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The Bethe-ansatz equations for the thermodynamic properties of the quantum sine-Gordon

systems are derived in the zero-charge-sector attractive case. For rational values of the coupling

parameter p/w these reduce to a finite set, solved here numerically for p, = [(n —l) jn] rr, for

several values of n, to give the specific heat as a function of temperature. The "soliton" contri-

bution peaks at =0.4 soliton masses for p, = 5 m, shifting downward for higher p,. A detailed

analysis of the sine-Gordon limit of the LQ spin chain is presented, and a non-Lorentz-

invariant feature of that limit is noted.

I. INTRODUCTION

This is the second paper in a series' developing the
Bethe-ansatz approach to the finite-temperature prop-
erties of the quantum sine-Gordon (SG) system, us-

ing the methods and formalism developed by
Takahashi and Suzuki~ (TS) and Takahashi3 for
analyzing the thermodynamics of the XXZ and XYZ
spin chains.

The first thermodynamic analysis of a Bethe-ansatz
(BA) system was that given by Yang and Yang' for a
one-dimensional Bose gas with repulsive 5-function
interaction between particles, These authors assumed
that the finite-temperature system could be
represented by a density of excitations in k space (k
being the particle momentum label appearing in the
BA wave function) with an entropy arising from the
number of microscopic arrangements corresponding
to the given macroscopic density distribution. They
found two coupled integral equations for the densities
of filled and empty states in k space, one given by
the usual BA boundary condition for the microscopic
k variables, one by functional minimization of the
free energy with respect to the density function.

This scheme was extended to the XLZ and LFZ
models by Takahashi and Suzuki. 2 Although the
basic idea is the same as for the Bose gas, the book-
keeping required becomes formidable, because there
are many allowed bound states of magnons. A
bound state of n magnons corresponds to a string of
n complex rapidities, as discussed in detail in I. (We
use the term "rapidity" to denote that parametriza-
tion of quasimomentum k for which phase shifts as-
sume a difference form. ) At finite temperatures, it is
necessary to introduce density functions for filled and
empty states for all allowed string lengths n—that is,
for those n corresponding to normalizable wave func-
tions, in general an infinite set. Which particular
string lengths correspond to normalizable states
depends on the coupling parameter p, (see I). The

LXZ, LFZ, and SG models can all be parametrized in
terms of the same variable p, in such a way that for a
given value of p, they have the same sequence of al-
lo~ed bound states. Consequently, the formalism set
up by TS for the LXZand LFZmodels is easily
adapted to the SG case. Furthermore, for certain
values of p„and in particular for p, = [(n —I)/n]rr
( n integer), the equations for string densities beyond
a certain string length have a rather simple form. TS
assumed that these equations could be reformulated
in terms of a finite number of strings. In Sec. II, we
give a detailed analysis of the bound states for these
special values of p, , and show that the assumption of
TS is correct. Hence the thermodynamic properties
of the system are determined by a finite set of cou-
pled integral equations. %e have solved these equa-
tions numerically in the SG model for several values
of n, we present the results for n =5 and 10.

The first step in solving the SG thermodynamic
equations is to reformulate them in terms of dressed
excitations. In terms of bare particles, the integrals
appearing in the BA boundary condition equations
extend over the whole Fermi sea, with the usual
divergence problems. Transforming to dressed parti-

cles, the divergences are absorbed into the zero-
temperature mass renormalizations, and the
transformed integrals extend only to those parts of
the Fermi sea thermally excited at a given tempera-
ture. This type of transformation is useful for
analyzing the low-temperature properties of any BA
system, and was used by Takahashi to examine the
low-temperature specific heat of the LLZ and XYZ
chains. For the SG case, the transformation is essen-
tial, because the mass renormalization is infinite.
The new equations are of the familiar BA type, but
with the fully renormahzed (zero-temperature)
dispersion curves and phase shifts appearing.

Formally, then, our scheme is very close to the
phenomenological model of Currie, Krumhansl,
Bishop, and Trullinger. 5 For the special values of
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coupling p, = [(n —1)/n]n, the finite number of al-

lowed strings which appear in the thermodynamic
equations correspond exactly to the Dashen-
Hasslacher-Neveu6 (DHN) excitations. The equa-
tions give the densities of the DHN excitations as
functions of temperature, taking into account their
mutual phase shifting. However, in our approach it
ls clear when this scheme 18 valid —and how 1t can be
extended, as we discuss later, It is only correct when
the coupling parameter p, has a special value
[(n —I )/n]n, n an integer. (In earlier work,
Takahashi~ assumed a scheme analogous to this was
true for general coupling in the XXZ spin chain. It
was pointed out by Johnson, McCoy and Lais tha
this gave incorrect results in the low orders of high-
temperature perturbation theory. Their error esti-
mate goes to zero for the special values of p, .)

It is evident from the above discussion why the
analysis of Currie et aI. ' gives the right results in the
classical limit. The semiclassical regime corresponds
to p, slightly less than m. The special values
IM,

= [(n —I)/n]m, for which only DHN strings are
needed, have a point of accumulation at the classical
limit. Invoking Araki's theorem, that the free ener-

gy at finite temperature ls an analytic function of
coupling, we deduce that neglect of the non-DHN
strings is an increasingly good approximation as the
classical limit is approached.

In the quantum regime, the special values
JM,

= [(n I )/n] m a—re further apart, and neglect of
non-DHN strings is no longer valid. However, other
rational values such as p, = [(n —2)/2] m give only
slightly more complicated finite sets of integral equa-
tions which can be solved to find the thermodynam-
ics. Again, interpolation between these values will

give a reliable finite-temperature picture, from
Araki's theorem. The essential difference between
the special values p, = [(n —I )/n]m and more general
rational p, /m is that in the latter case the basic set of
excitations in the equations is wider than the DHN
set.

Our results are presented in Sec. III. At very low
temperatures, we find the exponential rise in specific
heat is determined by the soliton mass for p, & —m,

and the phonon mass for p, & —,m, as discussed previ-

ously. ' (We are working in the zero charge
subspace —there is no finite soliton density at zero
temperature in this paper. ) At very high tempera-
tures, the specific heat tends to that of the free-
phonon gas (the SG coupling becomes irrelevant).
After subtracting the free-phonon specific heat, we
find a peak in the "soliton" specific heat at =0.4 sol-
iton masses for p, = —,m. For p, =,0 m, the peak is

9

smaller and at a lower temperature. Presumably, as
p, m the position of the peak tends to some finite
fraction of the soliton mass. For a particular classical
SG chain, Schneider and Stoll" find the peak at
about a quarter of a soliton mass, and the present

results are not inconsistent with that limit. %e em-
phasize that the term soliton specific heat as used
here means simply the total specific heat minus that
corresponding to the free-phonon gas. %e do not
know how to separate the contributions to specific
heat from solitons, phonons, and breathers, or even
if such a separation can be defined. In fact, our
results indicate that as the classical limit is ap-
proached the deviation of the total specific heat from
that of the free-phonon gas becomes smaller and
smaller. It should be noted that our (lattice) energy
cutoff is far above the soliton mass, so that even at
high temperatures the phonon specific heat is linear
in temperature. This nonclassical feature of our
"classical limit" is of course in contrast with true
classical lattice models, ""~here the phonon specific
heat is constant. The point is, of course, that the
limit h 0 does not commute with the limit A
where A is the momentum space cutoff needed for a
finite specific heat.

Only the attractive sine-Gordon system is con-
sidered in this paper. For the strongly repulsive case
(p, (m/3), Korepin" has shown that the ground-
state structure changes, and the continuum sine-
Gordon model no longer coincides with the spin
chain limit. %e believe that the techniques described
in this paper could be extended to the repulsive ease.

Finally, we note that the sine-Gordon system de-
fined as a limit of an Xl'Z chain has non-Lorentz in-
variant dressing, discussed in detail in Sec. II. How-
ever, our analysis is carried out entirely in terms of
dressed excitations, so this difficulty does not appear,
and in fact the dressed equations could have been
derived from a continuum sine-Gordon model,

A. Preliminaries

The formal structure of a Yang and Yang thermo-
dynamic analysis of the SG system is, as already dis-
cussed, essentially equivalent to that of TS (Ref. 2)
for the XXZ and XFZ models. For convenience, we
have summarized their results in Appendix A.

One obvious way to arrive at the equations describ-
ing SG thermodynamics is to take the TS equations
for the XPZ chain to the continuum limit shown by
Luther'4 and Bergknoff and Thacker'5 to be
equivalent to the SG system. The details of this lim-
iting process in the TS formalism are given in Appen-
dix B. Actually, it is not really necessary to follow
this route —one could instead begin with the continu-
um SG Hamiltonian, defined (following Korepin' )
with a cutoff A in momentum space. The thermo-
dynamic equations we use —those for the dressed
excitations —are the same in both approaches.

A delicate point in the spin chain continuum limit,
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which seems not to have been previously noted, is
that the limiting velocity (velocity of light) is dif-

ferent for bare and dressed particles. The simplest
way to see that this must be true is to consider the
massless Thirring model, corresponding to the con-
tinuum limit of the XXZ chain. The bare excitation
dispersion curve is'

eP)z ——(J, sinp, ) ka (2.1)

where a is the lattice spacing, and the dressed excita-
tions have energy"

~re = [ Jz(m/2p, ) sinp, ]ka (2.2)

The continuum limit is given by a 0, J, ~ so
that the energies remain finite for finite k. We shall

take

J, = 2p/m a sin p, (2.3)

B. Thermodynamic equations for general
values of the coupling

The TS equations describing XXZ and XYZ ther-

modynamics are summarized in Appendix A, and
those for the SG system are formally identical.

Minimizing the free energy with respect to the den-

sity function pj (for the jth string) gives a set of cou-

pled nonlinear equations for the 71, (71, = p,"/p, , p,
" is

the density of unoccupied states)

In71, = — ~ + $(—1)'~)Tp~ln(1+pe')
k

(2.4)

giving unit velocity for the dressed excitations, but
velocity 2p, /n for the bare excitations. This same ra-

tio of (limiting) velocities arises in the massive Thir-
ring model at large momenta. The details are
presented in Appendix B.

The origin of this non-Lorentz-invariant dressing in
the spin chain continuum limit is closely related to
certain features of the massless case already discussed

by one of us." The sine-Gordon model can.be for-
mulated in terms of two momentum space cutoffs—
A limits the maximum particle momentum, A' is a
momentum space cutoff on the interaction. In the
usual field-theoretic formulation, A' is taken infinite
from the beginning —a local interaction is used. In
the spin chain limit, on the other hand, A and A' are
locked together —both being equal to an inverse lat-

tice spacing. We have shown" that in the Hartree-
Fock contribution to the self-energy, these limits
A ~, A' ~ do not commute. It appears, howev-

er, that only the limiting velocity is affected by taking

the limits differently. In any case, the dressed equa-
tions we analyze in this paper arise in both the spin
chain limit and the more direct continuum SG
analysis, because they involve only the dressed
dispersion curves and phase shifts.

Here Aa, (x) is the bare dispersion curve for a j
string, (—I)'t"1 Tjl, is the bare phase shift between the

j and the k string. To find the thermodynamic prop-
erties of the system, it is necessary to solve these
equations for alt(x), from which the free energy
follows:

—=—2mJ ag(x)st(x) dxsino)

N Qj

—r J In[I+q, (x)]s,(x) dx, (2.5)

In(1+ rl„I) = In(1+ 71„,) —Inrt„, (2.6)

then taking the lnq„, term to the left-hand side in the

Eqs. (2.4). In this way, the vt equation gives Inq„ in

terms of ln(1 +71'') for k 4 v~, and In(1+ rt„,), all

small terms at low temperatures. This expression for

lnq„ is then put into the other equations, so that
V)

they express Inrll, for all k in terms of ln(1+711 '),
I & v~, and In(l + rl„,), making low-temperature

iteration possible.
The details of this transformation are given in Ap-

pendix C for the special values of p, examined in Sec.
II C. The general form of the result can be found in

Takahashi. ' It is evident that since after the transfor-

mation, the log terms all go to zero at T =0, the first
term on the right-hand side (corresponding to

Aa, /T in the bare e—quation) must be the dressed

dispersion curve. Also, the functions corresponding
to Tjk for the dressed case must be the dressed phase
shifts. In fact, the argument is quite general, and the
thermodynamics of any BA system with a Fermi sea
can be formulated in terms of dressed excitations —a
convenient way to analyze low-temperature proper-

where at(x) and st(x) are known functions given in

Appendix A, and ~=a —p, .
The problem is that even at low temperatures, the

coupled equations (2.4) are not in a convenient form
for solution as a result of the presence of the Fermi
sea of filled negative energy states (j= v~ in the TS
notation). This becomes evident on examining the

log terms in the sum on the right-hand side of (2.4).
For k & u~ the strings correspond to positive-energy
excitations and qk

' goes to zero at zero temperature
suggesting that an iterative procedure might work.
However, q„,

' becomes infinite at zero tempera-

ture —the Fermi sea becomes fully occupied. The
physical significance of this term in (2.4) is clear in

the zero-temperature limit. Writing Inrll 'fJ/T (2,4)
in this limit is the equation for the energy of an exci-
tation from the ground state —the first term on the
right-hand side is the bare energy (divided by T), the
second term corresponds to the dressing caused by
backflow in the Fermi sea. The obvious strategy is to
rewrite the Eqs. (2.4) in terms of dressed excitations.
This is accomplished by putting
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ties. '9 (Of course, one must be careful to include a/I

dressed excitations —as discussed above the DHN ex-
citations are not sufficient for general coupling. )

C. Thermodynamic equations for special
values of the coupling

1=2:

n„=1, n„~g = (n +1)+, n„+2 = (2n +1), . . . ;

n =n+ .

There are no other string lengths corresponding to
normalizable wave functions. Recalling that the spac-
ing between members of a string is 2(m. —p, ), and
the width of the first zone is 2m, the i =0 sequence

For rational values of the coupling parameter p, /m,
the Eqs. (2.4) can be simplified in two distinct ways.

First, for p,/m rational, some v, in (Al) is infinite
and in (A3) and (A6) some rn~ becomes infinite. In
the formulation (A6), the final set of equations
mI ~j & ~ turns out to be rather simple because the
function sI is for this set a 8 function, the convolu-
tions become multiplications, and the equations can
be solved algebraically.

Second, following TS, one can simply assume that
for p, /m rational only strings up to a certain length
need be counted, giving a finite set of coupled equa-
tions. TS showed that, at least in some cases, this as-
sumption leads to the same results as the algebraic
analysis mentioned above.

In this section, we examine these two simplifica-
tions for the special values p, = [ ( n I ) /nl ~—The.
first follows naturally from the general case in the
limit v; ~. %e believe our analysis demonstrates
that the second is mathematically equivalent to the
first, justifying the assumption of TS. In other
words, for the special values p, = [(n —I)/n]m, an
exact analysis of the system is based on a series of
coupled equations for the density functions of DHN
excitations, corresponding to the analysis of Currie
eI, al. '

The rest of the section is a detailed discussion of
how the simplifications come about as p, tends to a
special value [(n —I)/n[m. It is first necessary to ca-
talog the allo~ed string lengths and parities, using
(Al) and (A2):

1 1 1Po=
p pp P~+ P2+

Taking the limit v~ = n, and v2 ~~, we have pp = n,

pI =1, p2 =0' f-& =0 pp =1 O'I = n p2 = ~ and
mp=0, m~=n, m2=~. The allowed n~'s and pari-
ties are then i =0:

n) ——1+, n2=2+, . . . , n„)=(n —1)+

all fit inside the first zone. The first string in the
i = 1 sequence, the one-member string n„= n„=1,
on the im line, corresponds to a particle in the Fermi
sea. The second i =1 string, (n +1)+ is centered
about the real axis with its end members moving to
the im line as v2 ~. The third i =1 string is cen-
tered about the in line, with its end members going
to the —i m and 3r'm lines in the limit. The i =2,
n =n+ string is a ghost —for v2 ~ its nP, 's are

p.
such that e ' are uniformly spaced around the unit
circle (with some overall scaling factor) so that the
string energy, momentum, and phase shifts, all of
which depend on sums over these numbers, are
identically zero.

From the definitions of s;(x) and d~(x) in (A4), in
the limit y2 ~~ (p2 ~0+) we find $2(x) ~

2 8(x)
and dt(x) 2 8(x), so the convolution equations

(A6) corresponding to the i =1 series above are trivial.
A picture of what is going on as v2 ~ might be

constructed along the following lines. Consider the
i = 1 ( n +1)+string, which for finite u2 fits inside
the first zone, but as v2 its end members move
toward the +i m lines. The phase shifting between
the (n+I) string and the 1 excitations (those on
the i 7r line) is such as to induce an extra density of
1 states near the (n+1)+ string, the rapidity range
over which the extra states are induced being of the
same magnitude as the distance of the end member
of the (n +1)+ from the i vr line, so as v2 ~ the
induced phase space tends to a 5 function. In a simi-
lar way, in this limit all the i =1 strings induce only
local changes in available phase space for other i =1
strings. In fact, this picture is an unnecessarily com-
plicated view of the limit v2 0 . This is most evi-
dent in the case vl =2 and v2 =, where the above
analysis in terms Of an infinite sequence of i =1
strings gives the correct result (see Appendices E and
H of TS) but actually the system is just a noninteract-
ing fermion gas for vl =2 and v2 = ~! In terms of
the bare phase-shift function (discussed in detail in I)

sinh —,
'

(P 2i p)— ,

y(P) =—~ln
sinh

2 (P+2ip, )

for p, W —,m there is a cut from /3=2i p, to P = 2i@- , .

For p, & —,m but close to it, the end points of the cut
are close to the i+ line and account for the extra
density of states. For p, = —,m, the end points coin-

cide and the cut vanishes.
For higher v~, an analogous but less trivial simpli-

fication takes place as v2 ~. %e examine the par-
ticular case u~ =5, which exhibits all the features of
higher values. Again, the convolutions between i =1
strings become trivial, but as before, the i =1 strings
are not actually necessary at v2= ~. This can be
seen by examining the allowed strings'.
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1+, 2+, 3+, 4+, 1,6+, 11, . . . , 5+. The 5+ is the
ghost and can be ignored. Consider now the 11 .
Since points in rapidity space are equivalent modulo
2&i, its members can all be placed in the first zone,
and we find that 11 =6++4++ 1 . (This factoriza-
tion is not true for general coupling of course —the 4+
would be displaced from the symmetric position
about the real axis. ) The higher strings factorize
similarly 16+=6++6++4+, etc. , and in fact
6+=4++1 +1 so the only distinct entities are 1+,
2+, 3+, 4+ and 1 . Furthermore, the phase shifts
between 4+ and 1+,2, 3 are just minus those
between a 1 and 1+, 2+, 3+, and the 4+, 4+ phase
shift is the same as the 1,1, both being equal to
minus the 4+, I phase shift. (There is a simple
reason for this —the set 4++1 is just a displaced 5+

ghost, having identically zero-phase shifts. ) It fol-
lows from this that in the thermodynamic BA equa-
tions, 4+ string and holes in the 1 Fermi sea must
have identical distributions in rapidity space.

The above argument establishes that for p, =4/5m
there are only four distinct density functions q, , since

q4 (for 4+ strings) is identical to qs' (for I holes).
Thus there are only four equations in the series
(2.4). These equations are written out explicitly for
the XXZ case in Appendix C [Eqs. (C2) —the last two

are identical]. In that Appendix, we also show how
to derive the dressed equations, and how to take the
SG limit. This gives the equations solved numerical-

ly in Sec. III.

III. NUMERICAL ANALYSIS

r

rr /3 rr/3
&& cosh ——hjd

2 p 2p
(3.2)

In this section, we present the results of a numeri-
cal analysis of the set of nonlinear integral equations
describing the thermodynamics of the sine-Gordon
system for p, = [(n —1)/n]w, n =5, 10. The relevant
equations, in terms of dressed excitations, are given
in Appendix C, Eqs. (C6) with the n s given by
(C11) and (C13).

To solve Eqs. (C6) numerically, we define
hj = In (1 +q, ') and transform them as follows:

hI=ln[1+exp( EJ/T —Q. i~hk — )]
j=l, . . . , n —2, (3.1)

h„ i =in[1+exp( E, /T n( h„— )]—
where . Q, I~hk . denotes the convolutions on
the right-hand side of Eqs. (C6).

Equations (3.1) consititue a set of coupled non-
linear integral equations that can be solved by itera-
tion. Once we find the hj's we can find the free-
energy density using (C6'), (C12), and (C13).

r

1
2

. . m(m —P, )
2' 2p

The energy, entropy, and specific heat can be found
using the following thermodynamic identities

E=—'T2 ~ F S E —F C= 9E
gT T T BT

and

1
2

. . m(m-P, )
2% 2p

1 1

mP ~Px cosh ——uj d
2 p, 2p

(3.4)

uJ
2 —h+ (1 —e i) (— ni~uk — )—I. J

eJ —1

(3.5)

2m 2p,
1

mP. ~Px cosh uJ' d
2 p 2p

(3.6)

The three sets of equations (3.1), (3.3) and (3.5)
were solved by iteration so that hj, uj, u, were deter-
mined with a precision of 10 '. Each function was
represented in rapidity space, P, with approximately
50 points and Simpson's rule was used for the nu-

merical integrations. The cutoff A was chosen so
that all contributions in the integrals were included
(and the results were independent of cutoff). The
calculation was performed on a VAX 11/780 comput-
er. In Fig, 1 we present the results of the specific
heat for p, = —,m and ip 7T after subtracting the specif-

ic heat of a free-boson gas;

1
+

o) dk

T ~-~ 4si h n(co2/2T) 2m

with dispersion relation

ru =(m +k')'

mi =2 sin[m (vr —p, )/2p, ]

The difference in specific heat has a maximum
around a temperature of 0.4 in soliton mass units and

goes to zero as T +~. Therefore at high tempera-
ture the total specific heat goes asymptotically to a

by direct analytical differentation with respect to tem-
perature of (3.1) and (3.2). Defining u, = T28h, /BT,
tr, = Bu&/8 T, we obtain two more sets of integral
equations that we also solve by iteration:

-h.
u = (1 —e ') (E — —a,~u„— )p
J J P

j=1, . . . , n —2, (3.3)
"n-]

u„ i ——(1 —e " ')(E,' — —e(~u„)
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O. I--

0 2

4 9
FIG. 1. Specific heat vs temperature for SG model at p =

5 ~,
&&

~ (temperature in soliton mass units and the noninteracting

phonon specific heat has been subtracted).

straight line passing through the origin with slope 3

corresponding to the specific heat of a free-phonon
gas with dispersion relation co = k. (The sine-Gordon
potential term is completely washed out. ) At low

temperatures we obtain the correct exponential
behavior given by the dressed mass of the phonon
for p, & 4m and the soliton mass for p, = —3m. In Fig.

3 =2
2 we show the population Pl = p~/(p~ +p~)
= I —e ' as a function of rapidity P, of string j=1
(particles on the real axis) for four different tempera-

4
tures, for p, = Tm.

We notice that the population of the j =1 string,
goes to 0.25 at high temperatures. In fact, the high-
temperature limits for the population of the different
strings are of the form

pn-)

pn-i+pn-i T +~ ~

This limit follows from Eqs. (A6) assuming
ln(1+ n&) approximately constant near zero rapidity,
which is correct for T +~.

Pl

0.25--
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APPENDIX A

RAPlol T Y
50

FIG. 2. Fopulation of the j=1 str'ng vs rapidity for a

series of temperatures at p, = 5
m. (Temperature in soliton

mass units. )

We summarize here some of the results of
Takahashi and Suzuki for XXZ and XYZ spin chains.
As all the integral equations involve summing over
allowed (normalizable) strings, it is necessary to state
the orders and parities of allowed strings. [Strings
are centered about the real axis (positive parity) or
Ima = n (negative parity). )
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Pl—1

Vl » Pl Pl-2 Pl-1 Vl-1
, Pl

l

mo =0, m~ = X vk
1

y 1=0, yp=1, y1=v

y2=v1v2+1, . . . , yf=yl-2+viyf-1 .

(Al)

Thus co/n = (1/u, ~)(1/v, +) . Then the order

and parity of all normalizable strings are given by

ni=y~ I+(j—m~)y;

Following TS, we define series of real numbers pl
and integerS vf, ml, and yl by

po=m/~, ~=a —p, =2(, p, =l,

for j A k, if j= k the first term is omitted.

a(x, n, , v, ) =— i, (—x),1 d

r

0 for n/po is an integer

2v tan ' {[cot(n m/2po) ]"tanh(m x/2po) }

otherwise,

which can be rewritten [using (A3)] in the form

ln(1+7io) =—2n J sin~ 5(x)
QJT

lnqi = (1 —25,J)sI» ln(1+pi I)+sI-» ln(1+ pi+I)

for m; 1~j & mf —2,
indi ——(1 —28, , i) s, »ln(1+pi, )

for mf~j &mf+1, j=1,2, . . .

U1 =+1, lfm = 1

( ni
—1)

Uj =exp 7p/ co
7r

for. j &1,m1

(A2)
+d» ln(1+7ij) +s&+I» ln(1+pi+I)

where the free energy

for j =m; —1

—=—2n J " a)(x)s)(x) dxE sin
N (g 4 -oo

(A6)

TS show that the BA boundary condition equations
for the XXZ system can be written

—T in[1 +q, (x) ]sl(x) dx (A7)

pi+ pi"= si» (pi" i + pi"+&)

ml 1~j ~mf —2,
Pj Pj sfo Pj-1 die Pj sf+1 e Pj+1h h h

for j=ml —1

(A3)

where pj and pj are the densities of j strings and j
string holes,

1 mx
s~(x) = sech

4pl 2m

dk
e' cosh[(p& pl+I)k]—

d, (x) = -~ 2m 2 coshpfk coshpl+1k

(A4)

and the asterisk denotes a convolution from —~ to
(We use TS notation. ) Minimizing the free ener-

gy with respect to pj gives the following equations for
the v)i( pi"/pi):

Here

sinn/po
al(x) =

2po cos1l'x/po coss'/po
(Ag)

(J„:J»:J, =cn(2), l):dn(2(, l):1)

(b) po=ltl/f;
(c) s;(x) and d, (x) are replaced by

(A9)

s,(x) = X s, (x+2jQ)
j~—oo

d, (x) = X d, (x+2jQ)

The above sets of equations, then, give a complete
description of the thermodynamics of the XXZ spin
chain (we have for simplicity taken zero external
field). For the XYZ spin chain (with N sites) the fol-

lowing changes are necessary:
(a) Rex is restricted to [—Q, Q] where Q =XI'/(

lngi= ——ai+ X (—1)' " Tik»ln(1+qk'), (A5)
T /c-1

where A =2m J,since/co, r (j) is defined by

m, jj) ~j 4 m, ~j)+1,

In other words, the XYZ model has a periodicity in

the real direction as well as retaining that in the ima-

ginary direction, so elliptic functions arise naturally.

In the XYZ model,

Tik = a (x; In&
—nk I, v,.vk) +a (x;ni + nk, ~iIik)

sn(cn gdn j
sn~f —sn'(ifx)

(A10)

min(nj, nk) -1
a (x; ~ ni nkl +2i, ~i~k)— where Z(g) denotes Jacobi's ( function of modulus

I.
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APPENDIX 8: THE SG LIMIT OF THE
XFZ SPIN SYSTEM

where

Q =El'/5 . (B4)

In this appendix, we show in detail how the various
expressions used by TS for the LFZ spin chain go to
the appropriate form in the SG limit.

We take the XFZ Hamiltonian to be

J,m
F. =— sn(2() ai(x),

( ) = ~
( )

sn~cn~dn(
sn'g -sn'I/x

(B2)

where ( is defined by (Bl), and is related to Berg-
knoff and Thacker's p, and Korepin's ~ by

2)=K p, =Ol

The elliptic functions sn, cn, dn, and Z have
modulus I defined by (B1). The variable x is essen-
tially the bare "rapidity" variable.

Let us consider the properties of a1 as a function
of x, first for real x. The function sn z is real for z
pure imaginary, with period 2E)', having a double
zero at the origin and a double pole at E)'. Hence for
real x, a~(x) is real and periodic with period 2Q,

H = ——,
'

X (J„sl"span) + Jysfsfp) +J,s,*s,'+) ) (Bl)
i 1

with J„:J»:J, =cn(2$, I):dn(2(, I):1,

I) I )0, El «2( ~0 .

(This is the form most widely used. Unfortunately,
TS omit the overall factor of ——,. In this appendix,

we use their equations and make the appropriate
correction at the end. )

The limiting form of the phase shift has already
been discussed in I.

I.et us consider the bare dispersion curve, from TS
(4.5a) and (4.8):

g =- J,(sin'2()
4

I'coshP . (B6)

(This refers to the TS Hamiltonian. To derive this
expression, note that at P =0, sn2i(x has a pole.
Near P =0, we use sn2i)x = I ns iP/2 for small I.)

We now look at the expression for the bare
momentum. From TS equation (4.3a), taking the
lattice spacing to be a,

H(~(x+ I))ka= —i ln
H(((x —i) )

Changing variables to P using (B5), and using the
same transformations discussed in the appendix of I,
with E =—E)' and E'=—E]

having a maximum at the origin and a minimum at
Q. This is a dispersion curve for positive-energy bare
excitations, The negative-energy bare particles,
which constitute the filled Fermi sea in the ground
state, fill one period 2Q of the line Imx =E~/f. The
function a~(x) along this line is again real and
periodic, but with a minimum at the origin and a
maximum at Q.

Since the positive-energy excitations have their
minimum energy at Q (and the negative energy ones
their maximum) it is evident that in the sine-Gordon
limit Q must correspond to the origin. We define the
sine"Gordon rapldlty ln terms of x by shlftlng the ori-
gin to Q, and scaling by —2$ to coincide with the
standard notation:

P/2f = Q —x

From the 2Q periodicity of the system, the filled
Fermi sea can be regarded as lying between

P =—2(Q and +2(Q. If now the cutoff is taken to
infinity (2(Q =2K~' ~, I 0) the energy near P=0
has the form

H( , (2K +2i f,
—P))—Ht(—,(2i( —P))

ln =ln, =ln lt2 (2if-P)
H( —,

' (2K -2i g
—P)) H, (—,

' (2ig+P)), 4E (B8)

This is to be evaluated in the limit E
q =exp( —mE'/E) 1, so we use (as in I) the
transformation

other term gives (as E ~)

ka = —„ l2sin2(sinhP (B10)

i re, (z ( v ) =—exp( ir'z'/~) II4(zr'I r'),
r =—I/r,

iE'
E

The exponential term contributes i fP/E. This is
analogous to the small term in the phase shift noted
in I, symptomatic of the underlying lattice structure,
and becoming small in the continuum limit. The

eg(x) =—A n, (x), a„,(x) =AP(x) (B11)

by Takahashi. The functions n, and P are the same
ones which appear in the thermodynamic equation

We turn now to a consideration of the functions
describing the dressed system. The zero-temperature
dressed excitations energies are written
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(2.4). Here

A =mJ, sn2$/(
r 1

K K rx
P(x) = dn, k

2'Ir pp 1 po 1

aj(x) =p(x+i(po 1 ——j))
+p(x —i (pp —1 —j))

where k is defined by

K(, K(' K(
Ki Kr —(

Atx=g,

(812)

(813)

when expressed in terms of the standard SG rapidity
variable P.

The SG limit is defined as I ~0 and I, ~ such
that this mass gap is finite. At the same time, the
lattice spacing a 0 and the relationship between a
and I, in the limit is given by requiring the appropri-
ate energy-momentum relationship for the dressed
particles, using the expressions found by Johnson,
Krinsky, and McCoy (JKM) for the XYZ chain.

For the energy,

AEggM = —J, sn(2), i) dn, k) . (820)K) K)$)
K,I m

Here

K„ik'
(g) k

'rr(po —1)
K„Ik'

p(g) =
2~(po —1)

r

K Ij
sn - k'

, Po —1

Krkk'
pl/( g) k

(815)

In the SG limit we have

I ~0, K( ~~, K(~—m
I 1

k' 0, Kk~ co, Kk ~—m

K(' ~ln —,Kk ~ln —,4 4
I' k'

mJ, sn2(
Ap(g) = * =J, sjnp, k'

= J, (sjnp, )4( —' i) ir
'2p, 4

The ss masses are equal to the soliton mass multi-
plied by the scaling factor 2 sin[ jm(m —p)/2p]
found by DHN.

To find tlm function p(x) for arbitrary rapjdjtjes jn
the SG system, we need to evaluate the limit of
dn[K„x/(po —1),k] as k' 0. The argument

Kk' &k Kk &
(x = gx =Ek-

Kr —j Ki K, 2

using (84) and (85).
«jng dn(u +K) = k'ndu, and taking the limit

k' 0, so dnx sechx and Ek/K, n/p„we find

AP(x) =J, (sjnp, )4( —,
' i) i"cosh

2rM 2p

(818)

(819)

f

—,'k'=(-„'i) ' ' =(-,'i)'"-'r=(-,'I)"", (817)

also using 2$ = n —p, and sn2$ sing, .
In the SG limit the soliton energy gap (for exam-

ple, in specific heat) is AP( g), the A n, 's correspond
to the DHN ss bound states in the zero-temperature
limit.

The soliton mass is

K, ,(JKM) -=K,,(TS),
K, (JKM) =K,(TS-), (821)

and the JKM Hamiltonian is
2

the TS Hamiltonian.

The minimum value of dn above is k, (JKM) or

k (TS) so jt js easy to clmck that AErKM agrees with
4ETs discussed above.

The momentum of an elementary excitation is
given by JKM as

r k)p,./qI

qa = „dn(Q, k&) dp,
1

(822)

where we have written the lattice spacing a explicitly.
Switching to TS notation k~ ~k and K~ K and
changing variables to g; =a+ P;,

p kttr(/s'

qa=), dn(y —K,k) dy .

Using dn(u K) = k'ndu =—k'coshu in the SG limit,

qa = k'sinh =4 — sinh . (824)
Kkp; i . up

m 4 2p.

(823)

Thus to have E'= m'+q' for the dressed excitations,

—=—J, sinp,1=
Q 2p

We have established in Sec. II that for p, =
5

m

there are five allowed strings, i =1,2, 3, 4 being
strings of length 1, 2, 3, 4, centered on the real axis,
i = 5 being the string 1, a single point on the i m

line.
We shall work here with the LLZ model, and show

at the end how to generalize to XFZ and hence the
SG case. The thermodynamics equations for the bare
densities of particles are given by (A5) where now

j,k =1, . . . , 5. It is convenient to Fourier transform
the equations so that the convolutions become multi-

APPENDIX C: DERIVING THE DRESSED EQUATIONS

FROM THE BARE EQUATIONS FOR u, =
5

w
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plications.
The Fourier transforms of the functions a~ are

(k) sinh(5- j)k (C1)

Substituting this into the Tjk defined below (A5) gives the following series of equations:

Aa)
Inq~ =—— +a2ln(1+pi') +(a&+a3) In(1+F2') +(a2+aq) In(1+F3') +a31n(1+7Iq') +a31n(1+F5')

Aa2
Inq2= — +(a~+a3) In(1+q~') +(2a2+a4) In(1+q2') +(2a3+a~) In(1+q3 )T

+(a2+a4) In(1+q~') +(a2+a4) ln(1+ps )

Ap3
Ing3 =— + (a2+ a4) In(1+q~ ') + (a~ +2a3) In(1+F2') +(a4+2a2) In(1+F3')

T

+(a3+a)) In(1+pe') +(a3+a)) In(1+F5'),
(C2)

Aa4
Inq4= — +a31n(1+g~') +(a2+a4) In(1+F2') +(a~+a3) In(1+F3') +a2ln(1+pa') +a2ln(1+ps')

Aa4
Ings= —a3ln(l+g~') —(a2+a4) In(1+q2') —(a~+a3) In(1+F3') —a2ln(1+14') —a2ln(1+7Is')

T

In deriving the sums over ai's appearing here we have used such properties as a6= —a4, evident from (Cl). We
see here (ss discussed in Sec 11) that.

lnq4 =—lnq5

so these are really only four unknown different density functions.
The above equations are unsuitable for Iow-temperature iteration because although ln(1+q; ') 0 for

i =1,2, 3, 4 this is not so for i =5—the Fermi sea term. To get rid of this term, we write

In(1+q5') =In(1+F4) =In(1+pe') +Inq4

in Eqs. (C2).
The fourth equation then becomes

Aa4(I —a2) In7I4= — +a3In(1+71~') +(a2+a4) In(1+F2') +(a~+a3) In(1+q3') +3a2In(1+F4')

(C3)

(C5)

This expression for inri4 is then substituted in the first three equations of (C2), giving four equations for n~,

i = I, . . . , 4, in a form suitable for low-temperature iteration. It is straightforward although tedious to verify
that this procedure gives

Ing~ =——at+ n21n(1+g) ') +(n)+n3) In(1+v)2') +(a2+a4) In(1 +q ') +2n31n(1+g ')
T

Inq2= ——a2+(u)++3) In(1+g)') +(2ug+ag) In(1+v)2') +(u)+3n3) In(1+q3')+2(u2+n4) In(1+pe')
T

In7I3= —
Ta3+

(~2+~4) In(1+g~ ') + (a~ +3a3) In(1+712') +(3~2+2~4) In(l +q3') +(2~t +4~3) In(1+F4')

Inq4= ——P+a3ln(1+q)') +(a2+ng) ln(1+q2') +(a, +2n3) ln(1+g3')+(2n2+n, ) ln(1+q~')
T (C6)
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Here the functions n, and P are given by

(k) cosh(4 —j)k P(k) 1

cosh4k
'

2 cosh4k

A useful identity in deriving (C6) is

(c7)

03Q5
0.'j = Qj +

1 —Q2
(cg)

Also the expression for the free energy

f+ P+oo—= —A I stat dx —T si ln(1+pi) dx
N

is given in terms of ln(1+rii) which diverges as T 0. We can also transform this expression in terms of densi-
ty functions 1 n(1+ rit), j=1, . . . , 4. Using the first of dressed equations (C6) (after Fourier transforming)

f+ ~+oo—= —A J stat dk —T„[stlnqi+siln(1+pi')] dk

P+oo f+ +oo
= —A &I s&a& dk —T J s&

——n&+n2ln(1+&&') +(n&+n )3ln(1+q2')

+(nq+n4) 1n(1+van') +2n3ln(1+pe' +sl in(1+rit') dk

and after combining terms

P+oo P+oo—=—A &i si(at —ni) dk —T „(sin2+si) ln(1+rii') + (snt+tn )l3n(1+F2')

+si(n2+u4) ln(1+F3') +2siu3ln(1+q4') dk

a;(x) = X a;(x+2jQ)
j~-oo

(c9)

The functions a;(x) and P(x) are similarly defined,
and the particle densities are nonzero only in a sin-

gle period 2Q of these functions. Thus a Fourier-
series analysis is appropriate for Eqs. (C2). Defining

Using the identities st(k) [u, t(k) +aj+t(k)] =el(k)
we obtain

F N —1 p+oo—=const —T g J ujln(1+g, ') dx (n =5)
j~]

(C6')

Having established the transformation from the
bare equations (C2) to the dressed equations (C6)
for the XXZ model, it is easy to generalize to the
XYZ case. As outlined in Appendix A, the convolu-
tions are now over [—Q, Q] instead of the whole real
line, and a;(x) is replaced by

l

the nth Fourier coefficient by

a, (n) =
I a((x) e'~'"t&dx,1

2m

from (C9),

l oo

a, (n) = ai(x) e '"i~dx = a;(k), (C10)
2m' "—

where k =2m n/Q That is to s.ay, the Fourier coeffi-
cients in the series for aI are identical to the Fourier
transforms of the functions aI at the corresponding k
values. Hence identifies such as (Cg) for the Fourier
transforms of aI and n; also hold for the Fourier
series coefficients of aj and u; and (C6) follows.

To find the equations for the sine-Gordon system
one must of course take the Eqs. (C6) for XYZ in the
limit discussed in detail in Appendix B. It is impor-
tant to note that in the SG limit, the o.; appearing in
the phase shifts above go to their XXZ limit,

tan
2 [im(p p')/2p, jar(m p,—)/2p, —]-

at(phase shift) — ln
2mi dp tan

2 [i m(p —p')/2p, +jm (m —p, )/2p, ]

1 cosh[(m/2) (p —p')/p]sin[ jr (m —p)/2p]
p, cosh[rr(P P')/p, ] —cos[jm(n——p, )/p, l

(Cl 1)
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whereas the o.l and P in the leading terms on the right-hand side of (C6) go to SG dispersion curves
1

n —p, t „g . . n(m —p) ~P
a, (dispersion term) (—,I) "~"2sin j + cosh

p 2p 2p,

r 1

P (4 I) ~"cosh ——'' —p, 1 m /3

p 2 p

The reason for this difference is discussed in detai1 in Appendix B. Taking the unit of energy to be the sol-
iton mass, [(I/a)4( —,

'
I) '"=1, ~-O, I-O], the expression (C12) becomes

(C12)

nP—A 0!g = Eg = l?l cosh0

2p

m'—AP=E, =cosh
2JM

(C13)

where mj =2 sin[ jr(n —p, )/2p, l is the jth phonon mass. The equations we have analyzed numerically were those

given by putting (C13) and (Cl 1) into (C6).
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