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Response functions of the diffusion model of one-dimensional disordered systems

Stephen 8. Haley

(Received 4 September 1981; revised manuscript received 18 December 19&1)

The configurational average response of discrete one-dimensional disordered systems modeled

by the classical diffusion equation is investigated. Perturbation expansions of the system

response functions based on the average deviation (6W) of the neirest-neighbor interaction

constants W„are developed in the frequency domain. It is shoe'n that for probability distribu-

tions p( W) such that ( W ') is finite, a frequently applied effective-medium approximation is

exact to second order in d 8'for all frequencies. The frequency dependence of the hopping con-

ductivity is a second-order effect.

I. INTRODUCTION

The response and transport properties of discrete
one-dimensional systems are of interest in diverse
fields of research. A simple mathematical model
manifesting the observed response phenomena asso-
ciated with many such systems is the classical equa-
tion

dL„
dt

" - W„(X„+t—X„)+ W„ t(X„ t
—X„)

The nearest-neighbor interaction constants 8'„, hav-

ing units of reciprocal time, and the functions X„(t)
are subject to numerous interpretations, depending
on the physical system considered. Applications of
(1.1) are well documented in the literature, "and
need not be detailed here.

It is the purpose of this report to develop and com-
pare perturbation and self-consistent effective-
medium approximations (EMA) for the response
functions of (1.1), and to calculate the hopping con-
ductivity.

D. PERTURBATION EQUATIONS

The Laplace transform of (1.1). with respect to the
parameter s is the matrix equation H(s)X(s)
= X(0), where X(s) is a vector having components

and H„k =0 otherwise. The response functions of
the system are the matrix elements G„z = (H ')„k.

For homogeneous systems with 8'„= 8'0, the
response matrix G'= [H ( Wa) ] ' may be obtained
by the projection-recurrence method. ' The response
functions G„ok for systems of infinite extent are

G„k=Gk„=(2Wssinh8) 'e ta "" for k ~n, (2.2)

with

cosh8=1+s(2W' ) ' (2.3)

To treat disordered systems, we define 5 8'„= 8'o
8'„and develop 6 =H ' in a Neumann series in

~H(~W),

G-G'+G'SHG =G'+G' X(~HG')"~HG' .
kW

(2.4)

Key steps in the evaluation of (2.4) to order (hH)'
are given in the Appendix. The average response
(G), defined with respect to probability distributions

p( W), has matrix elements

X„(s) which are the transforms of X„{r),and X(0) is
a vector with components X„(0). The matrix H(s)
is a symmetric tridiagonal matrix with elements

H, „=W„+ W„ t+s, H„+t „=H„„pt= —W„, (2.1)

(G,p(s)) = Gas(l+ (cosh8+1) '[1—(k —n)sinh8]e

+
2

(cosh8+1) '{3—(k —n)sinh8[cosh8+4 —(k —n)sinh8]}e

+ (cosh8+ 1) 2(1+cosh8 —sinh8) [1—(k —n)sinh8]A for k ~ n (2.5)

wfth

e=(~W)/W', &=[((aW)') —{/sW)']t~'/W' .

{2.6)

The inverse transform of (G„,k) in the low-

frequency limit s =i~ 0 manifests the t ' '
diffusive long-time behavior of G„'a(r). The general
expression for (G„a(r)) is not evaluatedsince , the
main emphasis here is to determine the frequency-
dependent hopping conductivity, and to compare
the perturbation results with the EMA response
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p, (s) =s' $k'(Go„(s))
k 1

(2.7)

Analysis of (2.7) using (2.5) yields the expression

developed in Sec. III. It is emphasized that (2.5) is
exact to second order in d W/ Wo; thus it should be
quite accurate in modeling systems with a narrow dis-
tribution of interaction constants. Several physical
systems to which (2.5) may be applied are discussed
in Ref. 2. For example, the functions (G„„)are
average transfer impedances of infinite ladder filters
modeling inhomogeneous transmission lines and
wave guides.

The hopping conductivity a (s) is proportional to
the mobility p, (s) given by'

colation model, a (0) =0 and P =2.' In thermally ac-
tivated hopping models with p( W) —W, one finds
that o (0) =0 and P = u/(2 —u) when 0 & u & l.'9
Measurements of o (c») yield different values of
o (0) and P, depending on a number of physical
parameters. For example, NbSe3 exhibits o(0) &0
and P = 1 at temperature T =42 K, as explained by a
charge-density-wave model. ' In hollandite, measure-
ment of a(&u) from T = 150 to 280 K gives a range
0.2 & P & 0.5, with the larger value of P correspond-
ing to the smaller temperature. 9 The conductivity of
doped silicon shows an &os dependence, with p a
function of doping density. For a doping density of
2.7 & 10"cm ' boron or phosphorus, the value of
P 05s

p, (s) = Wo[1 —s —82+ 52F(s) ],

with F(s) = [s/(s +4 W ) ] 'i
(2.8)

III. EFFECTIVE-MEDIUM APPROXIMATION

The real and imaginary parts of F(s =i co), plotted in
the Fig. 1, exhibit general characteristics of
o (co) —p(co) for several low-dimensional conduc-
tors. ' Reer increases monotonically from a nonzero
dc value to a constant in the high-frequency limit
cs' = ~/4 Wo && 1, and 1m o & 0 approaches zero in
both low- and high-frequency limits, with a max-
imum at co =2,2 Wo. Much of this general behavior
is also present in the random-bond percolation model
in one dimension and in three dimensions. '

The low-frequency dependence Reo (ro)
—o (0) —&os differs for different classes of probabili-
ty density models. For p( W) such that ( W ') is fin-
ite, (2.8) yields a (0) & 0 and P =0.5. In the per-
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The EMA considered here is based on an idea in-
troduced by Soven as the coherent potential approxi-
mation to obtain a tractable theory for calculating the
electronic spectra of random metallic alloys. ' This
self-consistent approximation theory has been widely
applied to disordered systems, with considerable suc-
cess in qualitatively predicting characteristic phenome-
na 6, 8-11

Briefly, the formulation begins by casting (2.4) in
the form

G = G"+ G"G"TG", with T = (I —/s. HG") 'LLH

(3.1)

The matrix G", defined by G"= [H"( W") ] ', is an
effective-medium response matrix which is a function
of a homogeneous effective-medium interaction con-
stant 8'"= W„+4 O'„. The function 8'" is deter-
mined self-consistently from the condition ( T ) =0,
i.e., (G) =G".

The matrix T is easily evaluated whenever
dH = hcQ, with Ac a scalar, and rank Q =1, i.e., Q
has the form Q = Iq) (r I. In this case, d.HG" is an
eigenoperator of 40 and T is given by

(3.2)
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FIG. 1. The real and imaginary parts of the ac conductivi-
ty are plotted as a function of the normalized frequency
co' = eo/48 0.

Equation (3.2) is valid for a single parameter change
in numerous physical systems. It holds for all passive
interaction constants in any discrete linear system,
and for many active components such as controlled
sources in analog electrical networks.

In the problem considered here, a change b 8'„ in a
random bond connecting nodes n and n + 1 is mani-
fested by the change b,H = 5 W„Q„. The matrix Q„ is
a symmetric rank one matrix given by Q„= Iq) (q I,
with q ) =

I n ) —
I
n + I ). Using (2.2) in (3.2) with 8

replaced by 8( W") to evaluate (q IG"Iq), the
effective-medium condition (T) =0 assumes the
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d Wp( W) ( W'"- W)
s [1 + (1 +4 W~/s) '~2] +4 W

Equation (3.3) defines W" with respect to a proba-
bility distribution density p( W). The EMA response
functions of the system are given by

G„"«(s)-exp[-(k —n)cosh '(1+s/2W")]

x [s(s+4W")]-'~' .

To test the accuracy of the EMA, we compare 6„"k
with the perturbation expression (2.5) for (G„«) .
For probability densities p( IV) such that ( W ') is

finite, the integrand in (3.3) is expanded in a power
series in lL W/ W0 = ( W0 —W)/ W'0. The resulting
expression for 8'" to second order is

W"/IV0=1 —e —[1 —[s(s+4WO) 'j'~'}8', (3.5)

with a and 8 defined in (2.6). Substitution of W"

into (3.4) and comparing G„"«with (G„,«) ln (2.5)
shows exact agreement in all terms for all values of s.
As a verification of consistency, note that the expres-
sion fof W (s) is identical to the perturbation result

(2.8) for p, (s). Although some agreement is expect-

ed, since the first correction to the EMA is of fourth
order in the single-bond matrices T„,' this appears to
be the first application of an EMA shown explicitly to
be exact to second order in a perturbation parameter.

The conductivity of the quasi-one-dimensional con-
ductor quinolinium dietetracyanoquinodimethanide
[Qn(TCNQ) 2] has recently been accurately modeled
within the EMA using a thermally activated hopping

distribution p( W) —IV .6 The range of Wis re-
stricted to 8';„&8' & 8',„, with 8';„and 8',„
temperature dependent. Since the relative width

( W,„—W;,)/ W,„decreases with increasing tem-
perature, 6 the conductivity o (s) —p, (s) = W"(s)
given by (2.8) or (3.5) is the asymptotically exact ex-
pression for o (s) for all s =i cu in the high-
temperature limit.

IV. CONCLUSION

The perturbation theory response of the discrete
classical diffusion equation serves as a benchmark for
approximate theories using this model to explain ihe
ac response of low-dimensional conductors. It was
shovrn that the widely applied effective-medium ap-
proximation is extremely good for narrow interaction
constant distributions of density p( W) with (IV ')
finite. Exact agreement wth second-order perturba-
tion theory was shown for all such distributions for
arbitrary values of the Laplace parameter s. In. con-
trast to the complicated dependence of the response
functions on s, the conductivity has a relatively sim-

ple dependence on s, which appears only in a term
proportional to the variance. in the interaction con-
stants, Thus, for systems for which a narrow distri-
bution model is applicable, a careful measurement of
o (co) —o (0) is needed to observe the ac part of the
conductivity.

Assuming that 8'„ is an independently distributed'
random variable, the configurational average matrix

elements in Eq. (2.4), calculated to order (bH)2 are

(G., (s)) =G.', +(&W) XG„'.,(—G,',.+2G,'.-G„'„.)

«-&«'+ ««' «+&«')( " &
+ G«' G«'+&

k

+ [((~W) ) —(~ W) '] XGN «[(G«« —2G«-i, «+ G«-&,«-i ) (G«~ —G«-i, m)

+ (G«.«. 2G««+& + G«+&.«+& ) (G«. G«+&.

Using the identity

—G«0 ) „+2cosh8G«0„—G«0+),,= 8„,«/W

which follow's from HOGO= J, leads to

(G„(8)}=G„' + [G„' +2W'(1 hc8o)s~—,(n, m)]a

+ [Go +4WO(1-cosh8)R i(n, m) + [2IVO(1 cosh8)2R2(n—,m)]}a'

+ (1—e ') (sinh8) '[G0 +2W(10- cosh)8R ~(n, m ])8',
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where

&=(ZW)/W', S=[(SW)') —(SW)']'~'/W', Z, (n, m) = XG„',,G„'. , Z, (n, m) = X X G„'„GO,,GO,
k~1 k~1 k~

(A3)

The sums 8 ~ and 82 are arithmetico-geometric progressions in e-~. Evaluation is tedious because the exponent
in G, —e+'k ~ changes sign at k = k'. Analysis gives

k, k

2 ii"sinh8R ~(n, m) = G„o (cosh8/sinh8+ m —n),

(2Wosinh8)282(n, m) = G„, [(cosh8/sinh8)2+
2

(sinh8) 2+
&

(m —n)(3c osh 8/sinh 8+ m —n)]

Substituting (A4) into (A2) gives (2.5).
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