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The fluctuating local band theory of itinerant electron ferromagnetism in nickel and

iron is investigated with the use of first-principles numerical calculations. In this theory

the excitations predominantly responsible for the phase transition are fluctuations in the

direction of local magnetization. The free energy in the presence of a fluctuation is

evaluated numerically in the approximation that this direction changes in time and space
slowly enough to justify the use of the static approximation and second-order perturba-

tion theory. The energies and wave functions used to incorporate the band and wave-

vector dependence of the relevant interaction matrix elements were obtained by Slater-

Koster fits to earlier ab initi'o self-consistent energy bands. Results for nickel and iron

are obtained in terms of an effective classical Heisenberg exchange. This is compared
with other theoretical calculations and available experimental data. From the numerical

results, it is concluded that both quantum effects (the time dependence of the exchange

field) and local-field effects are important to account for the transition temperature T~.

I. INTRODUCTION

The fiuctuating band theories' (FBT}of
itinerant ferromagnetism have recently enjoyed
considerable success. These theories are finite tefn-
perature extensions of band theory which differ
markedly from the first such extension, the
Stoner-Wohlfarth (SW} theory. They manage to
incorporate the successes in the ground state of
band theory into a theory of the magnetic phase
transition which has some resemblance to the
Heisenberg model, although the electrons are never
localized.

There are several fluctuating band theories, all of
which are much more successful than the Stoner
model. The best of the fiuctuating band theories
account qualitatively for the observed phenomena,
and quantitatively get the correct order of magni-
tude of the energy scale. Thus there are grounds
for the conviction that these attempts are on the
right track.

However, it must be admitted that nearly all cal-
culations done within the framework of these
theories up to now have been based on very crude
versions of the band structure. Alternatively,

parameters have been chosen phenomenologically.
The end result is that the authors of calculations
differing from one another by more than a factor
of 4 can each be encouraged by their "reasonable"
agreement with experiment.

Since the energetics of the band structure under-
lies the energetics of the elementary excitations in
this picture, it is desirable to carry out the basic
computations using bands retained to sufficient ac-
curacy that approximations to the bands and the
band wave functions are insignificant sources of er-

ror. Then it may become possible to assess the
other approximations which differ from version to
version of the fluctuating band theories.

It was a main aim of the present work to carry
out this program for the particular version of the
FBT obtained by Korenman, Murray, and
Prange' as well as by Capellmann. In this we
believe we have succeeded, although there are some
curious numerical differences with other authors
which will be discussed later, and the situation is
not completely clear cut for nickel.

In the band theory, the interelectron Coulomb
interaction is replaced by a single-particle potential
and an external exchange field which must be cal-
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culated self-consistently by some prescriptio~. We
shall, for brevity, explicitly speak only of the ex-

change field. This is in effect a magnetic field act-
ing only on the electron spin, and has a direction
and a magnitude.

In standard SW theory, the exchange field is the
same at every site. In the FBT, the exchange field
varies from site to site, and an average is taken
over its different possible configurations. The
form of this average (for the partition function} is
as follows:

Z= Dp exp —Ii p

Here p is the exchange field, and E is essentially
the free energy of the system of independent elec-
trons in the presence of this field. The exchange
field depends on site and, if Eq. (1}is to be made
exact, will also depend on an (imaginary} time. If
the position dependence in each unit cell is limited
to that which can be expanded in a finite number
of atomichke orbitals, the exchange field can de-

pend on orbital quantum number too. The integral
then is a sum (functional or path integral) over all

configurations of tM; that is, over all functions
It, (ivy), where i labels the site, v the orbit, and r is
the time variable.

At low temperatures, for very large P, the con-
figuration which minimizes E[p, ] is most impor-
tant. This is the constant, SW configuration, while
nearby configurations give the spin-wave correc-
tions to that theory. The FBT differ from SW
theory by asserting that the temperature depen-
dence is dominated by new configurations which
are farther and farther from the SW configuration,
rather than by the temperature dependence of the
SW configuration itself. Roughly speaking, this
says that spin-wave-like excitations are more im-
portant than single-particle excitations.

The main approximation common to almost all
FBT is to keep only static, t.-independent configu-
rations. One of the main consequences of this ap-
proximation is the neglect of certain quantum ef-
fects. We find here that the static approximation
may have substantial numerical consequences,
Secondly, we keep only configurations locally close
to the SW configuration in the sense that they are
varying slowly in space. %e also take as dominant
the effect of changes in the direction of the ex-
change field, rather than its magnitude. (In these
approximations we differ from another school5'6 of
FBT which assumes that very large changes of
direction are the rule rather than the exception. )

%e thus have a small parameter which can be used

to calculate I' [p, ] for those configurations we be-
lieve to dominate. If the disorder of the configura-
tions is violent, one musk, rely on alloy theories,
adding further uncertainty to the numerical results.
Thirdly, we neglect the v dependence of the ex-
change field; that is, we neglect local-field effects.
Our results give evidence that these effects can be
substantial.

Within the framework of these approximations,
we have computed the free-energy functional I".
This is a first-principles calculation in that we used
ab initio band structures ' to find the Slater-
Koster parameters of a generalized Hubbard Ham-
iltonian. The energy levels and wave functions of
the resulting bands were used to compute I', which
takes the form of a classical Heisenberg model.
Estimates of Tc are then possible by use of mean-
field or spherical-model formulas.

As we discuss below, the static approximation
should give too low a transition temperature, and
too little short-range order. The neglect of the
local-field effects should overestimate the transi-
tion temperature {more so for iron than for nickel)
and should have little effect on the short-range or-
der. Thus. we expect the result of our approxima-
tions to be that the ratio of predicted to observed
transition temperature in nickel is smaller than
that in iron and that there is too httle short-range
order in both cases. We indeed find the ratio to be
about O.S for nickel, 1.0 for iron.

Although it is disappointing that the present ap-
proximations are inadequate to the extent men-
tioned, it should be kept in mind that the correc-
tions to them, although difficult to carry out nu-
merj. cally, do not involve new' phenomena, but
rather the computed value of several constants
entering the theory.

II. FORMULATION OF THE THEORY

We generalize Ref. 2 to a multiband system,
omitting most of the details. A nine-band (st)
short-range exchange Hubbard model,

=Ha+ g U„n;„,n;„, ,

is chosen, where a~ annihilates an electron in
atomic orbital v of spin o on site j, and nJ is the
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corresponding number operator. The parametriza-
tion of the hopping matrix t;& J„and the intra-
atomic Coulomb interaction U& are discussed in
Sec. III.

The free energy F[IJ, ] in (1) may be written

F[I7]=g U.P&vr)'+F0[A

where Fo is the free energy of a system of nonin-
teracting electrons with Hamiltonian Ho in the
presence of an exchange field p (i vr), namely

Fo —T——ln Trexp+ —P Ho +2—U„M(ivr) IJ, (ivr)
l V1

(4)

The notation indicates that the exponential is time
ordered. Here

M(i vr) = —,exp(rHO)a;, o ~ a;„,exp( rHo)—

is the magnetization operator and 0. are the Pauli
matrices. This form is a generalization of that in
Ref. 2, as it contains the orbital quantum numbers.
It is still simple because of the choice of diagonal

U„, i.e., of the formal neglect of interaction be-
tween different orbitals. This point will be dis-
cussed further in Sec. III.

The configurations of p which are considered to
dominate are locally close to the SW configuration.
We thus neglect (or we could treat in Gaussian ap-
proximation) the fluctuations in the magnitude

~
p,

~

. We neglect the dependence of p, on r (the
static approximation) and on v (neglecting local-
field corrections), and we regard the change in the
direction of p as slowly varying. That is, we treat
a,j= ~ P; —PJ ~

as a small parameter where p; is
the common direction of the exchange fields on the
ith site. This is the approximation of short-range
magnetic order.

The free energy is evaluated by utilizing a local-
ly rotated spin coordinate system. In these coordi-
nates the effect of disalignment of the exchange
field directions is displayed as a perturbation pro-
portional to a;J. [See Eqs. (10) to (16) of Ref. 2.]
The zeroth-order term in a,j is the Stoner free en-

ergy (corrected by correlation corrections of the
longitudinal and density fluctuations in the
random-phase approximation). The first-order
term vanishes and the second-order term has the
form of a classical Heisenberg energy,

F~ —Q J"j——.P (5)

L(q)= g J; (1—e ") . (6)

The formula we have evaluated is [see Ref. 2, Eq.
(17) and following material] .

The main numerical result will be the evaluation of
the effective Heisenberg exchange JJ. We give the
formula for the quantity L, which is essentially the
Fourier transform of J,

„,(k) —i,(k+ q)

, /, i E f(")—Eli(k+q)

Here f„(k) is the Fermi distribution function for
energy E„(k), with band index n and wave vector
k. The matrix elements are

6„,i,(k, p) = Q C„,„(k)Ci,„(k+p) U~„.
(8)

Here, C„„(k)transforms from a Bloch wave com-
posed of atomiclike states to band eigenstates. It is
the eigenvector of the effective one electron Stoner
Hamiltonian Ho —p-M with p constant in the z

direction at its minimizing Stoner value M„. The
Stoner magnetization of the vth orbital is

M„= g f„(k)C„' „(k)C„~„(k)o.

The Fermi function is approximated by its zero-
temperature value. The notation in Eq. (8) is
chosen since in the one-band approximation this
quantity becomes equal to the exchange splitting,
which is independent of momentum in that ap-



pfoxlmation.
At small q, Eq. (7) reduces to

L (q)-QAq

where Q is the volume of the unit ceG, and A is
the Bloch wall stiffness. In the long-wavelength

limit this is related to the spin-wave stiffness coef-
ficient D by

The Curie temperature can be evaluated from
L (tI) using the mean-field approximation,

kT =——QL(q),
3 N

or the Green's-function (spherical model) scheme, "
which is quite accurate for nearest-neighbor
Heisenberg models, at least in the classical limit,

I

kTc ———-21 1
(13)

3 E L(q)
I

The results are presented in Scc. IV.

III. GROUND-STATE ENERGY BANDS

A. Nature of the fitting procedure

The first step is to determine the parameters of
the Hamiltonian H. It has been established that
self-consistent energy-band calculations using the
same local spin-density functional exchange-
correlation potential, ' but totally different compu-
tational schemes, provide a consistent description
of the electronic and magnetic properties of the
ground state of a solid. The resulting energies and
wave functions give a good description of many
properties including cohesive energy, lattice con-
stant, bulk modulus, magnetization and form fac-
tors, hyperfine field, and Fermi surfaces. s' ' '
A dll'cct fluctllatlllg baild gcliclalizatlon of splll-
density functional theory has not been written
down, however, and even if it were, the resulting
formulas would be difficult and expensive to evalu-
ate.

We thus resort to the use of a simple Hamiltoni-
an such as that of Eq. (2). This is, strictly speak-
ing, a pseudo-Hamiltonian. It would be incorrect
to find its exact solution, as many processes, such

as scfecmng, have been fcnormallzed away and
compensated for by the choice of its parameters.

The pseudo-Hamiltonian is meant to account for
the low-energy (a few kTc or less) states of the
system. While this can, in principle, be done in
more than one way, we choose a scheme with
parameters such that the Hartree-Pock approxima-
tion is adequate in the ground state. The Hartrce-
Fock wave function is not, of course, the correct
wave function for the electrons, since many strong
correlations exist in the true wave functions which
are absent in the Slater determinant. The wave
function is rather that of quasiparticles which can
be thought of as electrons together with their
correlation clouds. However, the energy gairied by
such strong correlations is so great (several CV, at
least) that these correlations must be preserved
practically intact in the low-energy states of the
system, and can be accounted for by adjusting the
constants of the Hamiltonian.

The excited states will be adequately given pro-
vided tllc state collccrllcd ls sllfflclclltly close to tllc
ground state, so that the correlations are not great-
ly disturbed. One main class of excited states
which we are considering is that of spin waves of
long wavelength, and their nonlinear generaliza-
tions. Such spin waves are given in linear theory
by the random-phase approximation (RPA), which
is well known to be R time-dependent generaliza-
tion of the Hartree-Fock (HF). Alternatively, the
same results are found in the functional integral
scheme by considering configurations locally not
too different from the Hartree-Fock configuration.
Thlls wc cxpcct that tllc pRrainctcrs adjusted to fit
the ground-state energy bands will be correct in the.
calculation of this class of states as well.

We do not choose parameters so that the HF ap-
proximation matches the single-particle energies
scen in photoemission. Thc states concerned
there do not play an important role in the thermo-
dynamics, This class of excitations does change
the correlation structure of the wave function, so
that thcI'c afc corrections to bc n1adc in comparing
the energy of the hole with the band-theoretic
single-electron level. Fitting to the photo-
emission measurements is possible, but this would
be a different scheme, and the resulting pseudo-
Hamiltoman would be useful for different pur-
poses. We have therefore decided to use parame-
ters which fit the ground-state bands, as calculated
by first-principles theory, and which have been
very successful in explaining ground-state proper-
ties.
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8. Specific fitting procedure

The hopping matrix that appears in Eq. (2) was

obtained, therefore, using the semiempirical ap-
proach of fitting the spin average of ab initio self-
consistent energy bands ' derived from the local
spin-density functional formalism. Specifically the
Slater-Koster linear combination of atomic orbitals
(LCAO) method and a basis set consisting of one
4s, three 4P, and five 31 functions was used. This
procedure effectively reduced the 75 LCAO basis
functions used in the original calculations to nine
orthonormal functions. Since we applied the varia-
tional theory using I.CAO basis functions, not
orthogonal to those of the core electrons, it is
necessary to include all nine valence and conduc-
tion bands in our fitting procedure to keep the
higher conduction bands from collapsing. Al-

though these higher conduction bands may not
contribute much to the free energy since their d
admixture and the corresponding matrix elements

are small, they may have some effects on the quali-

ty of the lower state wave functions which are not
checked in the empirical approach employed here.
(In effective-mass theory, for example, we know

that the curvatures of the energy bands are directly
related to the momentum matrix, and thus the
wave functions. )

To obtain the parameters we use the least-
square-fitting technique of Connolly based on a
sampling of 89 (fcc Ni), and 91 (bcc Fe) indepen-

dent points in « th of the irreducible Brillouin

zone, with energies ordered according to the sym-

metry of the wave functions to avoid any ambigui-

ty of assigning the energy levels near an accidental
degeneracy. Furthermore, states with energies
above 1.0 Ry were weighted by a factor of 0.5 to
emphasize numerically the importance of the low-

lying d bands. It is necessary to include a fairly
long-range p-p, p-d, and s-p integral since LCAO
basis functions are being used to describe the near-

ly free-electron high-conduction states. The final

rms errors are 0.012 and 0.016 Ry for Ni and Fe,
respectively. The rms errors are improved (0.007
and 0.012 Ry) if the three higher conduction bands
are excluded.

The intra-atomic Coulomb interaction U, =b,„/
M„ is taken to be diagonal with two parameters
(6,, and b,, ) giving the exchange splittings of the

corresponding representations. It is taken to be
zero for s-P symmetry. The justification for the
choice of diagonal screened Coulomb interaction is
that very considerable simplification results, while
the bands can still be fit well. This choice does
leave out explicit reference to the sources of
Hund's rule energies. The choice of parameters,
however, includes these effects in the ground state,
and we are not considering states in which Hund's
rule is broken. It may be important to include
such terins in an eventual calculation of local-field
effects, but it is possible to neglect them in this pa-
per.

The parameters were adjusted to reproduce the
overall exchange splitting found in the ab initio
calculations' "based on the von Barth-Hedin" ex-
change correlation potential. This is a better ap-
proximation for Ni, where E„,(k) E»(k) is —al-
most constant than it is for Fe, where E„,(k }
—E»(k) varies substantially over the d bands.

[b,, ranges from 1.65 eV (N2) to 2.11 eV (825),
and b„ from 1.51 eV (Hi2) to 2.18 eV (Pi2).] Ad-

8
ditional dispersion arising from the hybridization
with s-p electrons is included. The parameters
chosen are shown in Table I together with, the
number and magnetic moments of tzs, es, and s-P
electrons. The top panels of Figs. 1 and 2 compare
our density of states (solid line) with that of the
first-principle results ' (dotted lines}.
Tetrahedron methods ' based on 505 (506) points
in —„th of the Brillouin zone for Ni (Fe) were

used, and Gaussian broademng functions of 0.01
Ry full width at half maximum (FWHM) were in-
cluded in both ab initio and empirical calculations.

The agreement of the empirical bands with the

TABLE I. Exchange splitting (5) in Ry, electron density (n), and magnetization (m) for
t2~, e~, and s-p electrons.

0.145
4.31
1.10

0.160
2.52
1.14

0.00
1.17

—0.09

0.45
5.47
0.35

0.45
3.26
0.26

0.00
1.27

—0.03
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FIG. 1. Total and orbital projected density of states
for nickel, including a Gaussian broadening function of
0.1 eV FWHM. The ab initio results of Wang and Cal-

la@ray {Ref.9) are shown as dotted lines in the top panel
for coinparison.

ab initio ones is good with the differences being
slightly larger for Fe. The diagonal choice of ex-
change energy may account for this, since the off-
diagonal terms are of importance only if more than
one d hole is likely to be present on the same
atomic site. The remaining panels of Figs. 1 and 2
show the orbital density of states of t2s, es, and s-p
characters. The structure of the s-p electrons
shown in the bottom panel is due to hybridization
with the 3d electrons. This is the reason that the
number of s-p electrons for Ni (1.27) and Fe (1.17)
shown in Table I are larger than predicted by
Fermi-surface d-hole counts.

A. Bloch vraB stiffness coefficient

We have calculated L {q) [Eq. (7)] using the
tetrahedron method based on 89 (Ni) or 91 (Fe)
points in 4, th of the Brillouin zone. Results for q
along the three-principal directions are shown in
Figs. 3 and 4 for Ni and Fe, respectively. In the
long wavelength limit, the calculated I (q) for Fe
is quadratic with very little direction dependence
up to approximately 0.2 a.u., while that of Ni exhi-
bits some anisotropy with maxima along [100]
direction and minima along [110]directions. The
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FIG. 2. Total and orbital projected density of states
for iron including a Gaussian broadening function of 0.1
eV FWHM. The ab initio results of Callapvay and
%'ang (Ref. 10) are shown as dotted lines in the top
panel for comparison.
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FIG. 3. Fourier transform of the Heisenberg ex-

change interaction I.(q) [Eq. (6)] for nickel along the
three principle directions.
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FIG. 4. Fourier transform of the Heisenberg ex-

change interaction L(q) [Eq. (6)] for iron along the

three principle directions.

angular averaged spin-wave stiffness parameters
are shown in TaMe II where they are compared
with first-principles calculations and experimen-
tal data. In the case of Ni our results are slightly
larger than experiments. In the case of Fe, howev-

er, the theoretical value is almost a factor of 2 too
large. Such results may appear to be puzzling at
first, since it is the ground-state energy bands of
Ni rather than Fe that are currently in some doubt.
Furthermore, good agreement with the spin-wave
spectruin for both Ni and Fe has been reported by
Cooke et al. using the same approximation as we
have made for the exchange and correlation poten-
tial. The parameters chosen by these authors are
very different from ours for Ni, but quite similar

for Fe. Their results, especially for Fe, were not
veqr sensitive to the details of the band structure.
The major difference between the two calculations
for Fe is that Cooke et al. did not neglect local-

6eld effects. This is evidence that such effects can
be numerically significant in iron.

Edwards and Rahman have shown that local-
field effects, in which the perturbation of the inter-

nal structure of the atomic site is taken into ac-
count in the RPA, will contribute an additional
term to the spin-wave stiffness coefficient. On the
basis of previous numerical ' results, however, they
tentatively concluded that such effects are negligi-
ble. Cooke et al. compute the response (sus-

ceptibility) to a varying exchange field which acts
on just one atomic orbital. The response is thus a
matrix in orbital space which must be suitably di-

agonalized to find the spin-wave energies. This is

a correct way of treating the local-6eld effects
which is facilitated by the choice of a diagonal ex-

change interaction. In the functional integral

method, the local-field effect was omitted when it
was assumed that the exchange field (|7„is indepen-

dent of the orbital v. Constraining the response of
the system will raise the estimate of the excitation

energy. Qualitatively our calculations, which give

larger stiffness than observed for both Ni and Fe,
are consistent with the correct sign of the local-
6eld corrections. Numerical calculations for the
local-field effects within our formalism appear to
be practical and are in progress.

3. Effective Heisenberg exchange parameters

The Heisenberg exchange parameters JJ evaluat-
ed by Fourier transform of L (q) are shown in
Table III. In iron JEJ changes sign, being fer-

TABLE III. Effective Heisenberg exchange interac-
tion (meV) for Fe and Ni.

TABLE II. Stiffness coefficients in units of meV A,

Experiment

Ni
Fe

662,' 563"
560'

555'
330d

'Present.
"Reference 27.
'Reference 28(a), neutron scattering measurement at
4.2 K.
Reference 28(b), neutron scattering measurements extra-

polated to 0 K,

(111)
(200)
(220)
(311)
(222)
(400)
(331)
(420)
(422)
(333)

8.9
9.7

—0.5
8.0

—2.3
0.9
0.3
0.3

—0.3
3.1

(110)
(200)
(211}
(220)
(310)
(222)
(321)
(400)
(330)
(411)

1.93
0.38
0.38
0.30

—0.04
—0.05

0.04
0.04
0.02
0.02
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romagnetic between nearest neighbors but antifer-
romagnetic at longer range. The ferromagnetic
ground state is stable. This is not a trivial result,
as the Bloch wall stiffness can easily turn out to be
negative, especially if s-p bands are omitted. The
competition between short-range ferromagnetism
and long-range antiferromagnetism can lead to
enhanced short-range order, as nearby spins are
kept aligned when long-range disorder has become
favorable. For nickel, however, J,J is a monotoni-
cally decreasing function of the atomic separation.
Thus our calculations, based on the classical
Heisenberg model, predict somewhat more short-
range magnetic order (SRMO) in iron than in nick-
el, but in both cases the scale is insufficient to fit
the numbers derived from the neutron and
specific-heat data.

Another interesting difference between nickel
and iron is the fact that J1, in the case of nickel, is
of rather short range, being essentially zero beyond
the fourth-nearest neighbors, while in the case of
iron, JJ remains appreciable over a very long range
along the [111]direction. Some of these differ-
ences can be seen from the structure in L (q) for
Fe in Fig. 4. This structure is due to the sudden
cutoff of f„(k) and/or f~(k+q) [sm Eq. (7)], over
a large region of the Brillouin zone which occurs if
the Fermi surfaces are flat and perpendicular to q.
As can be seen from Fig. 2, states near the Fermi

energy are predominantly of t2g character in iron.
Therefore, the J,J, which is the Fourier transform
of L (q), converges very slowly along the nearest-

neighbor [111]direction where the tis d orbitals

point.
There have been several previous attempts to

evaluate JJ for iron. Including only the nearest-

neighbor interactions, Weiss obtained Jo~ -5 meV
which is of the same order of magnitude as ours.
More recently, several calculations ' have used
the recursion method for a large cluster of atoms
whose spina are arranged to extract information
about the exchange interaction. Owing to the size
of the cluster, most of these calculations were lim-
ited to the five d-band tight-binding model,
neglecting completely the sp-d hybridization. The
calculations, however, are not limited to the short-
range order approximation assumed here. The re-
sulting JJ, up to fifth neighbors, are a factor of 3
to 7 larger than ours depending on the particular
model used to simulate the Heisenberg exchange
interactions. (The published constants give nega-
tive stiffness values, and would predict a nonfer-
romagnetic ground state. This is an artifact of

the analysis which was used to obtain real space J;~
from configuration energies however, as the basic
calculations show the ground state to be ferromag-.
netic. A re-analysis has recently appeared. ') Al-

though we differ by a considerable factor on the
magnitude of the exchange constants, we do agree
on the long range in the [111]direction and on the
competition between ferromagnetism and antifer-
romagnetism.

C. Curie temperature

Several distinct calculations ' ' ' based on the
fiuctuating band theory have been used recently to
estimate the Curie temperature T~ in iron and
nickel. In most of these estimates a single-site ap-
proximation (corresponding to the mean-field
theory in the Heisenberg model or the coherent-
potential approximation) has been made. A
characteristic of such an approximation is that
spin configurations with wave numbers in the
outer part of the Brillouin zone dominate the
determination of T~, due to the greater volume of
momentum space there. The quoted value of T~
in these theories contains corrections, different in
each case for quantum, alloying, and/or nonlinear
effects, but in several cases, the mean-field estimate
Tc [i.e., Eqs. (7) and (12), but with the bands
used by the authors in question] can be extracted
from the published results. This number depends
only on the band structure, and a comparison can
thus afford an assessment of the importance of this
aspect of the problem.

Hubbard estimated the cost in energy to change
the exchange field at a single site while keeping the
fields at other sites fixed at their zero-temperature
value. A special case is the energy cost upon
changing only the direction of the exchange field
by a small angle P with all other fields. It is
straightforward to show that this energy is
kTc P l6. Capellman derived, using a different
approach, a classical Heisenberg model with ex-
change coupling equivalent to ours. These two au-
thors use what amounts to a five-independent-band
approximation, with everything assumed diagonal
in the band index. Once that approximation is
made, only the density of states (DOS) appears in
the formula. Hubbard takes each independent
DOS to be one-fifth the total d band DOS.
Capellmann takes the eg DOS twice and the t2g
DOS three times. These approximations are denot-
ed T~

"' and Tz ",respectively.
The Cambridge group ' considers various spin
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arrangements of a large iron cluster. They employ
a tight-binding model with five d orbitals and
neglect in most cases, the sp bands. Among the
confligufatlons considered by I ln-Chung and Hol-
den is the one calculated by Hubbard. These au-
thors use a novel calculational scheme based on the
continued fraction recursion method. This method
includes wave-function effects.

As can be ssen from Table IV, there is a factor
of 4 difference between the largest and smallest re-

suit. We emphasize that this arises only from
differences in approximations to the band energies
and wave functions (and, conceivably, from the nu-
merical treatment employed).

To test the sensitivity of the independent-band
approximation we have repeated the calculations
using our projected DOS shown in Figs. 1 and 2.
Letting 5 be constant in Eq. (7), which gives a rig-
id exchange splitting, doing the sum over q,
Tc "' (i = 1,2) can be written as follows:

TABLE IV. Curie temperature for Ni and Fe
evaluated by the Green's-function scheme (Tc") or
mean-field approximation (Tc "). Additional approxi-
mations to the matrix element (see text) are denoted by
Tc"' (using d electrons density of states) and Tc (us-

mg f2g and 8g density of states).

Fe

TMF

TGF
C

TexPte

1220'
1900"
1420'
1200'
1250'
550
1051'
1043

320'

280'
200d
290'
631

'Present.
bReference 35.
'Reference 5.
"Reference 3.

where p„(E) is the (orbital projected) DOS for
spin o. and E~ is the Fermi energy. This equation
has been written to have a singularity only at
x =y =E~. It is equivalent to Capellmann's ex-
pression. The result obtained using the d DOS for
all v (i =1) or t2s and es DOS (i =2) are shown in
Table IV. For this calculation, the combined ap-
proximations of neglecting s-p states and using an
effective one-band model has an effect of order
20%.

One problem is that the number of d electrons
(nz) is ambiguous if sp states are neglected.
Capellmann has found that Tc for iron [including

'

a factor S(S+1) for quantum corrections (see Sec.
IVD)] ranges from 800 K (n~=6. 8) to 1300 K

(n~ 7 2)——B.ot.h Hubbard and Lin-Chung and Hol-

den choose nd to be 7.36 electrons for iron while

our calculation which allowed sp-d hybridization

yielded 6.8 d electrons.
In the case of nickel, the exchange splitting is an

important parameter. Capellmann noted a linear

dependence of Tc on 5 in the region between 0.2
and 0.5 eV. We have not so far tested the sensi-

tivity of our results to a change of 4. Our Bloch
wall stiffness, however, is not much larger than

that of Cooke et al. who used a much smaller

value than we did.
The factor of 2 disagreement between our results

and those of Refs. 3 and 35 is not readily ex-

plained. The latter authors used a novel method,

which has not been so thoroughly tested and which

could conceivably be subject to unsuspected errors.

We are inclined to believe that the technique is

sound and that the neglect of s-p bands has a large

effect which is compensated by the one-band ap-

proximation used in Ref. 5. The relatively low re-

sults of Ref. 3 must then arise from a surprising

sensitivity of the calculations to details of the as-

sumed density of states. Whatever the case, the

common wisdom that it is adequate at the 20% ac-

curacy level to make considerable simplifications in

band calculations of this type is clearly suspect.
Although the mean-field approximation facili-

tates comparison of different band theoretical ap-

proximations, a superior approximation is given by
the Green's-function (or spherical model) method,

and results in Eq. (13). A major improvement is

that the Green's-function formula properly ac-
counts for the importance of the long wavelength

configurations. The relatively modest lowering of
the value of Tc as compared with the mean-field
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result indicates that our results do not predict
much short-range order. The results are given in
Table IV. Although the theoretical value for iron
agrees well with experiment, it should be recalled
that our theoretical value of A for iron was almost
twice as large as found experimentally. A calcula-
tion. which gives an effective Heisenberg Hamil-
tonian having the observed value of A will thus
lower the predicted T~ substantially. This will be
true if the Green's-function formula is used, even
if the short wavelength energy spectrum is not
changed appreciably. It is then clear that the
correct (including local-field corrections) classical
Heisenberg model based on the static approxima-
tion significantly underestimates the transition
temperature for both nickel and iron.

D. Quantum effects

We have arrived at a classical Heisenberg model
as an approximation to the energies of spin config-
urations which appear in the functional integral
representation of the partition function. The time
dependence of the fluctuations arises from the need
to account for the failure of the components of
spin operators M(i vr) to coinmute with one anoth-
er and with Ho. The static approximation is clas-
sical insofar as it neglects these commutators.

The traditional estimate of the importance of
quantum effects on Tc comes from the single-site
approximation, and results in an enhancement of
Tc by a factor S(S+1)/S, a factor usually es-
timated as about 2 for Fe and 3 for Ni. This is
the quantum correction used by Capellmann and
others.

It is clear, however, that the correction is wave-
number dependent, as may be seen from spin-wave
theory. First, there is no factor of this type, in the
calculation of the spin-wave constant D or A.
Second, provided the temperature satisfies kT» E&, where E& is the quantum of energy (given
approximately by Dq ), then the effects of thermal
excitation of the spin wave may be treated classi-
cally. Although the static approximation is some-
times justified as a high-temperature approxima-
tion, this is only correct if there is a gap in the im-
portant excitations such that some of the excita-
tions are highly excited thermally but all others are
negligibly excited. We have every reason to be-
lieve, however, that magnetic excitations enjoying
appreciable phase space extend continuously up to
at least twice Tz in iron and nickel. This is in
contrast to the insulating ferromagnets which have

a maximum magnon energy comparable to T~.
In spin-wave theory, it is clear that the classical

approximation greatly overestimates the degree to
which the short wavelength configurations near the
zone boundaries are excited, thus decreasing the
magnetization much more rapidly with tempera-
ture, lowering the predicted T~ and leading to less
short-range order than observed. Unfortunately,
the spin-wave theory is a linearized theory, and no
method presently known is able to assign definite
quanta of energy to nonlinearly excited configura-
tions.

Another effect of the static approximation is to
render uncertain the basic energy calculations in
the short wavelength region. These calculations
have neglected terms with nonvanishing thermal
frequencies co„=nkT(2n +1) in energy denomina-

tors on the basis that they were practically in-

dependent of wave number and contributed only to
J;;. However, in the short wavelength region, the
difference in band energies is comparable with the
thermal energy and such terms are not obviously
negligible. In fact, it is known that in the short
wavelength region corresponding to the Stoner con-
tinuum, there is a rapid decay of spin excitations
into particle-hole excitations.

The estimate of the energies at short wave-

lengths, corresponding to the Stoner continuum, is
thus uncertain for a number of reasons. In addi-
tion to the ones just mentioned, there is the ques-
tion of the validity of the effective Hamiltonian in
this energy range, as well as the question of wheth-

er vertex corrections are needed when the correla-
tion of the particle-hole pairs is reduced. Even
given the energies correctly, it will be difficult to
take into account the quantum effects in doing the
statistical mechanics.

V. SUMMARY

We have attempted to calculate spin-configur-
ation energies using approximations to the band
structure which are not a main source of error.
Although this procedure ends up within sight of a
final theory, there are still significant corrections
to be made, and improved formulas must be em-

ployed. One relatively simple correction is that of
local-field effects.

A much deeper problem is that of dealing with
the failure of the static approximation. This prob-
lem manifests itself as that of calculating, counting
and quantizing the energies of short wavelength ex-
citations. (In other versions of the theory, s which
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deal only with Ising-like spin configurations, even

the long wavelength spin-wave excitations can only
be obtained by abandoning the static approxima-.
tion. ) This kind of excitation cannot be observed
directly and is of interest only through indirect and
average effects on a few quantities like Tc, the Cu-
rie constant, and the degree of short-range order.

Several papers have recently appeared which
conclude that there is little short-range magnetic
order (above Tc) in iron or even in nickel.
The basis for this conclusion in all cases is that in
a Heisenberg model (treated in an approximation in

which quantum corrections are independent of q),
the spin-correlation function C(q) = (S;(q)
XS;(—q) ) falls off smoothly with increasing q.
The integral of C over q is fixed at a (large) value

[approximately S(S+1)/3 as in a pure Heisenberg
model]. The value C(0)/T gives the susceptibility

X(T) (and thus the Curie constant can be found).
In this model, the greater the degree of short-range
order, the greater is the peaking of C(q) near

q =0, and because of the integral condition, the
greater is C(0) and thus the Curie constant. Nu-

merically, it is then difficult if not impossible for
the theory to achieve a degree of short-range order
sufficient to explain the experimental data on neu-

tron scattering, specific heat, * and magneto-
elasticity at the same time predicting that the
magnitude of the Curie constant is as small as is
observed. Since fluctuating band theories in, the
static approximation give an effective Heisenberg
model, these theories too are defective in this re-

gard, as we have found in this paper.

One therefore has the choice of maintaining that
the FBT in the static approximation is accurate in

its prediction of short-range order (thus implying
that there is no short-range order) or of accepting
that the experimental data require short-range or-
der and thus recognizing the need to improve the
implementation of the FBT by including quantum
corrections.

The leading alternative in the FBT which has no
short-range order is the generalization of the local
moment theory. ' Hubbard has emphasized that
this form of the theory cannot be expected to ap-

ply to nickel, which would need a different theory
than iron. Thus, abandoning short-range order
would require new explanations of those experi-
mental data which now are easily explained on the
basis of short-range order, ' and these ex-
planations would presumably be quite different for
iron than for nickel. Our choice is to accept the
experimental data as requiring short-range order
and to search for ways to improve the theory
which will enable the degree of short-range order
to be calculated from first principles. Some ways
in which the extension might be carried out are
discussed in Ref. 43.
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