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The stress relaxation of a two-dimensional solid is studied, with the assumption that
defects have been trapped in the sample. The effective shear modulus and stress-strain

relaxation rate are calculated for a variety of defect configurations, including large- and

small-angle grain boundaries and dislocation pairs. Effects of dislocation climb on the

long-term stability of the configurations are considered. The viscosity resulting from

moving free dislocations and/or flow at the boundaries is described in a particular

geometry. The response to a finite applied shear is discussed, in particular, nucleation of
free dislocations and sliding of grain boundaries. The theory is applied to free-standing

smectic-B films, and it is suggested that stress relaxation observed in these films may re-

sult from a dilute "random neutral array" of dislocations or from small-angle grain boun-

daries.

I. INTRODUCTION

There is considerable interest, at present, in
measurements of the elastic constants of quasi-
two-dimensional systems near a melting transi-
tion. ' One set of experiments has obtained
values for the shear elastic constants in very thin
films of the liquid crystal N-(4-n-butyloxy-
benzylidene)-4-n-octylaniline (40.8) near the transi-
tion from the smectic-8 to smectic-A phases. It
has been confirmed by x-ray measurements that
the smectic-B phase in this material is a highly an-

isotropic, layered solid, while the A phase may be
considered to be a stack of two-dimensional

liquids. The elasticity measurements, which were
made at a frequency of order 10 Hz, showed that
the shear modulus per molecular layer at a tem-
perature below the bulk B—A transition has a
value which is in the general vicinity of the value
one would estimate from the Kosterlitz-Thouless '

theory of two-dimensional melting.
In order to study the elastic constants at lower

frequencies, Sprenger et al. have measured the
behavior of the stress over a period & 10 sec after
a step-function change in the macroscopic strain.

In the course of this measurement period, the ex-
perimenters observe slippage or stress relaxation in
the film even at temperatures well into the
smectic-8 (solid) phase. This stress relaxation ap-
pears to be very nonexponential, with relaxation
slowing down drastically as time proceeds. The re-
laxation times depend strongly on the thickness of
the film (e.g., v=0.01 sec for four-layer films,
&=1000 sec for 25 layers), and the strain becomes
nonlinear for rather small values of the applied
stress. Nonexponential relaxation is observed,
however, even in the linear regime.

Important relaxation effects were also observed

by Tarczon and Miyano in the frequency range
0.25 —80 Hz in ac measurements of the shear
modulus of 40.8 films in the smectic-8 region. If
the smectic-B phase is indeed a layered solid, then
the observed stress relaxation must be due to the
presence of defects in the sample. In order to
understand these experiments, it is then necessary
to understand the nature of defects that may be
present and to understand how these defects will

respond to a low-frequency stress.
Although a certain density of tightly bound

dislocation pairs is expected in a two-dimensional
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solid in thermal equilibrium, the response of such
pairs to an applied stress would be too small and
too rapid to account for the observed relaxations.
Consequently, we shall focus our attention on the
behavior of a nonequilibrium "quenched" array of
defects. The quenched-in distribution of defects
must be sufficiently stable to last for the duration
of the experiment (say, 10 sec), unless defects are
being continually injected due to some unknown

motion at the boundaries. On the other hand, the
defects must be sufficiently mobile to respond on
the time scales of the observed stress relaxation
(0.01—10 sec).

In this paper we shaH examine the stability of
some simple defect arrays that may occur in a
two-dimensional solid and analyze their time-
resolved response to an applied stress. The possi-
ble application to the liquid-crystal experiments,
which are on films of more than one layer, will be
discussed in our final section.

Most of the defects considered in this paper are
collections of dislocations, with separations that
are large compared to the lattice constant. The
dislocations may be organized into low-angle grain
boundaries, or may be more nearly random in the
plarie. We shall only consider arrays which are at
least metastable with regard to glide of the disloca-
tions (i.e., motion parallel to the Burgers vector).
However, we do not require stability with regard to
dislocation climb (motion perpendicular to the
Burgers vector). In general, climb is much slower
than glide, since interstitials or vacancies are neces-

sary for the process. The rate of climb is not zero,
however, as some equilibrium concentrations of in-
terstitials and vacancies must inevitably be present,
particularly when one is close to the melting point.

As a very rough estimate, we shall assume the
diffusion constant for dislocation glide in a single
molecular layer to be of the order of 10 cm2/sec,
comparable to the diffusion constant for a vacancy
at the melting temperature of a solid, ' '" or the
diffusion constant of a molecule in a liquid. ' We
shall guess that the vacancy or interstitial concen-
tration is of the order of 10," and that the dif-
fusion constant for climb is thus of the order of
10 ' cm /sec. We shall see that this diffusion
constant is still sufficiently large to place impor-
tant constraints on the minimum separation be-
tween dislocations of opposite sign.

Recently, there have been several attempts to test
the theory of two-dimensional (2D) melting in
molecular dynamics studies and Monte Carlo simu-
lations. ' The latter seem to indicate that close to

the melting transition extremely long runs are
necessary to establish thermodynamic equilibrium.
Our analysis of the behavior of "quenched-in" de-
fects suggests possible mechanisms which consider-
ably delay the relaxation to equilibrium. In partic-
ular, our calculation of time scales, necessary to
annihilate nonequilibrium defects such as small-
angle grain boundaries, might serve as an estimate
for the time scales of a numerical simulation of a
solid, cooled down rapidly from the liquid phase.

Many of the discussions in this paper are similar
to considerations which are well known in the
theory of defect motion in three-dimensional crys-
tals. There are, however, important differences
between two and three dimensions. Some three-
dimensional phenomena, such as the bending of a
dislocation line, have no direct counterpart in two
dimensions. In general, the pinning of dislocations
will be quite different in the two cases.

In three dimensions, dislocations are typically
pinned by a conglomeration of point defects or im-

purities, by entanglement with other dislocations,
'

or by some similar mechanism. The resulting bar-
riers to dislocation motion are generally large com-
pared to kz T, and cannot be overcome by simple
thermal activation, Instead, the barriers must be
overcome by the application of an external force,
which leads immediately to strong nonlinearities in
response to applied strain. The sensitivity to ap-
plied stress is increased also in the three-
dimensional case by the phenomenon of stress
enhancement that occurs when a dislocation line is
pinned only at isolated points along its length.

In two dimensions, by contrast, the maximum
pinning energy for a dislocation at a localized de-
fect or at a collection of impurities will generally
be of the order of a few times k~T for tempera-
tures near to the melting temperature, as discussed
in Sec. II B below. (Somewhat larger barriers may
occur in a multilayered sample. ) Thus simple ther-
mal motion is enough to overcome local pinning of
an individual dislocation. Relatively stable config-
urations and long relaxation times can be obtained
due to collective effects and/or large separations
between dislocations.

A detailed discussion of the manner in which
dislocations first become trapped in the sample is
beyond the scope of this paper. It seems likely
that the dislocations are trapped as the film is
cooled through the freezing temperature (A ~8
transition) just as dislocations are formed in melt-
grown three-dimensional solids. For example, pre-
cipitation of vacancies' in close-packed crystal
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planes causes formation of edge dislocations, which
close to T then may form rapidly into grain-
boundary networks. Just as in three dimensions,
dislocations tend to be trapped in grain boun-
daries.

Alternatively, dislocations might be formed to
relieve large stresses due to boundary conditions on
the crystal orientation. Dislocations in a bent cry-
stal will tend to arrange themselves in grain boun-
daries along the radius of curvature (polygoniza-
tion}. ' The formation of grains in this way is a
two stage process: First glide, then climb (coarsen-
ing). An example will be given in Sec. IV.

Since the particular types of defects present in
the experimental samples are not known, and since
in any case the trapped defects may be different in
future samples prepared by different means, we
shall attempt in this paper to discuss a variety of
defect configurations that might be important
under one or another circumstance. Which defects
are important for dissipation may depend not only
on the sample preparation and geometry, but also
on conditions of measurement, such as the magni-
tude and application rate of the applied stress. A
summary of the mechanisms discussed in this pa-
per, and some estimates of the associated relaxa-
tion times are summarized in Table I.

The relaxation mechanisms discussed in this pa-
per are of two types. For some defect arrays, in-

cluding most of those discussed in Secs. II and III,
the defects lead to a low-frequency renormalized
shear modulus p~, which is reduced to a finite
fraction (possibly small) of the high-frequency (mi-
croscopic) shear modulus p. The relaxation times
discussed in these sections are then the time scales
necessary to see the low-frequency modulus or,
equivalently, the time necessary for the maximum
strain to develop under constant stress. This relax-
ation may be said to be recoverable, as the sample
will eventually return to its original shape if the
stress is removed.

In other examples, as in Secs. V and VI, we are
concerned with "nonrecoverable" relaxation, i.e.,
situations where the static (dc} shear modulus is
zero. Here the system may be described by an ef-
fective viscosity q, and the relaxation time r deter-
mined by the ratio of the viscosity to the high-
frequency shear modulus p (sometimes called the
Maxwellian relaxation time) describes the time for
relaxation of stress after imposition of a given ma-
croscopic strain. Alternatively, in a time-
dependent (ac) experiment the characteristic fre-
quency coo-1/r determines the crossover from

viscous behavior at low frequencies to elastic
behavior at high frequencies. Both recoverable and
nonrecoverable relaxation may occur in the experi-
ments on smectic films.

Out1ine

The organization of the paper is as follows. In
Sec. II we consider some defects which are built up
out of separated dislocations —in particular, small-
angle grain boundaries and isolated, well-separated
dislocation pairs. We discuss the effect of disloca-
tion glide motion on the measured shear modulus
and the strain relaxation rate. Here we assume
that the grain boundaries are pinned at isolated
points —e.g., at the intersections of boundaries, or
at the intersection with the boundary of the sam-
ple. We also investigate, in Sec. II C, the rate at
which small-angle grain boundaries can disappear
in the presence of a finite climb rate, and we use
this analysis to estimate the minimum allowable
dislocation separations that could persist for long
times in a two-dimensional sample.

As the opposite of small-angle grain boundaries,
one can consider a sample made up of crystallites
separated by large-angle grain boundaries. Stress
relaxation due to slip in a network of large-angle
grain boundaries is considered in Sec. III.

When a two-dimensional crystal is formed, con-
ditions at the boundary of the sample may force
the crystal axes, locally, to assume a particular
orientation relative to the boundary. In the case of
a circular boundary, or an annular geometry, such
a boundary condition would clearly result in a
bent-crystal sample, unless dislocations or grain
boundaries are formed to relieve the stress. The
geometric arrangement of the resulting stable dislo-
cation array is discussed in Sec. IV. In Sec. V, we
summarize the relaxation of stress due to motion
of free dislocations, or of arrays of dislocations
such as those that would be encountered in the
bent-crystal geometry of Sec. IV.

Another mechanism for stress relaxation occurs
if there is a thin liquid band between the boundary
of the sample and the rigid containing wall. If the
wall is rough, slippage of the sample relative to the
wall requires melting at points of high compression
and flow of matter through the liquid band to a re-
gion of low compression, where resolidification
occurs. This process is analyzed in Sec. VI.

The relaxation processes described so far have
been primarily linear processes, where the relaxa-
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tion times are independent of the stress for small
stresses. There are, however, a variety of nonlinear
processes which may be important at relatively
small stresses in a two-dimensional sample. In Sec.
VIIA, we discuss the stress-induced dissociation of
dislocation pairs, which can be present even in true
thermal equilibrium in a two-dimensional sample.
In Sec. VII B, we discuss an analogous process, the
stress-induced "evaporation" of a dislocation from
a small-angle grain boundary. Then, in Sec. VII C
we discuss sliding of two intersecting small-angle
grain boundaries, taking into account the tendency
for the grain boundaries to become pinned at local
minima (with respect to glide) of the energy of in-

teraction between the dislocation in the two grain
boundaries. Again, the nonlinear effects of applied

. stress are considered.
Finally, in Sec. VIII, we discuss application of

the previous analyses to the case of a multilayer
smectic-8 (crystalline) film. Many of the relaxa-
tion processes can be eliminated from consideration
as the source of the experimentally observed stress
relaxation because they do not lead to effects of
significant magnitude on the correct time scale.
Likely candidates, however, are a network of
small-angle grain boundaries or a dilute "random
neutral array" of dislocations. A random neutral
array may be considered as a generalization of a
dislocation pair to an infinite array in which each
dislocation is interacting with several nearby dislo-
cations of different Burgers vectors. Alternatively,
the array may be considered to be a network of
very small-angle grain boundaries in which the dis-
tance between grain boundaries is comparable to
the distance between dislocations in the grain
boundary. In any case, the required distances be-
tween dislocations are found to be quite large. (See
Table I).

II. METASTABLE DISLOCATION STRUCTURES

In this section we discuss two defect configura-
tions built up out of dislocations: small-angle
grain boundaries and widely separated dislocation
pairs. In order to understand the relaxation of
these defects, it is important to note that two time
scales are associated with the motion of disloca-
tions. A dislocation can glide, i.e., move parallel to
its Burgers vector, and climb, i.e., move perpendicu-
lar to its Burgers vector. ' The latter can only
proceed by the emission or absorption of vacancies
or interstitials, while dislocation glide does not in-
volve a net change in particle density. Therefore,
climb is, in general, a much slower process than

glide. If the concentration of vacancies and inter-
stitials is low—as we expect to be the case even
near the melting temperature —climb is strongly in-
hibited. Then defect configurations, which can
only relax by dislocation climb, are stable over very
long time scales, i.e., as long as climb does not take
place appreciably. We first discuss the effect of
such metastable defects on the static and dynamic
properties of a 2D solid, assuming that dislocation
climb is not allowed. We then consider dislocation
climb and calculate the lifetimes of these defect
structures.

A. Small-angle grain boundary

giving

+
z +&+bi,(b; r,l)(b~"r;I) 2

r,j
(2.1a)

E Kap
2Ec+ ln

Xp
'

4m 2map

m.D
h

mD

+ln 2sinh
mD

(2.1b)

Our first example is a pinned, small-angle grain
boundary, which can be deformed under an applied
shear and thereby reduce the shear modulus. '

Possible pinning mechanisms will be discussed in
Secs. II8 and II C. A small-angle grain boun-
dary can be considered a line of dislocations with
equal Burgers vectors b. In the configuration of
lowest energy the Burgers vectors are of minimum
size, equally spaced, and perpendicular to the grain
boundary. ' In order to have zero net macroscopic
dislocation density we consider two parallel grain
boundaries a distance D apart and with opposite
Burgers vectors. Each boundary is assumed to be
pinned at the ends, L being the distance between
the pinning centers. The domains separated by the
grain boundaries are tilted by an angle 0 with
respect to each other. 0 is related to the distance d
between dislocations, O=ao/d, where ao denotes
the lattice spacing. If the number No of disloca-
tions between two pinning centers is large, one can
easily calculate the energy of the two straight,
parallel grain boundaries' ' for large L,

E= g —b; blln
Eao

f
rg.

f
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Ng d
p

deformation

(2.4)5E= «p (nn r—lm )'

(n —m }'d'

If a shear cr=( p) is applied, the dislocations
would like to glide in such a way as to relax the
stress. Their motion is opposed by friction and the
restoring force of the grain boundary. The result-

ing equation of motion is

n 5E
y~~gn+ =ao

5g„
(2.5}

where E, denotes the core energy of a dislocation
and E is a particular combination of the Lame
coefficients p and A, , E= 4p(@+A, )/(2@+A, ). In
the limit D~ao, one finds

E &ao d=2E, + ln
4m. 2mao

2
2nDjd-

2d
'

so that one can define the energy of one grain
boundary

Eog Lao=E,+ ln
No

'
8m 2mao

(2.2)

(2.3)

In the following we will assume that the density of
grain boundaries is low, i.e., D ggL, so that we
can neglect interactions between different boun-
daries.

We are interested in deformations of a pinned
grain boundary under an applied stress field, as-
suming that dislocations can only glide. For defin-
iteness, we consider a grain boundary along the y
axis with Np dislocations (Fig. 1). The Burgers
vectors b„=(p) can glide along the x direction, so
that a possible deformation is described by the po-
sitions of the dislocations r„=ndy + q„x, where
g„denotes the deviations from the straight-line
configuration. We expand the line energy up to
quadratic terms in g„and find for the energy of

FIG. 1. Initial and final position of a grain boundary
when shear stress is applied. The No dislocations are in-

itially along the y axis, separated by d and pinned at
y=+(No/2)d. Their final positions are indicated by g„.
Here and in all other figures, we represent dislocations

by their Burgers vectors, indicated by arrows.

where
y~~

is a phenomenological friction coefficient
for glide.

We first calculate the static displacement as the
solution of

5E
5g„

nm Qm ao+ ~ (2.6)

where

Lao

4md (n —m)z 2, num

V
Ea() 1

, , n=m.
4gd', ~„(n —k)' '

(2.7}

This equation can be solved if the eigenvalues A,l
and eigenfunctions y'„' of the matrix V„m

X ~nmym =~lyn(l) (l) (2.8)

are known. For large, even No it is straightfor-
ward to show

(l)
Vn

Q2/Npcos, 1=1,3, . . . , Np 1—
0

Q2/Npsin, I =2,4, . . . , Np
No

(2.9)

and

«p
~l CC ~

No 4md2
(2.10)

rlz =Op&+ ( V }nm =~pa'g ~/ yn ym
—1 (l) (l)

(2.11)

The eigenfunctions vanish for n = +Np/2, where
the grain boundary is assumed to be pinned. From
Eqs. (2.6}—(2.10) the displacement follows as
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16oLd (i}' ' n ln'll—
2

cos+«o war 1 &o
(2.12)

may use the Einstein relation to write
/

y(~(=krr T/D(~(, (2.20)

The displacement grows linearly with the total
length L of the grain boundary and therefore the
deformation energy, given by

with

n, m

320' L
Km

(2.13)

g(3}=g 3 =1.202,
r —o (21+1)

(2.14)

ap
Uxy = — g '9n/A

n

(2.15)

where A is the area of the sample. Assuming a un-

iform density of grain boundaries of length L, i.e.,
no(L) =1/LD, the total shear strain is given by

is proportional to L . This is characteristic of the
long-ranged logarithmic interaction between dislo-
cations and is to be contrasted with a short-ranged
interaction, which gives rise to a line energy like
that, for example, in a 3D dislocation line.

The motion of dislocations leads to a change in

shape of the sample which may be described by the
macroscopic strain given by

rr„(t)= g A;exp( A,;t/y~~)—y'n', (2.21a)

where Dll is the diffusion constant for dislocation
glide and is typically determined by the process of
activation over the barrier between minimum ener-

gy positions of the dislocation in adjacent unit
cells. We have estimated this diffusion constant as
being of the order of 10 cm /sec, for purposes of
illustration. In an impure crystal, the diffusion rate
may be reduced by the tendency of dislocations to
be temporarily trapped at the sites of impurities or
clusters of impurities. However, as discussed in
Sec. II B below, the pinning energy for a disloca-
tion at an impurity site should not be very large
compared to k&T near melting, so there will not be
a drastic reduction of yll in this case. Further-
more, an individual impurity itself can diffuse, or
be dragged along by the dislocation, with a diffu-
sion constant of the order of 10

To solve Eq. (2.19), we make the ansatz

rln -e '. It then follows from (2.19) that coy~~

must be an eigenvalue of the matrix Vn~. We
therefore expand the general solution of (2.19) in
the eigenfunctions of V„m,

U
u ap1

2 2LD~
n

(2.16)
and determine the coefficients A; from the initial
condition

Using the stress-strain relation, we can define an
effective shear modulus in the presence of grain
boundaries,

rr=2peftUxy =2(p &p}Uxy ~— (2.17)

which is reduced as compared to the perfect lattice
by an amount

g exp
Eap2

tad Lyll

rt„(t)=, Lcr g cos
16 d min (i)'

~'«o ~dr

(2.21b)

5p, 8g(3) L 2p, +A,

p ~3 D p+A,
(2.18)

y~~'rln+ g I nm'rim =0 (2.19)

subject to the inital condition that gn(t=O) be
given by (2.12). The coefficient y~~ is a friction
coefficient for dislocation glide. Since a disloca-
tion is a pointlike object in two dimensions, we

If the spacing D between grain boundaries is com-
parable to the length L of a free segment, then the
reduction in p can be of order 50%.

If the stress is switched off at t=O, the deforma-
tion will relax according to the equation of motion 2Eap

7p
4m Ldyl

l

4m. Dll

Ld

(2.22a)

(2.22b)

In (2.22b) we have replaced E by its value at T,
and used (2.20). For a grain boundary of length

We see that the relaxation of the displacement
gn(t) is described by the superposition of many ex-
ponentials. The corresponding relaxation times de-
crease linearly with 1, rr- I/1, so that for
t & (4my~~/«o) (Ld/n)the decay will b. e domi-
nated by the smallest eigenvalue
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(b)

(c)

corners of the grain. If a shear P=( o) is applied
to the sample, the dislocations feel a force [Fig.
3(a)] and would like to move in such a way as to
relax the stress. One might expect a deformation
of the grain as shown in Fig. 3(b). However, for
such a deformation the dislocation density is no
longer the same along the boundaries of the grain,
assuming that no-interstitials and vacancies are
emitted or absorbed by the boundary. The nonuni-
form dislocation density gives rise to a distortion
of the crystal inside the grain. We expect a high
energy for such a distorted lattice, so that the de-
formation shown in Fig. 3(b) is very unlikely. On
the other hand, the deformation shown in Fig. 3(c)
preserves the constant line density of dislocations
and does not give rise to a macroscopic distortion
of the grain. In this configuration the grain boun-
daries are effectively pinned at the corners of the
grain.

We now discuss how such a metastable configu-
ration can actually be relaxed by dislocation climb
and estimate its lifetime. If dislocations are al-
lowed to climb, the grain can shrink, thereby in-

creasing the angle of the grain with respect to the
lattice outside. To avoid distortions of the crystal
inside, the dislocation spacing has to remain uni-
form during the process of shrinking (see Fig. 4).
The total energy of the grain boundary decreases
with d as

IOEa()
ad

=
2~d

(2.26)

where No is the number of dislocations on one side
of the grain. Assuming that glide proceeds instan-
taneously (much faster than climb), we may make
the following guess of an approximate equation of
motion for the displacement rj;(t) of the disloca-
tions perpendicular to their Burgers vectors
(climb):

3'osrl;(t) = — E(('tl; 1

a

aq
(2.27)

FIG. 3. Possible deformations of a square grain
boundary under a uniform shear stress if climb is ex-
cluded. {a) shows the direction of the force exerted by
the shear along the glide plain of the dislocations. (b)
shows a grain boundary deformation (solid lines) which
is not favorable due to deformations of the grain itself.
(c) shows the actual grain boundary deformation {solid
lines).

~ Nt=-—
2 -1 0

I

I

8
2

f

/
/ /

4

4 (z)

t=o

Here yGB is a phenomenological friction coefficient

configuration shown in Fig. 2 has the same num-

ber of atoms as the lattice without grain; in partic-
ular, there are no interstitials or vacancies at the

FIG. 4. Positions of the
square grain when climb is
cation separation is do,' at t
dislocation does not climb.

dislocations on one side of a
allowed. At t=O, the dislo-
=v, it is d {r). The central
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for climb of dislocations in the grain boundary.
We shall see that y&B itself depends sensitively on
the geometry of the system.

For the uniform contraction of the grain boun-

dary, which is under consideration, we have

A

X

rtj(t) =j [d (t) do j—. (2.28)

Assuming the validity of Eq. (2.27), we can find
the rate of change of d (t) by summing over the
dislocations of half a grain boundary,

N/2

g YGB9i

N/2 1 E
YGB/d(t) YG—B d(t) ~

2 2

] gE
EI rtj I= ——sBd'

~2
GB

2~&pd'ka T

D i =kB T/YGB,

(2.30a)

(2.30b)

where Dz has the dimensions of a diffusion con-
stant. This gives us the result for the decay time
of the grain boundary

Xpd
GB

Dg
(2.31)

So far we have not taken into account the devia-
tion of defects from their equilibrium concentra-
tion. As a dislocation climbs it must emit or ab-
sorb vacancies or interstitials. If it emits vacancies
the local vacancy concentration is increased above
its equilibrium concentration, creating a gradient in
the vacancy chemical potential which then gives
rise to a vacancy current. If a grain boundary
climbs as a whole, many vacancies are simultane-
ously absorbed (or emitted). For the process to
continue, more vacancies have to diffuse to (away
from) the grain boundary. We therefore expect the
diffusion of a grain boundary with many disloca-
tions to be considerably delayed as compared to the
climb of a single dislocation.

To find the appropriate diffusion constant for
climb motion of dislocations in a grain boundary,
we will use a method similar to Mott's' for grain
boundaries in three-dimensional crystals. We con-
sider a simple situation in which two parallel grain

(2.29)

and argue that the sum in (2.29) should be equal to
—, of the total change in energy with dislocation

spacing d. The resulting equation of motion for
d(t) is

FIG. 5. Two grain boundaries along x with opposite
Burgers vectors along +y and —y are climbing along x
with the same velocity U. Vacancies are moving along y
from sources (at y =D/s) to sinks (at y = —D/2).

na ——nr —nz . (2.32)

Then the equation of motion for the dislocations
on the two rows at +D/2 is

apDg(u)(+D/2)=+ 2o2z(+D/2)
AT

5na(+D/2)
+

npX

(2.33)

where n p is the number density of atoms and
5n~ ——n~ —n~ is the deviation of the defect density
from its equilibrium value n~, which we assume to
be small. The inverse susceptibility g ' measures
the increase in free energy per unit area due to a
change in the defect concentration:

5F= ,'X ' f d'r(S—na/no)~. (2.34a)

Treating the defects as an ideal gas, one finds

boundaries with opposite Burgers vectors are
climbing with the same average velocity (u ) (Fig.
5). This kind of motion is only possible in an in-

homogeneous stress field. For simplicity we take a
stress o22(+D/2) = —o22( D/2), w—hich may arise
from an "external force" applied to the midline be-
tween the grain boundaries. The top rom then acts
as a sink and the bottom row as a source of vacan-
cies (the other way around for interstitials). For
the climb motion to continue, defects have to dif-
fuse from the sources to the sinks, i.e., across the
distance D from one grain boundary to the other.
This process reduces climb motion of a grain boun-

dary as we will show now. We use here the equa-
tions of motion derived in Ref. 7.

Following Ref. 7, we define a defect density as
the difference between the density of interstitials
and vacancies:
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n pkBT
2

0
n~

(2.34b)

8,5na D~V 5n——q — g 5( r —r „)b„.y

ap
(2.35)

The defect diffusion constant is denoted by D~ and
the summation runs over all dislocations with
b~=+ 1. The steady state solution of Eq. (2.35) is

5n~(r)= 1 (u)
4map Dg

which becomes very large for low temperatures.
The constant Dz in (2.33) is the diffusion con-

stant for climb of a free dislocation under condi-
tions where the local concentrations of interstitials
and vacancies are maintained at their thermal
equilibrium values, through the influence of same
nearby source or sink. (The diffusion constant D~
should be smaller than the glide constant DI )

roughly in proportion to the equilibrium concentra-
tion of defects, which leads us to our estimate
Dj -10 ' cm /sec. ) In the present situation of
two climbing grain boundaries, no lacal sources for
defects are present, and the defects have to diffuse
from one boundary to the other according to the
equation of motion

location is roughly given by the vacancy diffusion
constant D~ times the defect concentration nalno.
Using, furthermore, the estimate (2.34) for X we
find in the limit D )&d

dapD
(u&= cr .

B
(2.39)

Comparing this result with the phenomenological
expressions (2.27) and (2.30b) we find

Dg -Dj —.GB d
(2.40)

L 2

Dg
(2.41)

For the grain to be stable over a period of 10 sec,
we have to require I.) 10 cm.

So far we have looked at a very special geometry
of grain boundaries. In a more general situation
we expect a similar reduction of Dz, which is
determined by the ratio of the dislocation spacing
within one grain boundary to the distance between
defect sources and sinks. For example, for the uni-
form shrinkage of a grain, as discussed above, the
distance D is of the order of the length of one
grain boundary L. The decay time (2.31) can then
be estimated as

D 1 (u) D . ~D
5ng +- ln +ln sinh

2 2map Dh, ap

m.D
(2.37)

where we have cut off the divergent logarithm at
the lattice constant. If this expression is substitut-
ed into Eq. (2.33) we find for the velocity of the
dislocations in the stress field cr in the limit

D))d:

(u) +—
2

&0& d D1+ ln
D~ kB T2~ ape d

(7 D/2) + (x——vd)
. (2.36)

(y +D/2)'+ (x —vd)'

At the positions of the dislocations, the excess de-
fect concentration is then

D. Dislocation pairs of large separation

In a solid in equilibrium only tightly bound
dislocation pairs are present. These pairs can
reduce the elastic constants only slightly. Also, the
energy dissipation in an applied, low-frequency
shear will be small, since the diffusive motion of
such small pairs is rapid with a characteristic fre-
quency co-D~~~/r, where r is the separation of the
pair.

We now consider a situation, where some dislo-
cation pairs of large separation have been frozen
in. If these pairs can relax to their equilibrium
separation only by climb motion, they can be con-
sidered metastable in a system of low defect con-
centration.

The interaction energy of a dislocation pair,
separated a distance r is

apDj=2 —op2 . (2.38)
kBT

Eap r
2

E(8)= ln —cos 8
4m' ap

(2.42)

The climb diffusion constant D& of a single dis- where 0 denotes the angle between r and b. For
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This difference in occupation number gives rise to
a polarization. Following Ref. 7 we introduce a
generalized dynamic susceptibility X and find

0
Pay =&xyxy ~ay

2= ——,b„d (n ~
—n2)

2
2nD(d)d2 (b2 —by2),

8
(2.48)

FIG. 6. Interaction energy E(x) of a neutral pair of
dislocations is shown as a function of the separation
along the glide direction x. Their separation d in the
climb direction y is assumed constant.

In an activated process the system can flip back
and forth between the two minima. We write the
hopping rate 8'

—lLEO/kB T8' =voe (2.44!

as the product of a Boltzmann factor and a mi-
croscopic attempt frequency vo. For a single layer
film, if the elastic constant E is near the
Kosterlitz-Thouless lower bound, Eao=167Tkg T,
the energy barrier is -0.6k~ T.

The interaction energy of the pair with an ap-
plied shear o =( D) is

bE= , (bkePR(+bqe—kgR; )cry) =Pk25kj. , (2.45)

where we have defined a "polarization" Pkj. The
two minima of E (x) are no longer degenerate,
since

E(x = d) E(x =+d) —=2d—o =2do(b„by), —

(2.46}

and consequently the density of pairs n i with ener-
gy E(x = —d) is reduced in favor of n2, the densi-
ty of pairs with energy E(x =d):

n&

n2

—2do /k~ T=e ~1—2do /kg T . (2.47)

fixed rq ——d, this energy has two minima for
cos 0= —,, corresponding to the two configurations
shown in Fig. 6. The two configurations have the
same energy and are separated by an energy barrier
of height.

Lao2
EED ——E(8=0)—E(8=45') = (1—ln2) .

4m

(2.43)

where nD(d) denotes the total number of pairs with

rz ——d. Averaging over Burgers vectors and in-

tegrating over space we find the static susceptibili-

ty

2k~ T '0 (2.49)

(2.51)

The activation energy is of the order of k~T,

LEO

AT
=4(1—ln2) -0.6, (2.52)

and the attempt frequency can be estimated as

r 2
(2.53}

If we allow for pairs with separation r up to 10 A,
the relaxation times can be as long as 10 sec. In
a system which is not truly 20 but consists of
several layers, we expect the activation energy to
increase with increasing film thickness, so that the
relaxation can be considerably delayed. If the in-
teractions between dislocations of different pairs
are taken into account, one finds a distribution of
local minima, separated by barrier heights, which
depend continuously on the various separations.

The relaxation of the pair to equilibrium re-
quires climb motion of the two dislocations. The
corresponding lifetime can be estimated as

r 2
—100 sec .

Dj
(2.54)

for the values of the parameters as chosen above.

If the stress is switched off at t=to, the polariza-
tion will relax to zero at a rate 8'.

—28'(g —to)
(n& —n2)(t)=(n& —n2)(tD)8 t&to .

(2.50)

Thus the dynamic susceptibility is

28'
X„» «(co) = — ds s nD(s) .

2k T o — +28'
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III. LARGE-ANGLE GRAIN BOUNDARY

So far we restricted ourselves to low-angle grain
boundaries. If the separation between dislocations
becomes comparable to the lattice spacing, then
one cannot distinguish the dislocations and a dif-
ferent picture must be used. The region near a
high-angle grain boundary is highly strained, and
close to T„ it may be appropriate to treat the grain
boundary as a thin line of liquid, allowing no
tangential shear stress in the absence of motion.
When shear stress is applied to the macroscopic
sample, there will be a relaxation due to slippage at
the grain boundaries which will lead to a decrease
in the measured dc shear modulus.

The renormalization of the shear modulus has
been studied numerically by Gharemani for a
regular hexagonal array of crystallites (Fig. 7).
Gharemani's results may be fitted by the equa-
tion

zations may be obtained for other geometries of
grain boundaries, but it seems unlikely that this
mechanism could lead to reductions as large as
50%.

The time necessary for the completion of the re-
normalization of p is the time necessary for corn-
plete relaxation of the tangential stress o. across the
boundary of two neighboring grains under a given
constant shear strain U„~ across the boundary. Let
s be the amount of slippage of two grains separated
by a liquid band of width w and three-dimensional
viscosity g. Then, using the definition of g we
find

S
hg —=0,

w
(3 3)

where h is the film thickness. If u,„ is the shear
strain within each grain, then

(3.4)

(0.86+0.03v2)(1+2v2)

(1.14+ l.97v2)
(3.1)

where p is the two-dimensional shear coefficient.
The total shear strain across the two grains is

where pz is the renormalized two-dimensional
shear modulus and v2 is the two-dimensional Pois-
son ratio of the constituent grains, related to the
unrenormalized 2D Lame coefficients by

U„y ——u„@ +s /L, (3.5)

where L is the grain size. Eliminating u„„and o.

we find

v2 ——A, /(2@+A, ) . (3.2)
hq —=2@(U„& s/L) . —

w
(3.6)

Formula (3.1) predicts a 14% renormalization of
the shear modulus for an incompressible system
(v2 ——1) and slightly larger renormalizations for
smaller values of v2. Somewhat larger renormali-

The characteristic time ~ for the stress to relax is

r=rlLh/pw . (3.7)

Choosing the parameters as L =1 mm, g =0.1

poise (typical for nematics), h= 30 A (monolayer of
smectic), and w=5 A, one finds r=10 3 sec, if p
is given by the Kosterlitz-Thouless value (-220
erg/cm ).

FIG. 7. Hexagonal network of high-angle grain
boundaries. The arrows indicate slipping along the
liquidlike boundaries under a tensile stress indicated by
the fat arrows.

FIG. 8. Schematic geometry of the experiment of
Sprenger et al. (Ref. 6). The smectic-B film fills the an-
nulus between R2 and R~, with R2 —Rl &&R ~. The
central disk is attached to a torsion fiber. The aximu-
thal angle is 8.
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field.

u„y-0,

2'+ A,
u + ugly-0 .

(4.4)

(4.5)

On the other hand, we know that to lowest order
in g(x),

FIG. 9. Bent section of an initially straight crystal.
The crystal of width hR is bent over a radians. The
neutral surface, where the crystal is not deformed, is in-

dicated by g(x).

a„u, =a„g(x),

and therefore, since (t)„u„+B~u„)=2u„~ =0,

a,u„=—a„g(x) .

Integrating (4.7) one finds

u„=—yt)„g(x),

u =—y g(x),
Bx

(4.6)

(4.7)

(4.8)

(4.9)

IV. DEFECTS IN A BENT CRYSTAL

In the recent experiments by Sprenger et al. , the
shear coefficient of a free-standing smectic-8 film
is measured with a disk of radius R

&
attached to a

torsion fiber (Fig. 8). The smectic-8 film is in the
annulus between R

~
and Rz. If we suppose that the

interaction between the smectic film and the boun-
dary is such as to orient the crystal axes in a par-
ticular way with respect to the boundary, then the
crystal may be forced to contain dislocations or
grain boundaries even in its equilibrium state.
This occurs because if defects were not present, the
boundary conditions would require that the crystal
be bent into an annulus, with a high cost of elastic
energy.

The elastic energy of the crystal without defects
can, for this geometry, be found as follows: Let
g(x) describe the neutral surface of the bent crystal
(Fig. 9). At the neutral surface there is no
compression or shear. From Fig. 9 we see that

and with the help of (4.5),

a'
u~~= y ~ g(x) .

2@+A,
(4.10)

It is now straightforward to calculate the elastic
energy E:

E = J d r [pu;~ u;~+ ., A(uk—k )2],

since we know g(x) [Eq. (4.1)]. The result is

(4.11)

2

3R

3

p 1+
2

+— 2a, (4.12)
2p,

2 2p+A,

where hR =Rz —R &, 2n is the angle spanned by

l x(x)=—
2 R

(4.1)

with R = —,(R t+R2). If no forces are applied at
the surface, then the stress tensor o.;k has to fulfill
the boundary condition

&koik =0
~ (4.2)

where n is the normal to the surface. In the limit
R

&
~Rz this implies

o.,y-0
also inside the material. Equation (4.3) can be
used to determine the components of the strain

(4.3)

FIG. 10. A high-angle surface grain boundary for a
circular crystal with square symmetry. The misfit angle
between crystal axes is 0.
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the bent segment of material (see Fig. 9), and we

have assumed hR &gR.
We now discuss possible ways to reduce the elas-

tic free energy (4.12) by introducing defects into
the solid. One example is a high-angle grain boun-

dary along the edges of the sample, such that the
boundary condition on the crystal axis is satisfied.
Then the crystal can be unstrained except for a
narrow region along the boundary.

For simplicity we choose a crystal with square
symmetry. The misfit angle of the grain boundary
8 is then just the azimuthal angle (Fig. 10). The
energy e per unit length of grain boundary is [Eq.
(2.3)]

FIG. 11. Example of polygonization in a bent crystal.
The radial grain boundaries relax the strain energy of
the bent crystal in Fig. 9. The Burgers vectors of the
dislocations are tangential.

(see Fig. 11). The total number of dislocations ND
1s

E, SCao
ln(2n. 8)

8ap

E, Lao
e= + ln(d /2ira0 )

8md

(4.13)

1VD
——2mhR /ap . (4.18}

The density n of dislocations is

n =2 rbtR/[( amo(Rz —Ri }]=1/Rao . (4.19)

Using Eq. (4.13), one finds that the total energy E
where d is the separation between dislocations and
8=ao/d. This formula is of course only valid for
small 8. To get a rough estimate we will use it for
0&8&m/4 Th. e t.otal energy of the grain boun-

dary at R1 is

E =Nseb R = hR E, — ln(2n. 8)
2m- «o
ap

' Sa

(4.20)

r4 E, «o
Ei ——SRi I d88 — ln(2ir8)

0 ap Sm

(4.14)

1

, HR—i
ao

Kap
(Inn. ——,ln2 ——,)

R ao&(bR) (4.16)

For the experimental geometry, R =1 cm and
ER=1 mm while ap-5 A and the inequality is
well satisfied.

If, in three dimensions, a crystal is bent, then
one finds a third possibility called polygoniza-
tion. The crystal consists of polygons of unde-
formed crystal, separated by low-angle radial grain
boundaries (Fig. 11). Let 8=ao/d be the misfit
angle. If the crystal is bent in a circle, then there
are Ng grain boundaries with

Xg 0=2m. . (4.17}

Each grain boundary contains hR/d dislocations

(4.15)

and a similar expression for the grain boundary at
Rz. Comparing this with Eq. (4.12) we find that
the energy is indeed reduced if (4.21)

E, =Ng(E, '+E, )

(Ri+R2)~O

2

(4.22a)

E, «p
( —,inn. 8——, )

ao

(4.22b)

and is a factor OR/hR smaller than E. The actual
value of O is found by minimizing E+E, . If
E, &Eao, one finds

gR Kap

4 R E,

which is indeed small.

(4.23}

is proportional to AR, the width of the annulus.
Therefore, if AR &R, as in the experiment of
Sprenger et al. , it is energetically more favorable
to introduce radial, small-angle grain boundaries
than large-angle grain boundaries along the edge of
the rim.

Actually, there is still some mismatch at the sur-
face. The surface misfit angle varies between

+ 8/2 to —8/2 in one polygon. The surface ener-

gy for one polygon, E,', at R=R1 is
8/2

E,'=Ri f d8'e(8'),

and the total surface energy E, is
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V. MOTION OF FREE DISLOCATIONS

In this section we discuss the simplest configura-
tion of dislocations which can give rise to an effec-
tive viscosity and apply it to the experiment of
Sprenger et a/. Let us consider an array of dislo-
cations distributed over the sample with density n.
If this array is caused by polygonization, as dis-
cussed in the preceding section, then all Burgers
vectors are tangential, and n —1/Rao with R the
mean radius in Fig. 8:

—o.p 2~pR 3

1+
'Qerr ~(R i R2 }

(5.7)

In the limit of large torsion constant a, one obtains
the stress relaxation rate p/g, ff applicable to a
sample with constant strain. If g,ff is given by
(5.4), and if we assume D~~ =10 cm /sec, a0= 5

A, R = 1 cm, and p =220 erg/cm (the Kosterlitz-
Thouless value for one layer), then we find rl, ff/p
=0.01 sec.

R = —,(Ri+R2) . (5.1)
VI. FLOW AT A BOUNDARY

In this case, dislocations can glide without chang-
ing their separation from each other. If a constant
shear stress o is applied, then dislocations glide
with a velocity (u) given by

(k+T/Dii)(u) =oao . (5 2)

If X dislocations have moved around a circle and
come back to their original position, then the inner
disc has slipped a distance Nao. The slipping velo-

city V=RH is then

R( —R22 2

V=n
R

ao&u) (5.3)

(we assume here that R, —R2 «R). Combining
(5.2) and (5.3) we obtain an effective two-dimen-

sional viscosity

cr(R i
—R2)

jeff= V
=kii T/(2aonD~~ ) . (5.4)

If n -1/Rao, as in the preceding section, we get

Jeff—Rkg T/D~~QO

If the inner disk is driven by a torsion wire with
torsional constant ~, then the applied stress is not
constant in time but decreases according- to

Interesting effects can occur if there is a narrow
liquid band at a junction of the sample and the
containing walls. A liquid band may well occur, at
temperatures near the melting temperature, because
of strains on the atomic scale, arising from the
mismatch between the crystal structures of the
sample and the wall.

If the sample boundary is smooth on the ma-
croscopic scale, and perfectly circular, then slip be-
tween the sample and boundary can occur rather
easily, and one would find a characteristic relaxa-
tion time of the order of that given by Eq. (3.7}. If
the surface is rough, however (say of the scale of 1

LMm), then slip is a much slower process which re-
quires melting the sample at some points of the
boundary, flow through the liquid band, and re-
crystallization at other points on the boundary.

(o)

2' = —K V/R
dt

(5.5)

F

where V is the velocity of the inner disk.
The (immediate) elastic response of the film to

the change in stress must now be added to the con-
tribution (5.3) from dislocation motion, so that we
find for the velocity of the sample at its inner edge

Boundaryr Liquid
Smectic

V= (R2 —Ri) .
p dt

(5.6)

Matching the velocities in (5.5} and (5.6), we have

t
FIG. 12. Boundary between smectic and container.

The width of the liquid band is u, the height of the sur-
face irregularities is I, and the angle of the surface with
the average surface is L9.
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I' =h f dxp(x)sin8(x), (6.1)

where h is the film thickness and the integral ex-
tends over the boundary. The pressure will create
a flow as indicated in Fig. 12. Let u(x) be the
average flow velocity at x. For Poisseuille flow

u(x)= — tu cos8(x)1, dp (x)
12' dX

(6.2)

where w is the width of the liquid band and g is
the three-dimensional viscosity of the liquid. If
the width is to remain constant then the mass flow
has to be compensated by the dissolving of solid
into liquid in some places and solidification in oth-
er places. The volume dQ of liquid leaving the
band between x and x + lb' per unit time is

This process can be illustrated for some simple
geometries, such as those shown in Fig. 12. Let
8(x) be the local angle of the surface with the
average direction of the surface and assume that a
force I' has been applied to the boundary (see Fig.
12). We want to calculate the velocity V with
which the smectic slips along the boundary. The
force will push the smectic against the boundary
and induce a pressure p (x) in the liquid layer. The
applied force obeys

If 8(x) is large, then Eq. (6.8) does not hold. For
the geometry of Figs. 12(a) and 12(b) one finds

and

y= L, /
W

12nh L l2
w

S

(6.9a)

(6.9b)

respectively, where I., is the length of the boun-

dary and I the height of the surface irregularity, as
indicated in the figures. The slipping along the
boundary gives an effective two-dimensional vis-

cosity g,~f for the film, which is related to y by

rI,rr=y(Rg —RL)/2m. R) . (6.10)

((R') —(R )')'~'&100A . (6.11)

If I or ((R ) —(R) )'r is of the order of 1 pm,
rl =0.1 poise, w =5 A, and h =30 A (monolayer of
smectic), then one finds jeff 10 poisecm. The
characteristic time ~=g,ff/p becomes very long
(-10 sec) using the Kosterlitz-Thouless value for
p. To get relaxation times of the order of seconds
one needs very smooth, precisely circular boun-
daries:

dQ
& h

du(x)= —hxwh
dt dx

(6 3)
VII. NONLINEAR EFFECTS

Since the solid is moving with a velocity V, an
amount dQ' of solid is dissolving per unit time:

dQ'

dt
=MVh sin8(x)/cos8(x) .

In equilibrium, dQ=dQ', so

V = w cos8(x)/sin8(x) .
dU

dX

(6.4)

(6.5)

Equations (6.1), (6.2), and (6.5) determine the fric-
tion constant y:

A. Dissociation of pairs

or
Bt

= —8 J. (7.1a)

In the presence of a finite stress field o, free
dislocations can be nucleated from pairs. For
simplicity we consider a square lattice and look for
a stationary solution of the Fokker-Planck equa-
tion for the density of pairs I (r) with Burgers
vector b and separation r,

E=yV. (6.6) j; = —2D;~e "BJ.(e "I ), (7.1b)

Let 8(x) be small. For the geometry of Fig. 11
one can define the surface by the distance R (x}
from the center, where x measures the distance
along the perimeter of the circle with radius (R ).
For small 8, R (x} is related to 8(x) by

with the potential U ( r ) =u ( r )ks T,

ao
U(r) = Up(r)+ (bke~;r;+bjek;r; )ojk,

(7.2a)

8(x) = R (x) .d
dX

The friction coefficient is then

12rjh (2~(R ) ) ((Rp) (R )2)
W

(6.7)

(6.8)

and

2Lao r
Up(r )= ln

4m ao

(b cl. )2

r 2 2Ec .

(7.2b)
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l.8—

ary conditions the Fokker-Planck equation predicts
a current j(y) which satisfies

1 y f„dx = 2DII f dxB (e"I ) .

(7.6)

1.2

The main contribution to the integral on the left-
hand side comes from the region x-xM(y). Ex-
panding the potential around the maximum we
find

I, I . I ~ I, I ~ I ~ I

0 10 20 30 t 50 60
xM( y)/0o

X
do

ad
" M~y

X ~~~ x

Zp

' 1/2
8 u (xl,y)

BX
FIG. 13. Potential U(x,y) of a dislocation pair in an

applied stress field as a function of x, the pair separa-
tion in the glide direction. The position of the max-

imum xM(y) depends on the pair separation in the climb
direction, which has been chosen as y=4ap.

where we have assumed xp «xl(y). In this
range of x the distribution function is given by

N(y }e
—[M (xy) —u (Py) }

(7.7}

(7.8)

sin28 cos28

cos28 —sin 28 (7.3)

where 0 denotes the angle between the axis of ap-
plied shear u and the x direction.

In the case of a highly anisotropic diffusion ten-
sor B& «D~~, the dislocation motion is approxi-
mately one dimensional. The current is purely in
the x direction and the Fokker-Planck equation
(7.1) holds separately for all pairs with a fixed
separation in the y direction:

(),I (x,y}=—()„j„(x,y}.

A stationary solution of (7.4a) requires

(7.4a)

(7.4b)

A dislocation gliding along the x direction with
fixed y feels a force F(x)=—()U(x,y)/()x. Since
the stress component o.~ leads only to a constant
force in the climb direction, it is convenient to ig-
nore it and use instead of (7.2a),

It is convenient to work in the coordinate system
in which the Burgers vector under consideration
points along the x axis. The applied shear then
has the components

j(y) = —2D(( I p

() u (xM,y)

BX

1/2

—u(zM(y), y) a00yM '
s h

B
(7.10)

where I p
——I/ap. To find the total number of

dislocations R escaping per unit time and film
area, we integrate the current over all y. The main
contribution arises from small values of y, so that
we can expand around y-O,

with

2

u (xM (y),y )=u (x„0)+ —,K 2,
X~

(7.11)

The normalization N(y) can be obtained by requir-

ing that the total number of dislocations with the
specified y should remain unchanged after the

stress has been applied:

X y e
M

dx N( )e
—[Q(z,g)—Il(PJI)]

—zM

= f I ()e
' '

dx , (7.9)

which yields

U(r)= U()(r) —apxcr„y . (7.S)

The potential as a function of x is shown in Fig.
13. In the absence of an applied shear, the poten-
tial has two degenerate minima, as discussed in
Sec. II D. If a shear is applied, the degeneracy is
lifted, and more importantly, the potential goes
through a maximum at x=xM(y). Under station-

Ea0
x, =x~(y =0)=

4~0.cos28

Ka02E=
4m.kB T

Our final result is

(7.12a)

(7.12b)
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'E
—2E, /k T

R =const&D~~I p e ', (7.13)
k~T

dn 2 R=0, n=
dt

' (u)x,
(7.19)

C
( T) -exp

with c a nonuniversal constant and v=0.369. . .
For x, » g (T) we have

with

IC(h, )=4[1+ , a( T)], — (7.14a)

where the constant is of the order of 0.5. The ap-
proximations used to arrive at (7.13) are only
correct if the escape over the barrier is a rare
event, i.e., the barrier height large compared to
k&T. In our problem E & 4, so that the condition
is at least approximately valid.

So far we have neglected screening effects due to
other dislocation pairs. These can be taken into
account approximately by replacing E by a length-
dependent function E(i=in(r/ao)) in (7.9). Fol-
lowing Ref. 30 we introduce a correlation length

(T), which is supposed to diverge at T as'

From {7.18) and (7.19) it then follows that

~xy 1+&(I )/2~o
at

which for x, »g becomes

(7.20a)

xy 3+a( T)/2

at
(7.20b)

B. Escape of dislocations from grain boundaries

Competing with the nucleation of dislocation
pairs is the escape of dislocations from a grain
boundary in a finite stress field cr. As in Sec. II,
we consider two pinned, parallel grain boundaries
with opposite Burgers vector. The dislocations are
separated by a distance d and the two grain bound-
aries by D and D » d. Now aHow each disloca-
tion to move in its glide plane. The deviation fron1
its equilibrium position is g. The restoring force
I'x is given by

a(T)-
~

T T—
and therefore

4+a( T)

(7.14b)

(7.15)

3 EQO 1 2d2 g2—21n J 2+
Bg 4K ~ Q() Q()

Neglecting the creation and annihilation of dislo-
cations at the fibn edges, the rate of change of the
free dislocation density n is given by

2

+ n.
g2 +J2d 2

(7.21)

di
"=R—(u)x, n'. {7.16)

(7.17)

The first term accounts for the nucleation of free
dislocations from bound pairs and the second term
approximately describes recombination. (u) is the
average velocity of dislocations parallel to their
Burgers vectors,

ao2

4ir rl d2 sinh (mg/d)
(7.22)

where it is assumed that only the J=O dislocation
deviates from its equilibrium position. The force
exerted by the second grain boundary is negligible
if D » d. Close to the grain boundary there is a
harmonic restoring force,

and x, is approximately the cross section for
recombination. Moving free dislocations relax a
strain, as worked out in Ref. 7,

2—Eap
F(x +0)—

4 3d2 '

while far away

(7.23)

D~~ nap
2

Bgl8~ =—
kgT Oxy ~ (7.18)

—Lap ]
2

F(x~ oo )=
4m x

(7.24)

where
waxy =Bxuy denotes the transverse strain

field. Following Ref. 30 we assume that n relaxes
instantaneously to a quasi-steady-state:

Thus the grain boundary acts on the esca]ring
dislocation like another dislocation with opposite
Burgers vector. The potential U(x) can be found
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by integrating the force:

E
U(x) = —f I' dx = ln

4~ d

+ coth

x, =Zap/4' .

The current across the saddle point j is

1+K
j= Ee2a Dll —

2K

vg d& 2~x,

(7.33)

(7.34)

77x—ln sinh
d

2Zap, 2U(x ~0)= —,(mx/d)

Zap2

U(x~ oo )= [In(2nx/d) —1] .

(7.25)

(7.26)

(7.27)

al (x)
Bt

j(x),a
(7.28)

Even though the presence of grain boundaries is a
nonequilibrium phenomenon, we assume that in
the absence of an applied shear, the distribution of
dislocations in the grain boundary is given by a
Boltzmann distribution

The dislocation is indeed confined to the grain
boundary.

In an applied shear stress 0. there is an addition-
al contribution to the potential energy -O.x, which
allows the dislomtion to escape from the grain
boundary. The dislocation current j(x) is given as
the solution of the Fokker-Planck equation:

The current j is interpreted as the escape probabili-

ty per unit time for one dislocation out of its po-
tential well. Note that the potential U(x) Eq.
(7.27) confining a dislocation to a grain boundary
is weaker than the confining potential of thermally
created dislocation pairs [U(x)= (Ea o)/4trln(x/
oo)] if d && ao (small-angle boundary). Thus, the
presence of small-angle grain boundaries may
greatly enhance the production of free dislocations
when an external strain is applied.

After the escape process has gone on for a while,
holes will appear in the grain boundary and I (x) is
affected. If there is a line density NH(t) of holes
then an escaping dislocation sees approximately a
grain boundary with a dislocation separation d (t),
where

1 1

d(t) d
(7.35)

For this approximation to hold, dislocation climb
must be faster than the esmpe process, since the
dislocations need to climb to reestablish a uniform
spacing again. The approximation will break down
if NH(t)-1/d. We simply replace now d by d (t)
in I (x)

d 1

d
NH(t)= 9'E

dt dt

~( ) c —U(X)lk~ T

The constant Co is found by the condition

I xdx=1,

(7.30)

(7.31)

(7.36)

where PE represents the escape probability per
unit time per dislocation. Using Eq. (7.34) with
d (t) instead of d we find

which yields at low temperatures
1/2

Cp — d.6

mE
(7.32)

where

—K+2

N(t) =6 —N(t)—— (7.37)

In an applied stress field more and more disloca-
tions will escape from the grain boundary, and
therefore the distribution of dislocations in the
grain boundary will change with time, i.e.,
BI (x)/Bt is generally nonzero. For the moment we
ignore this process, assuming that the applied
stress is small. Then the analysis of Sec. VII A mn
be taken over. There is again a saddle point in the
potential where BU/Bx= 0 given by

1+K2' D ~ 2K 2'
v3 II Zap

1
Nti(t) = 1

,
—5t(K —1)

The rate equation (7.37) is easily solved by

1/(K —1)

(7.38)

(7.39)
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If N(t), the hole density, becomes comparable to
1/d, the original dislocation density, then the grain
boundary will have been annealed. The charac-
teristic time vz is given by

rg -1/[6(IC —1)d '] . (7.40)

For /=4, Dll ——10 cm /sec, and d =100 A one
finds

a
s

dll

n
=X

rq-(10 ' /U„~) sec, (7.41)

where U„~ is the strain. To see nonlinear behavior
on the time scale of the experiment we need

Uxy & 10

C. Sliding of grain boundaries

Finally, a third source of nonlinear effects is due
to grain boundaries sliding over each other. In a
sample with many different grains, one grain boun-

dary will be intersected by others and can effective-

ly be pinned at the intersections.
For simplicity we consider a square lattice and

low-angle grain boundary intersecting another
grain boundary under a 90' angle, as shown in Fig.
14. If a shear stress is applied along the vertical
grain boundary, then it can glide, while the inter-
secting horizontal boundary remains stationary.
During the glide process the vertical grain boun-
dary feels a periodic potential of period d ~~,

the
dislocation spacing of the intersecting boundary.
The critical stress for this process is such that the
gliding grain boundary can move from one
minimum to the next.

The periodic potential V(s) provided by the in-

tersecting grain boundary is given by

FIG. 14. A grain boundary along y is sliding over a
grain-boundary along x under a shear stress along y.
The horizontal coordinate of the vertical boundary is
given by s while d

~ I

and d& are the dislocation separa-
tions. The vertical coordinate n is assumed constant.

Eao (b„r„)(b r„)
V(s) = (7.42)

1 0
0 bm=

L

(7.43)

with dislocation spacing d j and d
I I

and with posi-
tions

r„=(ndi+a)y, r =(mdll+sg . (7.44)

If dll «dz, then only a few dislocations of the
vertical boundary will feel the pinning potential of
many dislocations of the horizontal boundary.
Performing the sum over m first, we find

The summation over n and m runs over all disloca-
tions of the vertical and horizontal grain boun-
daries with Burgers vectors

Lap
2

V{s,a) =— g (ndi+a)
4dll

2%$
sin

II

2m 2'
cosh (ndi+a) —cos s

dll ~ll

(7.45)

The potential is periodic in s and a with period dll and dz, respectively. The sum over n is effectively cut
off at n -d~~/di, so that in the limit d~~ &&di only the n =0 term contributes:

V{s,a)-—
277

sin s
II

Eap2

4dll 2m 2m
cosh a —cos s

(7.46)

The pinning potential has the form as shown in Fig. 15. For a-dz the energy barrier decreases rapidly
with increasing ratio dq/d II.
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aE-Za, e
—e'd~/2d()

for a=de/4 .
~II

(7.47)

In the opposite limit dz « dll many dislocations of the vertical boundary feel the pinning force of only a
few dislocations of the horizontal boundary. Peforming the sum over n first, we find

SCao
2

V(s, u) = — g (mdll+s)
4dq

2'
sin a

2~ 27TCX
cosh (mdll+s) —cos

j.

(7.48)

The pinning potential has the same form as in Fig.
15 with, however, the energy barrier

b,E-Eao e l
' for a=d~/4 . (7.49)

Gy

From Eqs. (7.47) and (7.49) we see that the energy
barrier can vary from essentially zero to a value of
the order of kz T, depending on the ratio of d~~ and
tg J ~

Let us now consider a situation where the verti-
cal boundary is pinned symmetrically around the
intersection with the horizontal grain boundary.
We want to calculate the critical stress to depin the
boundary at the intersection, assuming that it
remains pinned at the two ends (see Fig. 16).

If no stress is applied, the grain boundary forms
approximately two straight-line segments between
the pinning centers. In general, these two segments
will be tilted with respect to each other, if the in-
tersection is a distance s away from the straight
line joining the two pinned ends (see Fig. 16). The
energy of this configuration in an applied stress
field o,z

——( 0) can be found, using the methods of
Sec. II:

I

The first term gives the deformation energy if the
shear stress is zero, and the second term is just the
energy gain in a finite stress field o,

No/2

hE'=2ao g (b;e/keg crq),
n=o

(7.51)

where Xo is the total number of dislocations in the
grain boundary and L =Nod&. Higher-order terms
in o have been neglected in (7.50). In the limit

dj «dll the pinning potential V~;„(s) is given by
(7.48) and is approximately equal to

2l~a o s —so

where a has been chosen as a =dj/4 and so
denotes the minimum of the potential well. Substi-
tuting (7.52) into (7.50) we find for the total energy

b E (s)=E(s) E(0)—
Lao s

2

8n dj

2
L——,o.aos + Vp,„(s) .

(7.50) v(s)

0
C

I I I
II

0 1/4 1/P. 5/4

FIG. 15. Pinning potential of the vertical grain boun-
dary of Fig. 14 as a function of s.

FIG. 16. Deformation of a pinned vertical grain
boundary under an applied stress field and in the period-
ic potential V(s) of an intersecting grain boundary.
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SCao s
2

b, R(s) =
8m di

2 4' L s
Lao d

But the widely separated dislocation pair just re-
normalizes the shear coefficient, while the gliding
grain boundary will reduce the shear coefficient to
zero.

s —so 1
+2m

dq cosh2m(s —sp)/dJ

(7.53)

VIII. APPLICATION TO MULTILAYER
SMECTIC-B FILMS

Clearly the determing parameter is

A=4m. oL/Eap . (7.54)

EE(s) is plotted for various A in Fig. 17. Only
for A & 1 can thermal activation and nonlinear
stress-strain relaxation occur. If we take the criti-
cal strain of the experiment of Ref. 6 we find that
the grain size L must be roughly 10 A.

There can be a distribution of values of a/dj
and dq/d

~~
so that nonlinear behavior can occur

for any stress however small. Note that this criti-
cal stress (o, -Eap/L) is much smaller than the
critical stress to remove dislocations from a grain
boundary (cr, -Zap/d) Awid. ely separated dislo-
cation pair (d-L) has a similar critical stress, and
the barrier height is in both cases proportional to
the sample thickness. Thus characteristic times
will depend exponentially on the number of layers.

In the previous sections we have examined the
stability and time-dependent response of defect
structures in a two-dimensional solid. We shall
now discuss the application of these results to ex-
periments in smectic films of two or more layers.

%e shall be concerned here with dislocations and
grain boundaries that penetrate all of the layers. If
the coupling between layers is sufficiently weak,
one should also consider the possibility of disloca-
tions or grain boundaries restricted to a single
molecular layer. The widespread occurrence of
such single-layer defects would destroy interlayer
correlations in the positions of the molecules, and
would be contrary to the long-range order observed
in x-ray experiments. The x-ray experiments do
not rule out the existence of single-layer defects in
some regions of the film, however, provided that
large parts of the film are defect free.

From a theoretical point of view, a grain boun-

0.08 A=O

0.06

0.04

0.02

~ ~

/
/

I
/
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/

CO

N~,0
hC

o -0.02
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LLJ -0.OO

—0.06—

-0.08—

-0.1 0 I

0
Syd

FIG. 17. Pinning potential of a vertical grain boundary including the elastic deformation energy for various values of
A=4m.o/Eao. Depinning is possible for A & 1.
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dary or an array of dislocations confined to a sin-

gle layer would appear to be less stable than a
corresponding structure involving all the layers.
For example, as a result of the coupling between

layers, the attractive force between two dislocations
of opposite sign in a single layer will not decrease
to zero when the separation becomes large. Thus,
if the climb diffusion constant is nonzero, the pair
will tend to annihilate in a relatively short time.

In order to apply the results of the previous sec-
tions to dislocations passing through all the layers
in a multilayer film, we must first ask how the
various parameters depend on n, the number of
layers in the film. The force on a dislocation due
to a strain of given magnitude, the energy of in-
teraction between dislocations of fixed separation,
and the elastic constants, measured in units of en-

ergy per unit area, should all be proportional to the
thickness of the film. The mobilities yi

' and y~T',
which relate the drift velocity of the dislocation to
the total force on the dislocation, would be inverse-

ly proportional to the film thickness, for films of a
few atomic layers. It follows that for processes in
which the dislocation motion monotonically
reduces the potential energy, the relaxation rate
should be independent of n when the applied strain
and the initial positions of the dislocations are
specified. On the other hand, for processes requir-
ing thermal activation over a barrier, such as the
pair relaxation discussed in Sec. II0, there will be
a marked decrease in relaxation rates for thicker
films, as the energy barrier is proportional to n.

The relaxation of stress due to isolated pairs,
where the separation of a pair is small compared to
the distance between pairs, will only lead to a finite
reduction of the shear modulus of the system. One
can imagine, however, that a two-dimensional ar-
ray of dislocations, composed of equal numbers of
the different orientations of the elementary Burgers
vectors, may have a series of configurations, each
of which is locally stable with respect to glide, and
such that one may pass from one configuration to
another by gliding over a barrier, whose height is
of the order of nkvd T (We shall c.all this a ran
dom neutral array of dislocations. ) There is likely
to be a substantial distribution in these barrier
heights, and we would expect to find a wide distri-
bution in relaxation rates and nonexponential
response to a change in stress.

In order for a "random" neutral array of dislo-
cations to exist for times scales ~& 10 sec, the typ-
ical separation d between the dislocations must be) (aoyi 'p~)', where yi

' is the climb mobility

fd &ksT, (8.1)

where f is the force on the dislocation. For a film
of n layers, close to the bulk 8—+A transition tem-
perature, this becomes

Ui2 & (4m) 'aolnd . (8.2)

The experimental data cannot be explained by a
simple array of small-angle grain boundaries of a
unique length L and dislocation separation d. We
have seen that such grain boundaries will relax ex-
ponentially in an applied stress at a rate -D~~/dL,
independent of film thickness, to a new configura-
tion which relieves a fraction, of order 50% of the
stress. Interpenetrating arrays of such grain boun-
daries, with a variety of scales for L and d, can
provide a mechanism for relaxation of a larger
fraction of the stress, in a process that may be
represented as a sum of exponentials with a variety
of time scales. Stability against climb, for a time
~=10 sec, requires that the separations between
the various grain boundaries satisfy

L &(Dir)' =3&&10 A,

according to the analysis of Sec. II C. For
d/L=0. 1, this gives glide relaxation times & 10
sec.

Energy barriers to grain boundary gliding, and
exponentially activated relaxation processes, may
occur at the points where grain boundaries of dif-
ferent types cross each other. These effects might
lead to a thickness dependence of the relaxation
time, which would otherwise be absent in the
grain-boundary model. It should be noted here

and p the shear modulus of the film. With our as-
sumption that Dz-10 ' cm /sec for a single
molecular layer and the shear modulus per layer
approximately the Kosterlitz-Thouless value, we
find d ) 10 A, independent of the thickness of the
film. This would then imply a typical response
time for nonactivated glide processes of order 10
sec. (This is slower than the experimental value,
but not unreasonable in view of the crudeness of
our estimates. ) The rate for a "typical" thermally
activated process would be reduced by a factor of
order e ' ", where n is the number of layers in the
film. (The factor 0.6 in exponent is applicable to
the example of the isolated pair studied in Sec. II
D.)

The criterion for a factor-of-2 nonlinear
enhancement of the stress relaxation rate in a ther-
mally activated process is roughly
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that a description in terms of small-angle grain
boundaries is only sensible if d «L. In the case
d =L, it is more appropriate to think in terms of a
random neutral array of dislocations, discussed
earlier.

Stress relaxation at large-angle grain boundaries,
by a process of the Zener type, was considered in
Sec. III using the results of Ghahremani. This
does not seem to be a good candidate for the ob-
served relaxation in smectic films because the
overall relaxation. obtained was fairly small and be-
cause the time scale for relaxation was rather fast.
The relaxations times for this process should not
have a marked dependence on film thickness.

The occurrence of slip at the sample boundary,
considered in Sec. VI, could give arbitrarily large
reductions of applied shear stress. We found, how-

ever, that except for the case of exceptionally
smooth boundaries„which would have to be circu-
lar to a tolerance of « 1 pm, the estimated relax-
ation times are found to be too long compared
with the experiments. Furthermore, this effect
would give a simple exponential relaxation, at a
rate that is relatively insensitive to film thickness.

In Sec. V, we considered the motion of free
dislocations, or of radial small-angle grain boun-
daries, that might be required to relieve stresses in-
duced by a boundary condition which tended to
bend the crystal as it is formed inside the annulus

(see Sec. IV). The relaxation rates found in Sec. V
for this process were too fast to explain the experi-
ments, and once again, the rate would be insensi-
tive to film thickness.

Of the various processes considered in this pa-
per, the thermally activated glide diffusion of
dislocations over interaction barriers in a dilute
"random neutral array" seems the most consistent
with the qualitative features of the relaxation ob-
served by Sprenger et al. in smectic-8 films.
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