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Numerical techniques are used to investigate the spin dynamics of the nearest-neighbor
fce Heisenberg antiferromagnet on the fully occupied lattice. The dynamic structure fac-
tor and the distribution of modes are calculated in the harmonic approximation. Despite
the absence of three-dimensional long-range order the dynamics of the disordered antifer-
romagnet resembles the dynamics of a fcc antiferromagnet with type-III order.

I. INTRODUCTION

The nature of the ground states and the low-
lying excited states in face-centered-cubic (fcc) an-
tiferromagnet (AFM) with nearest-neighbor (NN)
interactions continues to be an interesting problem
in the field of disordered magnetism. The inability
to minimize simultaneously all nearest-neighbor
bond energies, sometimes referred to as frustration,
leads to a highly degenerate ground state with no
three-dimensional long-range order. Some years
ago Danielian investigated the ground state of the
Ising fcc AFM with NN interactions."?> He found
a degeneracy of 2% with R~N!/3, N being the
number spins. Although in the thermodynamic
limit there are an infinite number of ground states,
both the specific heat and the susceptibility vanish
at T=0. The dilute fcc Ising AFM with NN in-
teractions has been investigated by Grest and
Gabl.> They found a crossover from frustrated
AFM to spin-glass behavior as x, the fraction of
occupied sites, fell below 0.4. The spin-glass phase
extended down to the percolation concentration
(x~0.18).

Analogous studies of the fcc Heisenberg AFM
began with the work of Anderson who considered
possible ground states of the fully occupied lattice.*
More recently Alexander and Pincus’® discussed
ground-state configurations in the fcc AFM and
other fully frustrated models. In an earlier study®
the present authors reported the results of a nu-
merical investigation of the ground states of the
classical site-dilute fcc Heisenberg AFM with NN
interactions. The ground-state energy and the rms
ground-state magnetization (which vanishes in the
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thermodynamic limit) were calculated as a function
of x for 0.1 <x <1.0. For the fully occupied lat-
tice (x =1.0) it was found that the rms magnetiza-
tion was zero for all ground-state configurations
whereas the ground-state energy per spin was al-
ways equal to —2J, J being the exchange interac-
tion. Both of these results were shown to be in
agreement with a theoretical analysis based on the
Luttinger-Tisza method”-® as formulated by Ka-
plan et al>°

In this paper we extend the analysis begun in
Ref. 6 to the low-lying excited states of the fcc
Heisenberg AFM with NN interactions. We use
matrix diagonalization!! and equation-of-motion
techniques'? to calculate the density of harmonic
spin-wave modes and the corresponding zero-
temperature dynamic structure factor. We limit
our analysis to the fully occupied lattice; spin-wave
excitations in dilute systems will be considered in a
subsequent paper. Additional comments on the
ground-state configurations are presented in Sec.
11, while the dynamics is treated in Sec. III. Al-
though there have been earlier studies of the
ground states of this system, to the best of our
knowledge ours is the first investigation of the
dynamics.

II. EQUILIBRIUM CONFIGURATIONS
OF THE FULLY OCCUPIED LATTICE

In our analysis of the fully occupied lattice we
discovered two classes of equilibrium configura-
tions depending on the approach followed in
minimizing the energy. Both approaches involved
rotating individual spins into the direction of their
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local field.>!! Configurations belonging to the
first class (class I) were obtained when the spin be-
ing rotated was selected at random from the entire
sample with the process being continued until the
energy stabilized at —2NJ. In addition to class I a
second class of configurations was obtained when
the spins being rotated were chosen in sequence
along a row in a particular (001) plane. After each
spin in the row was rotated the process was repeat-
ed in a neighboring row in the same plane. When
all the spins in the plane had been rotated the cor-
responding rotations were carried out in an adja-
cent plane. In all instances periodic boundary con-
ditions were assumed.

The class-I configurations are easily described.
Each (001) plane is a square lattice with two-
dimensional AFM order in which in-plane
nearest-neighbor spins are antiparallel. The disor-
der arises in the random orientation of the antifer-
romagnetic axis from plane to plane. Since a spin
interacts with equal numbers of “up” and “down”
spins in each of the nearest-neighbor planes the in-
terplanar exchange field vanishes leaving a net in-
traplanar exchange field equal to —4J. The degen-
eracy associated with the orientation of the antifer-
romagnetic axes gives rise to a ground-state pro-
portional to the number of (001) planes or,
equivalently, to N!/3.

The class-II configurations, which are the ones
discussed in Ref. 6, can be viewed as defective
class-I configurations in which the spins in a given
(001) plane can be subdivided into at least two in-
terpenetrating antiferromagnetic clusters (Occasion-
ally spins in adjacent planes are found to belong to
the same cluster.) All spins in a given cluster are
either parallel or antiparallel to the cluster axis.
However, the orientations of the cluster axes are
correlated so as to ensure that the exchange field
for each spin is equal to —4J. This condition can
be expressed mathematically as

2}00s9,7=—4 (i=1,...,N), (1)
where 6;; is the angle between spins i and j and the
sum is over the twelve nearest neighbors of site i.
As pointed out in Ref. 6 the clusters differ from
configuration to configuration coming in various
sizes with unequal numbers of up and down spins.
We have not succeeded in determining the degen-
eracy of the defect states. However, in view of the
correlations in the orientations of the axis which
are required in order that Eq. (1) be satisfied it
would appear that the class-II configurations are
no more numerous than those belonging to class I.

Finally we should mention that the ground-state
configurations of the fcc Ising AFM have energy
equal to —2J"2 and thus also qualify as ground
states for the classical Heisenberg Hamiltonian.
However, as far as we can tell our numerical pro-
cedures did not generate any Ising-type ground
states.

III. DYNAMICS OF THE FULLY
OCCUPIED LATTICE

In Ref. 12 it was shown how equation-of-motion
techniques can be used to calculate the dynamic
structure factor S(q,E) in the harmonic spin-wave
approximation provided the equilibrium spin con-
figurations are available as input. Using the
methods outlined in Ref. 12 and the configurations
discussed in Sec. II we have calculated S(q,E) for
a 4000 spin array with periodic boundary condi-
tions. To within the accuracy of the method our
results are insensitive as to whether we use class-I
or class-II configurations. With the exception of
the (preferred) [001] direction S(q,E) displays a
sharp peak when plotted as a function of the ener-
gy E (see Fig. 1). The width of the peak is deter-
mined largely by instrumental effects (the exponen-
tial cutoff in the integration of the equations of
motion gives rise to a half-width at half maximum
of 0.5J) whiles its position shifts with wave vector

—

q.
In Figs. 1, 2, and 3 we have plotted the peak po-
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FIG. 1. Position of the spin-wave peak vs G for @
along [100]. The wave vector is related to n through the
equation q=(27/10) (n,0,0). The solid circles are the
results for the disordered magnet; the energies of the
mode of the type-IIl AFM [Eq. (2)] are denoted by X.
Numerical results are from a single configuration with
4000 spins. Broken curve is S(q,E) (vertical energy
scale) for n =1. The results for a single Ising ground-
state configuration of an array of 2048 spins are shown
as open circles for corresponding g values.
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sition for q along the [100], [110], and [111] direc-
tions. The numerical results, shown as solid cir-
cles, are compared with the spin-wave dispersion
curve for a fcc Heisenberg AFM with type-III
three-dimensional long-range order.'> In a type-III -
fce antiferromagnetic all spins are collinear. The

o(q)=4J [cos(gy /2)cos(g, /2)+cos(gy, /2)cos(q; /2)

ordering of successive (001) planes is described by
the sequence aba b where the bar denotes the anti-
parallel (time reversed) configuration. Thus,
equivalent planes are four layers apart. According
to Ref. 13 the spin-wave energies in the type-III
AFM are given by

+cos(g, /2) cos(q, /2)+ 17V%[1—cos(g, /2)cos(q, Vo)) RER (2)

for unit spin and lattice constant. Here J denotes
the exchange interaction in the Heisenberg Hamil-
tonian

%=E'J§;'§j s (3)
)
where the prime signifies that the sum is over
nearest-neighbor spins. The energies calculated
from (1) are denoted by x.

It is apparent that there is a close resemblance
between the dispersion curve for the disordered
magnet and that associated with type-III order."* It
is also evident that the disorder associated with
having the spin axes of the individual (001) planes
point in random directions has a small effect on
the dynamics. The dynamical behavior for g
along [001] is also similar in the two cases. From
Eq. (2) we see that the spin-wave energy vanishes
when the direction of propagation is along the pre-
ferred axis. Similar behavior, i.e., a peak in
S(q,E) centered at E =0, is obtained for the disor-
dered system for both classes of ground-state con-
figurations.

We have also studied the dynamics associated
with the Ising ground states. The latter were con-
structed by the method devised by Mackenzie and
Young,!® in which the integers +1 were assigned
with equal probability to each of the (001) planes.
If the jth plane had n;= 41, spins in correspond-
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FIG. 2. Same as Fig. 1 except §=(27/10) (n,n,0).
The open circle coincides with the solid circle for n =5.

|
ing locations in the j —1 and j +1 planes were
parallel; if it had n;= —1, they were antiparallel.
When allowance is made for periodic boundary
conditions the configuration of an array with L
(001) planes (L +1=1) are specified by sequences
of length L —2. Calculations carried out on

8 X 8 X 8 arrays indicated that the dynamics closely
resembled that of the class-I and class-II configu-
rations. This is evident from Figs. 1—3 where the
results from a single Ising configuration are plotted
as open circles. There is good agreement between
the three sets of data for q along [110] and [111].
For q along [100] the discrepancies are noticeably
larger, although the behavior is qualitatively simi-
lar in all three cases.

In order to obtain additional insight into the
dynamics we have diagonalized the dynamical ma-
trix!! and obtained the corresponding eigenvalues
and eigenvectors. The distribution of modes for
five configurations each with 256 spins is shown in
the histograms in Fig. 4. As with the dynamic
structure factor our results are insensitive as to
whether we use class-I or class-II ground states.
The data in Fig. 4 are to be compared with the
corresponding results for the type-II antiferromag-
netic shown in Fig. 5. It is apparent that the dis-

-

FIG. 3. Same as Fig. 1 except §=(27/10) (n,n,n).

The data are symmetric about n =5. The open circles

coincide with the solid circles for n =0 and 5.
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FIG. 4. Histogram for the density of states of a
disordered AFM. The data are from five configurations
each with 256 spins. The crosshatched area denotes
modes with E <0.001.

tributions of modes in the two figures are qualita-
tively similar. However, the histogram in Fig. 6
has a cutoff at E~6J whereas the modes in Fig. 5
extend out to higher energies. Comparison with
Fig. 1 shows that the modes with energies above 6J
are associated with the peak in S(q,E) for q in
the neighborhood of (+,0,0) or (0,+,0). The
cross hatched areas in the two figures represent the
contributions from the “zero-energy” modes
(E <0.001). It is these modes which give rise to
the zero-energy response for q along [001]. Just as
in the type-III AFM (Ref. 16) the presence of these
modes indicates that the ground state of the disor-
dered AFM is unstable with respect to spin fluc-
tuations.

We have also calculated the localization indices'!
L, associated with the various modes. As dis-
cussed in Ref. 11 L' is a measure of the number
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FIG. 5. Histogram for the density of states of a
type-III AFM. Results are for an array of 256 spins
with periodic boundary conditions. Crosshatched area
denotes zero-energy modes.

E/J

FIG. 6. Localization indices L, (Ref. 11) plotted vs
mode energy. The data are from a single configuration
of a disordered AFM with 256 spins.

of spins participating in the vth mode. Our results
for L, for a single configuration of 256 spins are
shown in Fig. 6. It is apparent that nearly all of
the modes are delocalized, having indices <0.02.

IV. DISCUSSION

Despite the absence of three-dimensional long-
range order, the ground-state configuration of the
fcc Heisenberg AFM with NN interactions on the
fully occupied lattice shows a high degree of corre-
lation. This is reflected in the fact that each spin
sees the same exchange field and that the magneti-
zation for a finite array is exactly equal to zero.
The correlation also carries over to the dynamics.
As pointed out in Sec. III the spin-wave modes are
delocalized and bear a close resemblance to the ex-
citations of a type-III AFM. Although there is no
interplanar exchange field the modes are fully
three dimensional, propagating in all directions ex-
cept along [001]. They are very different from the
excitations in various models of Heisenberg spin-
glasses.!? In the spin-glass systems that have been
studied so far there is no evidence of weakly
damped propagating modes in S(q,E). Finally we
note that removing spins from the lattice weakens
the correlations. The rms magnetization becomes
finite and there is a distribution in local fields. As
will be discussed in a subsequent publication there
are corresponding changes in the spin dynamics as
well.
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