediately given in terms of t or are obtainable from
some of the numerical results for the equilibrium
concentrations of various clusters of sites generated
in evaluating F. %e also eventually consider parame-
ters i't

& and h& where P labels interaction types for
odd numbers of spins and which are nonzero only in

external magnetic fields.

II. FIRST NEAREST-NEIGHBOR INTERACTIONS ONLY

%e treat a triangular lattice in two dimensions with
3N sites (such that there will be N'= N cells) for
which the coordination number, c, of first, second,
and third nearest neighbors (NN) is uniformly 6.
Table I lists the total numbers of the various generic
types of clusters for the CVM used in this paper.
The first NN interaction energy is —J~ if the spins
are parallel and +J~ if they are oppositely aligned and
similarly for second NN pair energies of + J2. The
E& = (1/ks T) J~ Since w.e are grouping the 3N sites
into %cells which can assume four configurations
with equal probabilities at infinite temperature, every

TABLE I. Generic cluster types.

G(Z.) +e'(C, ,Z.') =F(Z.) = „—„B B
(1.4)

Generic cluster
Generic
variable Total number

we focus on the free energy (times —P), Fof the site
spin system. %e numerically evaluate Eas function
of E using the CVM for as many constrained cell
spin distributions (such as all +, fraction r +with
further constraint of no++ first nearest-neighbor cell
pairs) as is necessary to obtain numerical values for
all the E' by taking differences of the respective Eq.
(1.4) for pairs of Fvalues. For each cell spin distri-

Intracell pair

Intercell pair

3N

Triangle type 1

Triangle type 2 3N

L~
A X A + A

FIG. 1. Triangular lattice with cells shown shaded. Trian-

gles type 1 are cells such as i,j,I. Triangles type 2 are like
b, c,d. Triangles type 3 are like a, b, d. Rhombi type 1 are
I,J,k, /. Rhombi type 2 are like Q, b, c,d.

g h

Triangle type 3 ' 'L

e e» a Xiii'

Rhombus type 1

A a \ Ã ii
'~

Rhombus type 2
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(F/N) for all K~ =0 should be ln4. This insures that
our equations will have the trivial but physically im-
portant fixed point for all i:

TABLE II. Site clusters. Circled signs refer to cell spins,
uncircled signs refer to site spins.

E] =K(=E( —0 (2.1) Cluster Variable

To effect this we must consider clusters at least as
large as NN triangles and, if we limit the calculations
only to first NN interactions, all larger clusters than
these may be omitted. The entropy S/kz of the N
cells (of 3N sites) is written as the logarithm of the
number of configurations 0 which is given" in the
CVM by

»»»»eaLe

X)

X2

X3

h,
~a»»»e» I»»

, 2 '/ iE'
(2.2)

X4

For the case of N sites for which cells are not con-
sidered and all triangular NN clusters are alike, Eq.
(2.2) reduces to Eq. (G.l) of Ref. 8:

gives the entropy for the site spins as

t

2

( j

(2.3)
S'"=Nk& 3 Xq&Z(y&, ) +6 Xq,Z(y»)

J J

—3 ga(x, ) —gq, Z(w&, )

With reference to Tables II—IV, in which all the
probability variables and their weights (q, ) are set
out, the Stirling approximation applied to Eq. (2.2)

—3 gq, g(w2, ) —2 Xqlg, (w3j) (2.4)

TABLE III. Intracell and intercell pair clusters.

Cluster Variable Weight Cluster Variable Weight

/0+/

+ +/0

Q+

+

&24

125

12S

+
WWmm

~2io
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TABLE IV. Triangle clusters.

Cluster Variable Weight

Type 1

Pair
energy

Magnetic
cncrgy

Cluster Variable Weight

Type 2

Pair

energy

Magnetic
energy

3
2E1

1—2h1 +211
1—K12

3
1

2E1
1—
6 h1

%13

1
+-2h1

1

2E1
1—6h1

, /K+X,

Type 2

1

2E1

1—2h1

1—6h1

F

y lt

+214
1—E1

1

6h1

1

6

'~
1

2h1

Type 3

,lM, 3——E12

1——h12

I
/(+j+ a~ %eh
++

1—2h1

1—6h1

, /K+K,
t

~t
1

2E1
1—6h1 1

2E1

iC++
F

t
yV

1

2E1
1—6h1

1—h1

Qp~
I

\
~.l(+&

f+~)

+3S
1—
2 h1

1

2E1 %36
1—6h1

+.—, rt
+21O

1

2E1
1

6h1
$%

t
'.l(+i

'%ewfi

+
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TABLE IV (Continued). in which

g(x) —=xlnx —x (2.5)

Cluster

+
I

p ~ (+&

A+

Variable %eight

Type 3

w38

Pair
energy

1

2K1

Magnetic

energy

1

6h1

and where the sum on j is over those configurations
of a cluster set allowed by the various constraints on
the cells. Since each set of cluster probability vari-
ables (x,yt, y2, . . . , u2) times their respective weights
are separately normalized to unity the number for ex-
ample of triangular clusters with probability variable

w39 is (with reference to Table I) explicitly
(2N) (6) ( w39) .

A. All cells of positive spin

I
I

& /(+ias %an

p+

+&~& w w%a
i-X

&+l

W39

w310

1

2K1

3—
2 K1

1

6h1

1

2h1

Constraints on the cell spins are important for
reasons given in the introduction and they are also
helpful in limiting the number of variables in the
CVM. With all cells positive there are only ten tri-
angular cluster variables and the energy may be writ-
ten by inspection as

+
&&

I i'
+

w311

w313

3—2E1

1

2E1

1

TK1

1—2h1

1——h1

1—6h1

E = —3&~tl(y» —2y») +2(y»+y» —2y») j . (2.6)

In the natural iteration (NI) technique'2'3 for max-
imizing the Fof Eq. (1.4) one chooses all the largest
cluster variables as independent and introduces as

many Lagrangian parameters as are needed to satisfy
all the constraints. As shown in Appendix A it is
straightforward to obtain F++(Kt)/Nand to show
that it is ln4 for E1 =0.

w314
1

2E1
B. Fraction t of cells of positive spin

with no first NN+cell, +cell pairs

I
I«

8
~+

I
w /(q+e----~

w315

w316

1

2K1

3—2E1

3——K1

1

6h1

1

2h1

1—2h1

The triangular cluster variables, now 26 in number,
are w11, w12, w13, w14, w25, . . . w216, and

w311 ~ ~ . w320. Since t is the fraction of cells with
cell spin (by majority rule of the site spins) positive
and with the further constraint of no first NN (+
cell, + cell) pairs, the geometry of the triangular lat-

tice dictates that t can range between 0 and —,.
Furthermore, the fraction of first NN (cell, cell) pairs
that are (+,—), i.e., ft+, must be

f&+ =2r- (2.7)
+

I
~./(j

O.

w319

1

2K1

1

2E1

1—6h1

1

6h1

The entropy &&
' of Eq. (2.4) is the entropy when the

positions of the cells are not fixed, i.e., it contains a
contribution S for the distribution of the %cells
over the lattice which must be subtracted from S '

when the cell distribution is frozen as it must be for
our renormalization-group calculation. Thus, the en-

tropy S for the site spins is

w320
3—2E1

1

2 h1 S(1) S(2)

Wk~ Wk~ Nkp
(2.8)
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The cell-distribution entropy is given by the analog
of Eq. (2.3) for cell clusters in terms of the probabili-
ty variables given in Table V

g(2) = ln 0 (cells)
B

=3[2&(y,q) +2(y,3)] 2[3~(w 3) +g(w, 4)]

we have

W,3= t

c4 =1 —3t

such that

S"'/Nks =—t Int +3(1—2t) In(1 —2t)

(2.10e)

(2.10f)

(2.9)

yc~= t

and by normalization

y, 3 =1 —2t

In addition

x, i =xi+xq = wii+3wiq = t

Xcp X3 +X4 W]4 +3Wi3 = 1 —t

and from the obvious consistency relations

3Ny, 3 =2N[3 +,3(1) + , 4(3) ] (
&

)

3N(2y, z) =2N [3w,3(2) ] ( —,)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

Since from Table V 2y, q has the same meaning as
fi+ we have

—2(1 —3t) ln(1 3—t) —(I —t) ln(1 —t)

(2.11)

At any fixed t, this contribution (see Fig. 2) will not
affect the equation for maximizing Fof Eq. (1.4)
(nor the iterative method of calculation discussed in
Appendix B). However, the correction is necessary
for obtaining the correct numerical value of F(t,Ki)
and, in particular, for obtaining at any allowed t

F(t, 0) 1„4
N

S"'/Nks is zero for t =0 and so does not enter the
calculation for the all negative cell case (which is
equivalent to all the positive cell case of Appendix A
in zero external magnetic field). We note that for
t )0.29608. . . , S"'/Nks is negative and this is so
independent of temperature. This must be connected
with a transition to triangle ordering with + cells
predominantly on only one of the three sublattices of
the triangular lattice for t & 0.29608. . .. Baxter'
has recently published an exact solution of this case
at zero temperature for which this critical

TABLE V. Cell clusters.
0.40

Cell cluster Variable Weight Total number of
cell clusters

0.30

0.20

0+

Xcl
0.10

Xc2 CV
ZM

0—

Pc2

&c3

3N

-0.10—

-0.20—

0+

Wc3

-0.30—

-0.40—

2N
-0.50

0 0.10
I

0.20
I

0.30

Wc4 FIG. 2. Cell distribution entropy as function of t, the
fraction of the N cells with cell spin positive by virtue of the
majority rule.
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r = —,o (5 —J5) =0.27639. [This is so because no

physical model can have a negative entropy and
means that the CVM parameters of Table V could no
longer serve to describe the constrained cell-
distribution situation if treated as an independent
problem. However subtracting S'" in Eq. (2.8) con-
tinues to correctly cancel contributions included in
S"' when Eq. (2.4) is used even when r )0.29608.]

or using two different r cases (t~, t2) this equation is

F(rt, Et) F(r2,Ei)

Ei' =Xi =Xi' (2.17)

Using the numerical methods described in Appen-
dices A and 8 it is a straightforward calculation to ob-
tain the fixed point of our transformation

which in a one even interaction parameter case is
identical to E„the Ising model critical point of the
lattice. The thermal exponent yq is obtained from

C. Fixed point and thermal exponent

The following additional glossary is useful for the
general situation including magnetic interaction
terms: H,'„, effective external magnetic field in cells;
m' effective magnetic moment per cell; p', effective
cell spin three-body interaction term for triangles of
first NN cell spina taken with minus (plus) sign in
the energy expression if triple product of the cell
spina is positive (minus); f;+, fraction of ith NN
(cell, cell) pairs that are (+, —); N, ', number of cells
of sign s where s is + or —;N„', number of ith NN

(cell, cell) pairs of signs s, s'; h~' = m'H, '„/ke?',
hz p'H, '„/kz——T, H+ effective Hamiltonian for the all

+ cell case; H,
' effective Hamiltonian for fraction t of

cells of + spin and no first NN (+ cell, + cell)
pairs. Reference to Eqs. (2.10e) and (2.10f) shows

(2.18)

Calculations were carried out for three cases: all plus

cells, t = 3, and I; =0.16 which permitted the calcula-

tion of three sets of E, and yq values. Results are
listed in Table VI in which the all plus cell case is
denoted by t =1. They are comparable in accuracy to
a four cell cluster calculation of van Leeuwen and
Niemeijer" which involved first and second NN pair
interaction parameters and one four site (rhombus)
interaction. %e believed the approximate nature of
our calculation was the reason for these fixed-point
results to vary as the pairs of t values varied. These
last were chosen simply for convenience to span the
range 0 ~ I; ~ —,

'. However a comment has redirected

our attention to the question of whether a unique ap-

proximate fixed point is obtainable. %e conjecture
that this is so for by expanding the second term on
the right of Eq. (2.16) about r2 = r~ we obtain

J2 (N2'+p + N—2 ) +J2N2+

H,
' = (

—Ji'Ni' +Ji'Ni'+ —m'H, ', (Ni N' )—
AT

p'H, '„(2N) [3—r —(1 —3r) ]}

which from Eq. (2.7) and the glossary becomes

(2.12)
E(r,E()

1 12 et N

NcE2J, + +2N—h,'r+12Nh2r . (2.13)

H, '= (Ei' +E2) —N(hi' +2h2) —2¹Ei'r
2

and for E j =E~' the derivative may be independent
of t as is the case for the trivial fixed point at infinite

temperature. (Noted Added in Proof The derivat. ive is

not independent of tat E~ =E&".)

Similarly for all the + cell case

Hp = (E)' +E2) +N(h)'+2h2 )
2

(2.14)

which differs, in an external magnetic fieM, from
H,

'
0 since the latter corresponds to the case with all

spins down (minus).
Taking differences of Eq. (1.4) for any two situa-

tions solved for, allows the cancellation of the
G(E ) function and, for only first NN interactions
in the absence of external magnetic fields, it gives
the one necessary equation for E~' in terms of E~.
Using the all plus cell case and a fraction t case this
equation is, from Eqs. (2.13) and (2.14),

Case

t =1; t =0.16
1t=1' t=—

1
t =0.16 t =—

Exact

0.2372

0.2472

0.2582

0.27465

0.8908
0.8478

0.8094

1.0000

1,732

1,758

1.800

1.875

TABLE VI. Results for the Ising model on the triangular

lattice using first NN interactions only and single-site spin

effects in an external magnetic field.

P++(E, ) P(r, E,) (2.15)
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D. Magnetic exponent in which

Considering only the single-site spin-energy terms
in an external magnetic field H,„ the added term in
the energy is

—mH, „(3N)(x~ +x3 —x2 —x4)

which gives as added term in F(t,K~)/N,

3h)(x) +x3 x2 x4)

, 2 ~ ~ 6 , 4

3
(3.2)

On expressing the x's as explained in Appendix A in
the most symmetrical way in terms of all the in-
dependent w's and taking derivatives with respect to
each w the only change in the calculation for magnet-
ic field is to introduce obvious factors into every w

expression [of, for example, Eq. (A7)]. These fac-
tors are, respectively, the exponential of minus the
magnetic energy term for each w variable listed in
Table IV. For example, looking at the diagram for
w22 one reads off a,net magnetic energy contribution
of mH, „multip—lies by I/6ks T (since every site is in
six triangles) and takes the exponential with sign

1/6k ichange to arrive at a factor e multiplying the pre-
vious w22 expression for the iterative calculation in
zero magnetic field.

One computes at the fixed point F++(Kt",h~)/N
and F(t KP, A~)/Nto obtain h~' as function of h~.

Explicitly for example using the all + cell case and
the t =0.16 fraction we have

F 016K" h

(2.19)

Choosing a set of h~ values in the vicinity of h~ =0
(where ht' =0 as well) one computes the magnetic
exponent yI, of our renormalization-group transfor-
mation from

and then when the cells (which remain triangles) are
frozen the entropy of the site spins is obtained as be-
fore from Eqs. (2.8) and (2.11) using now Eqs. (3.1)
and (3.2). There are many rhombus cluster variables
to be treated independently. In the all + cell case we
have 6 of type u~, and 12 of type u2. In the case of
fraction t of + cells with the added constraint of Sec.
II B there are 18 more of type u~ and 48 more of type
u2. The detailed listing of these variables and their
interconnections are given in a supplementary publi-
cation. ' However in Table VII we list two examples
of rhombi that enter the calculation labeled u~~s and

u22~, respectively. In arriving at the pair energy for a
cluster symmetry constraints discussed in SP require
first NN pairs on the edge of the rhombus to be
weighted by a factor 6 and the first NN pair on the

diagonal of the rhombus to be weighted by a factor
—,. Each rhombus has one second NN pair (weight

unity). The magnetic energy in an external field has
a weight factor (—„)for single sites and a weight fac-

tor ( —,) for triples of which there are two in each

rhombus cluster. Since the 0 of Eq. (3.2) involves
beside rhombi only the points (x variables) and trian-
gles ( w variables) the two u of Table VII comparable
to the w of Eq. (B7) are with reference to the explicit

I

(J)) a

dA] hi hi 0
(2.20)

The results are given in Table VI. As observed previ-
ously" yq is quite sensitive to the value of E, becom-
ing more accurate as E, approaches its exact value.
This behavior is not shown by y~. Cluster

Pair
Variable Weight energy

Magnetic
energy

TABLE VII. Two examples of rhombi used when second

nearest-neighbor pair interactions are included.

III. FIRST AND SECOND NEAREST-NEIGHBOR
INTERACTIONS

To include second NN interactons one must go to
rhombi of site spins (as illustrated in Fig. 1) for
which the CVM gives the corresponding S"'/Nks of
Eq. (2.8) as ~221

1 1 2
6h) —

3 h2

l 1 2

3 E
&

—E2 —
6 h& +

3 h2

S ' /Nks=lnQ (3.1)
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enumeration of Table IV transparently,

( )3/3 K3/ -3+K
3

(x3x3x )' '

( ) 3/3
—K 3/3+K 3

Pl

(x,'x3x, )""
(3.3)

which we find for the thermal exponent

yT =0.9229

The equations corresponding to Eq. (3.4) in a mag-
netic field are written down and the 2 ~ 2 magnetic
matrix obtained from which we find for the magnetic
exponent

a =6f3+ for t =0.16,
b =6f3+ for t =0.30 (3.5)

The parameters a, b are determined in good approxi-

mation from the results for the u values obtained at

the end of each calculation of F(t KI,K3)/N as

shown in SP.
To solve Eq. (3.4) start with K3=Kto (an initial

guess for E,) and E3=0 and iterate. If the KI's and

E2's grow larger and larger Eio & E,. If they fall

away toward zero Eio & E,. In this process good ap-

proximations will eventually be generated for the
fixed-point values Ei and E2 as those Ei,E2 values

which change very slightly in successive iterations.
In this way we find for the Ising-model critical point,

E,=0.2303 (3.6)

and the approximate Ei', E2' values are easily refined

by standard methods for dealing with a pair of non-

linear equations to give for the fixed point

Eg' =0.2183656; E2' =0.0089419 (3.7)

The thermal matrix (here 2 & 2) is obtained from ap-

propriate derivatives evaluated at the above fixed

point and has one eigenvalue greater than unity from

and with additional factors exp( —I/6hl +2/3h3) and
exp(+ I/6I3I —2/3h3), respectively, for calculations in
an external magnetic field. The more complex part
of the calculation is obtaining all the necessary linear
constraints among the independent u variables and
the proper insertion of all the Lagrangian parameters.
This has been done'6 and the numerical equality of
the appropriate F/N of Eq. (1.4) to ln4 checked at
various values of twhen Ei =E2=0.

A minimum of three cases must be calculated to
obtain two independent differences of Eq. (1.4) to
obtain Ei' and E2 in terms of Ei and E2. These
were chosen as t = I (all + cell case), t =0.16 and

0.30, %e did not carry through calculations for ( = —,

since in this limit the necessary Lagrangian parameter

p, [comparable to that of Eq. (B8)] must be taken so
large that convergence is hard to achieve and ex-
ponent overflow occurred in several runs. The work-

ing equations from Eq, (2.14) less Eq. (2.13) become

F+i(Ki,E3) F(0.16,KI,K3)

(3.4)
FPP(Kt, K3) F(0.30,K),K3)

W
i + 2

in which

yq = 1.704 (3.9)

IV. DISCUSSION AND OUTI.OOK

By presenting a method of real-space renormal-
izaiion-group calculations with constrained fraction of
cell spins of one sign we believe that we have elim-
inated the problems and uncertainties associated with

competing ground states at low temperatures (dis-
cussed by van Leeuwen and Niemeijer'7 and by Grif-
fiths"), which may cause the original spin system
free energy to have a singularity different from that
of the cell spin free energy. Some examples from the
literature of these difficulties are: a five cell cluster
treatment of the Ising model gives no (nontrivial)
fixed point if very small four spin interactions are
omitted'5; a simplest cumulant expansion for spin-

glasses gives a fixed point but if a simple cluster cal-

culation is made no fixed point is obtained'; a
second-order cumulant expansion for the two-

dimensional spin-
2

Heisenberg model gives a fixed

point while the first-order expansion does not. 20 Our
results using a first NN interaction parameter are
comparable in accuracy to calculations using three
types of even spin number parameters. However our
results in Sec. III in which second NN interactions
and a triple spin magnetic term are added are disap-

pointing in giving a poor value for K, (and thus a
poorer value for y/, ) than any of those listed in Table
VI although the yT value is improved. %e believe in-

cluding the second NN terms without simultaneously
including the third NN terms which involve an equal
number of sites only 1.15 times further distant than
the second NN sites of a given spin has skewed our
results. To include third NN interactions one must
treat hexagons of seven site spins each. The numeri-

cal method of calculating the free energy used in this

paper should probably not be feasible for this due to
the great increase in the number of Lagrangian
parameters if all the largest cluster variables are kept
independent. A higher degree of automation of the
calculation will be necessary to eliminate most of
these variables in terms of a truly independent set
and then to solve the resulting nonlinear equations

by Newton's method. Recently several papers treat-

ing this approach for CVM calculations have ap-
peared2' 2~ and we plan to extend our renormal-
ization-group calculations to include third NN in-

teractions and to three-dimensional lattices using the
techniques therein presented.
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APPENDIX A

We treat the case of only positive cells permitted
and only first NN interactions between site spins,
The possible triangular cluster variables are
W11~ W12. W21. W22. W23r W24r W31» W32i W33»34
of these as independent variables (subject to con-
straints). The other cluster variables appearing in the
entropy and energy expressions must be expressed in
terms of them but in such a way as shown in what
follows to preserve all the symmetries of all the clus-
ter figures.

We begin by counting up subcluster figures in al-
ternative ways, e.g. ,

3Nxl =N[wll(3) +3w12(2)]

Xl = Wll +2W12

X2= W12

Xl = W21 + W22 + W23 + W24 W21 +2 W23

X2 = W23+ W24 = W22+2W24

Xl W31 +2 W32 + W33

X2 = W32 +2 W33 + W34

and also

3 11 Wll + W12 W21+ W22

@12= W12 = W23 + W24

P'21 = W21 + W23 = W31+ W32

3'22 = W23 = W32 + W33 = W22 + W24

23 W24 = W33+ W34

(A2)

6N(2y22) =2N[3 W32(2) +3W33(2) ]

By including also, relations of the x's to thc y's w' e
These relations are used to rewrite the energy Eq.
(2.6) in a most symmetrical way as

1 3 1E =—3NJI(
2 Wll

—
2 W12+ 2 W21

—
2 W22 W23 W24+ W31 N32 W33+ W34) (A3)

This form is obtained by writing yll and y12 (with equal weights) once in terms of wl's and once in terms of w2's

fronl Eq, (A2). Similarly y21 and y23 are written once in terms of W2's and once in teI'IIls of w3 s However y22

being expressible from (A2) in two ways in terms of W2's is written in Eq. (2.6) to obtain (A3) as

W23 W22
—W24 —2 W32 2 W33

Similarly in writing the entropy S ' from Eq. (2.4) we use

3 Xej&(ylI) = —', [&(y» = »I+W12) +24(y12 W12) +&(y» = W»+»»+2&(y»= W23+ W24)]

and

6 Xq&Z(y2j) 3[+(y21 w21+ W23) +2(y22 W22+ w24) +Z(y22 N23) +Z(y23= W24)

+ 2(y21 w31 + W32) +2/ (y22 = w32 + w33) +Z (y23 w33 + w34) ]

Less obviously but with a little trial and error and for reasons given below we also use in Eq. (2.4)

—3 XZ(x~) =—
—, [g (xl = wll+2w12) +Z (x2= w12)] —[Z(xl = w21+ W22+ w23+ w24) +2(x2= w23+ w24)1
1

—
—,
' V (xl = W21 +2 W23) + R (X2 = W22+ 2 W24) ]

[2 (xl = w31 +2 w32 + w33) +g (x2 = w32 +2 w33 + w34) ] (A6)

To satisfy the constraints that exist among the w's from Eqs. (Al) and (A2) we add to F++(Jt'I)/N of Eq. (1.4)
(the double sign subscript indicating that there are only ++NN cell-ceH pairs) the terms

6~1( Wll + W12 W21 W22) +6&2( W12 W23 W24) +6PI( W21 + W23 W31 W32) +6P2( W23 W32 W33)

+6|33(W24 —W33
—W34) +6y( W22+ W24

—W23)
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and to account for normalization of the w's we add
further

XI(1 —WII —3W12) +3)(2(l —
W21

—
w22

—2W22 —2W24)

+2)13(1 W3] 3 W32 3 W33 W34)

in which the a' s, P's, y, and A. 's are Lagrangian
parameters. Setting the derivatives of this augment-
ed F++(KI)/N expression with respect to each of the
w's equal to zero gives the following equations for
iteration:

6al
wl 1

= e wl 1e

WII= (y1'I)'"e ' /(xl')'",
1 „2el+2e2

W12= e w12e

angles and finally with a sign change in w23 since all
probability variables are weighted by the exponent of
minus the free-energy contribution.

Algebraically subtracting in succession from our
augmented F+4( KI) /Nexpression the
w;(8/()w;) (F++/N) terms (each of which will be nu-
merically zero) shows that the only terms to survive
are those independent of the w's

F++(K I )/N = )I.I + 3)(2 + 2 XI (As)

In order to start the major iteration for a given I( 1

value it is sufficient to put xl =
4 and x2=

4
charac-

teristic of the infinite-temperature limit and then as-
sign the y's as random Bragg-Williams —type products

1 1

-2el +2pl
W21= e w2le

/(»»)

W» = (yIIY2I ) / e /(x(2)I/4,

-2el +27
W22= e W22e

W32 e w32e

w22= (y2IY22) e /(xIx2)
-P2-P3

W33 e W33e

W22 (y 1)y22 ) e /(xlx2)

w23 e w23exp( &2+PI+P2 —y)

w23 (y12y2IY22) /(xlx2)

W24 e W24exP( —a2+ P2+ y)

W24 (y12y22y23) e /(xlx2 )
-SC1/2

3" 1
-A. „-3P

W31= e w31e

wII= (y21) / e /(xI ) /

(A7)

We then proceed to the minor iteration for the
Lagrangian parameters (all of which can be started
from zero). We note first that since there is only one
independent normalization when all the constraints
on the w's are enforced if we keep all three A.'s then
two of the Lagrangian parameters (say u2 and p3)
may be omitted. Then we determine o, l, for exam-
ple, by defining

A, l A, 2~LI (Wll+ W12)e ~RI ( W21+ W22)e

~L2 (W12e ) ~R2= (W23+ W24)e

from which the constraints require that the ratios
(which are independent of the )I.'s) be equal

~Ll ~R1

or

AL Ie '(e ') AR Ie '(e ')

AL2

(I) I 1„(~RI) (~L2) (P)
4 (~L I) (~R»

such that for purpose of convergence

W 33 (y 22 y 23) /(x Ix2 )

-3P3
W34= e

aI ———2(nI" +nI ') =-, ln
1 p I (+R I) (+L2) (p)+ O;1

(AL I) (AR2)
(A9)

(y 3 ) I/2R I /(X 3 ) I/6

Now the symmetry relations in the w's are obvious
[and were the reasons for writing Eq. (A6) with its
particular weights]. For example, reference to Tables
II—IV shows that in w23 bonds y12, y21, and y22 each
shared by two triangles make up the triangle of two
xl and one x2 site, each site shared by six triangles.
Further the three pair energies of w23 sum to Jl and
then times (+1)/2kRT gives the weighted pair energy
in Table IV type-triangle clusters with division by 2
since this energy is bond by bond shared by two tri-

in which nl serves as input for o.l in the next minor
iteration step. With the other parameters found in
like manner the A. ; are obtained from the normaliza-
tion conditions, e.g. ,

6al „2al
XI =ln(wIIe +3w12e ) (A 10)

The w s are obtained from (A7) and Eqs. (Al) and
(A2) generate new x's and y's for the next step of
the major iteration. When successive sets of w's

differ by less than a predetermined amount the free
energy is calculated from Eq. (AS). This equation
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gives

F++(0)/N = ln4

as it should.

APPENDIX 8

%e treat the case of fraction t of the cells of posi-
tive spin and no first NN + cell, + cell pairs for

which there are 26 triangular variables. %ithout for-
mulating the energy expression or S'" explicitly one
can immediately write down all thc necessary ~; ex-
pressions analogous to those of Eq. (A7) in terms of
the appropriate y's and x's by referring to Tables
II—IV. Parameters y arc used for constraints
between the w2's which add terms to F(r,E1)/N as
follows:

6 Y4{w25+ w27 w29) +6 Y5{w26+ w28 w29 w211) +6'Y6( w27 w210) +6 Y7( w28 w210 w212)

+6 Y9{W214 W213 W215) ~ (81)

Parameters p are used for constraints between the w2's and w3's as follows:

6P4( W29 W311 W312) +6P5( W26 + W28
—

W312
—W314) +6P6( W27 W313

—
W315) +—6P7( W28

—W315 W316)

+6P8{W213
—

W311 W313 W317
—W318) +6P9( W214

—
W312

—
W315

—
W318

—W319)

+6/310( w214+ w216 —w314 —w316 —w319 —w320) (82)

Parameters o, are used to add in terms for constraints between ~1's and ~2's:

6681( W11+ W12 W25 W26) +6122( W12 W27 W28~ +6&3~ W13 W29 W210 W213. W2141

+6484( W13 + W14 W211 W212 W215 W2161 ~ (83)

The three normalizations may be written as additive terms

lt1( 1 —W11 —3 W12
—3 W13 —W14)

+3 ~2(1 W25 W26 2 W27 2 W28 2 W29 2 W210 W211 W212 2 W213 2 W214 W215 W216)

+2~3(1 3 W311 6W312 3 W313 3 W314 6 W315 3 W316 W317 3 W318 3 W319 W320)

Then by noting for example what factor one must

divide through by to obtain the factor e 2 in every
w2 expression by examining terms (84) above and di-
viding through all other added constraint terms by
this factor one finds for maximizing F(t E1)/N, for
example,

Then there will bc 14 Lagrangian parameters to deal
with in every minor iteration.

The special constraint that fraction t of the cells is
positive is handled by adding the one final term

6p, {w11 +3w12 r) (85)

such that when convergence is obtained the free-

w26 = e w26 exp( 201+2—y5+2P5),

w27 = 8 w27 ex P (—13.'2 +P4 + Y6 +P6)

etc.
Since the three normalizations in (84) are not all

independent, two of the parameters may be chosen as
zero, namely,

~4=/310=0

7

to
p, = 6 ln

1

(88)

energy function is

F(r,E1) g(2)= ~1+3A2+2A3 —6P.I;—
Nkg

with the last term given by Eq. (2.11).
The determination of p, proceeded as follows.

Since p, enters only in connection with +11 and +12
and we have

611
%11= e %118

(y 131 ) '/'exp(
2 E1+6@,)

(X3 )1/6

2cL1 +2&2
%12 = 8 %12e

( 2 ) 1/2 -K1/2+6@,

( 2 )1/6

after starting from a judicious guess for p, (aimed at
achieving a particular value, ro for r) at the end of
each major iteration step a new p, value is calculated
from
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in which

and

/ 3 x 1/2
3E 1/2 -Xi +6ei

gy11 j e

(x3 ) 1/6

(yttyt2) e exp( —At+2at+2n2)2 1/2 1

(xt'xp) ' '

range from —2 to +2, respectively. However to
achieve t = —, (to comparable precision) tt, had to be
chosen greater than 15.

We list finally the simplest set of relations used at
the end of each major iteration to generate x's and
y's for the next step:

The overall calculation proceeds until for the nth ma-
jor iteration,

~ = X llnw, '/I' —lnwi'/" t I+ X~inw2"' —lnw'" "~
J

+ Xilnw3&/"' —lnw, '/" "i +it toi—
J

is less than some small quantity. To obtain conver-
gence it is necessary to start with 4 fairly large so as
to fine tune the p, value needed to force t = t0. For
K1 =0 to force t to assume values in the range 0 to
0.32 (to seven decimal places) it is sufficient for p, to

x1 = w» +2 W12, y» = w» + w12

x2 W12 y12 = W12

x3 W13 y13 W13

x4 = w14+2w13 y]4 w13+ W14

y24 W29 y28 W213

y25 W26 + W28 y29 W214

y26 W27 y210 = W214 + W216

y27 = W28

(B9)
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