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The flux-line lattice in a long cylindrical type-II superconductor carrying an electric
current parallel to an applied axial magnetic field is always unstable if there is no volume

pinning.

I. INTRODUCTION

The stability of the flux-line lattice (FLL) has
recently been investigated for longitudinal currents
flowing through the volume or near a planar sur-
face of a type-II superconductor.!~3 In both cases
the FLL is unstable against the growth of helical
perturbations when the current along the flux lines
(FL’s) exceeds a critical value J.. For weak pin-
ning of the FL’s by material inhomogeneities, J, is
proportional to the fourth root of the shear
modulus of the FLL, and for stronger pinning to
the fourth root of the volume-pinning strength.:3

These results were obtained for planar geometry,
but they apply also to cylindrical specimens with
radius a large compared with the pitch length of
the helices and with the width of the helically dis-
torted FL layer. These two characteristic lengths
of the helical mode increase with decreasing pin-
ning strength and even diverge in the limit of zero
pinning. As a consequence, the critical current of
a wire with very weak pinning requires considera-
tion of cylindrical geometry. This is done in the
present paper.

II. HELICAL INSTABILITY

We show that for long wires with weak pinning
a simple elastic mode which displaces the FL’s
homogeneously in each cross section of the
cylinder, has a critical longitudinal current which
is much smaller than the value derived in Refs.
1—4.

Consider a long pin-free cylinder with radius a
and length L placed in an axial magnetic field
B,ppiZ (2 is the unit vector along the axis). When
the applied field exceeds the lower penetration field
of the superconductor, magnetic flux enters in the
form of FL’s which fill the specimen homogene-
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ously and yield a constant induction
B(¥)=B,5=const. This situation does not change
when we apply an axial transport current JZ since
no Lorentz force is exerted by a current density
parallel to the FL’s. [Initially the current flows in
a thin surface layer. We will see below that for the
mode (1) only the total current matters, not its dis-
tribution.]

Now we allow the FL’s to distort into helices
with equal pitch length, phase, and amplitude.
The displacement vector then depends only on the
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FIG. 1. Illustration of the homogeneous helical
mode, Eq. (1), in a long cylindrical superconductor with
the flux lines pinned to the ends. Left: helical distor-
tion of the flux lines. The distortion is constant for any
cross section z=const. Some flux-line sections enter and
others leave on the opposite side. Right: the displace-
ment vector S (z) for various cross sections.
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coordinate z:
S (2)=s0X sin(kz) +s,¥ cos(kz) (1)

(Fig. 1). If 54 exceeds the distance of the first FLL
layer from the surface, approximately equal to the
FL spacing,’ some FL sections cut through the
surface and new FL sections of the same total
length enter on the opposite side. The influence of
a possible surface barrier on the exit and entrance
of these FL sections shall be discussed below. If
we omit it, the energy of the compression-free and
shear-free distortion (1) is composed of the tilt en-
ergy of the FLL, the stray-field energy (of the
radial-field component outside the cylinder, in-
duced by the distortion of FL’s near the surface),
and the interaction energy of the FL’s with the ap-
plied current,

U= Utilt + Ustray + UJ . ()

For simplicity we assume in the following that
the magnetization of the specimen is small,
Bgppi —B; << B,. This condition is satisfied in
most experiments. We furthermore neglect effects
of the order A/a and Ak, where A <<a is the
magnetic-penetration depth. Then B(T) is along
the FL’s and equals the local density of FL’s times
the quantum of flux ¢,. For FL’s displaced ac-
cording to (1), we find

|
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B(r <a)=B,,yZ+ksoB,[X cos(kz) —§ sin(kz2)] ,
(3a)
or in cylindrical coordinates (x=r cos@, y=r sing),
B(r <a)=B £ +ksoB,[F costkz +)
—psin(kz +¢)]. (3b)

The field outside the specimen is the stray field
Bgray=VV plus the applied field. The stray field
is obtained by solving V2¥=0 in cylindrical coor-
dinates using the continuity of the radial com-
ponent B, at r=a:

B(r >a)=Bnf+50B,[K (ka)] ™!
X VLK (kr) cos(kr +¢)] (4)

where K(x) is a modified Bessel function and
K| (x) its derivative.
The tilt-energy density is (c44/2)(ds/dz)* where

C4a=B, By /o~ B; /o

is the tilt modulus of the FLL. One easily verifies
using (3) that the tilt energy Uy, is just the s-
dependent part of the magnetic energy inside the
cylinder. The s-dependent part of the magnetic en-
ergy outside the cylinder, Ugy,y, is obtained by in-
tegration of Bﬁtmy=(\7 V)?=—V(VVV) over the
free space r>a. Adding both terms we get

=(BZ /2uo)mak?s5{ 1+ K (ka)ka | Ki(ka) |17} . (5)

In the limit of long pitch length, ka << 1, one has K(ka)~1/ka and (4) and (5) reduce to

B(r >a)=B,,uZ+B;sok(a /P Fcos(kz +@)+@sin(kz +@)+2kr sin(kz +¢)] (kr<<1), (6)

Ui+ Ustray = (Bippl /o)ma %k 23(2) .

(7

For short pitch length, ka >> 1, one has K (ka)~(m/2ka)!"*exp(—ka) and (4) and (5) reduce to the results

of the planar problem®:

B(r >a)=B,,7+B,soke =" ~¥[Fcos(kz +@) +@(kr) "' sin(kz + @) +Zsin(kz +¢)] , (8)

Uit + Ustray = (Bt /2t0)ma ks [ 1+ (ka)™'] .

The interaction U; of the FL’s with the applied
current may be calculated in two ways: (a) as the
force ¢¢ j X (ds/dz) exerted on a given FL segment
by the local current density j, multiplied by the
displacement §(z) of this segment; and (b) as the
voltage along the specimen induced by the moving
FL’s, times the applied current, times the time of

9)

r
motion. In both pictures one has to sum over all
FL segments and to integrate from the state of
parallel FL’s (s =0) to the state with fully dis-
placed FL’s. The result is

Uy=—JB ks /2 . (10)

In the derivation of (10) no use of the explicit
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distribution of the current density over the cross
section of the cylinder has been made. — Uj is the
work supplied to the FLL by the source of the ap-
plied current. In this sense, — U, corresponds to
the terms pV and B, ¢ (¢ =total magnetic flux of
the sample) in the thermodynamic potentials

G=F —pV and G=F —B,;¢ which are appropri-
ate to situations with constant applied pressure or
magnetic field, respectively. This interpretation
shows that our energy (2) is the thermodynamic
potential which has to be minimized if the applied
current is fixed. Of course, this interpretation ap-
plies only up to the onset of instability. When in-
stability sets in, the FL’s move and dissipate ener-
gy. The concepts of equilibrium thermodynamics
then are not applicable.

The onset of instability is determined by the
condition that U can be made negative by arbitrari-
ly small helix amplitude sy. For long pitch lengths
we get from (7) and (10)

U =s5(B oy /o) (mak® —klpo/2B,py) . (11)

Thus, if k is sufficiently small, helical perturba-
tions will grow spontaneously. Arbitrarily small k
(or infinite pitch length k ~!) is possible if there is
no pinning at all. The critical longitudinal current
is then zero and the helical mode describes a
homogeneous shift of the entire FLL in response to
an arbitrarily small tilt perturbation of the FL’s.

If the FL’s are pinned to the ends of the
cylinder, e.g., by increased pinning at the ends, the
smallest possible & is 27 /L and helical instability
sets in at a critical current

Jo =By /110)2ma’k = (B /pio)4m*a’ /L .
(12)

At this current the slope of the magnetic field at
the surface of the cylinder, ZB,,, + @Juo/2ma, is

te=By(r=a)/B,(r=a)=2ma/L . (13)

[Note that this is the magnetic field before the
FL’s are allowed to distort. When the FL’s distort
helically, the total surface field is given by (6) to
which @Jg/2ma has to be added.] This means the
ratio of the longitudinal current and the applied
field is such that the field lines at the cylinder sur-
face perform just one turn along the cylinder.

The critical current (12) is very small for long,
thin cylinders. It is smaller than the corresponding
value

Je =(Boppi /po¥dma’[In(L /a)] '

of Ref. 2. Due to the contribution of the stray

field outside the cylinder, the results (12) and (13)
are both larger by a factor of 2 than the estimates
obtained in Ref. 3 which neglected surface effects.

When the cylinder is perfectly aligned such that
the FL’s are exactly parallel to the surface, then
the surface barrier for exit and entrance of FL’s
becomes important. J, is then higher than (12)
and the helical mode at the onset of instability is
not the homogeneous mode (1) but a mode with
helix amplitudes decreasing with increasing dis-
tance from the surface. This case is treated in Ref.
3.

A small misalignment or deviation from cylin-
drical geometry will, however, decrease J, to a
value of order given by (12). This is because then
some FL’s will end at the cylinder surface and, by
slipping their ends along the surface, can exit or
enter without having to surmount the surface bar-
rier. Furthermore, “end effects” (sharp edges, the
contacts, finite length) will probably suffice to
trigger the instability when J exceeds the value (12)
in a pin-free sample. It thus appears to us that in
existing experiments®~? it was always volume pin-
ning or surface roughness, but not the surface bar-
rier, which caused critical currents larger than the
value (12).
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FIG. 2. Flux lines (left), surface current (middle), and
forces on or displacements of (right) the flux-line ends
for a long superconducting ellipsoid placed in a homo-
geneous axial field. The longitudinal current is applied
through point contacts at the vertices of the ellipsoid.
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III. EXAMPLE FOR END EFFECTS

We illustrate this statement by a further argu-
ment. Consider a long rotational ellipsoid with no
pinning and with a smooth surface in an axial
magnetic field. This is an ideal wire with well-
defined ends (Fig. 2). The FL’s are then precisely
parallel since the demagnetizing field inside an el-
lipsoid is homogeneous. Now apply a weak longi-
tudinal current through point contacts placed on
the axis. Initially this current flows along the sur-
face. This state is, however, not in equilibrium.
The surface current j; exerts an azimuthal force
¢ojs on the FL ends. As a consequence, the FL’s
are tilted. The tilt ¢, and the induction component
Bep=1B, caused by it, is proportional to 1/7 since
FL’s with distance r from the axis feel a tilting
force ¢oJ /27r and the tilt modulus of the FLL,
C44 =B, B, /1, is spatially constant. (We neglect
here the small shear modulus of the FLL.) The to-
tal field is now

Blr <R (2)]=%B, +@Juo/2mr , 14
Br > R (2)]=£Bypp +@Jpo/277

where R (z)=a (L2/4—2%"/? is the local radius.
The twist of the FLL generates an additional
current density

Jtorsion =J8(x)8(y) —j8(r —R (2)) , (15)

where § is the one-dimensional delta function.

The first term in (15) describes a filament along
the axis carrying the total current, and the second
term precisely compensates the surface current
Jjs=J/27R (z). The resulting current density is
such that the entire transport current is shifted
from the surface layer to a filament on the axis, as
is easily verified by taking the curl of (14).

If the current is fed by ring contacts concentric
to the axis rather than by point contacts, a similar
calculation shows that the torsion of the FLL is
such that the total current flows in a thin cylindri-
cal layer connecting the two contacts (Fig. 3).
Outside the current carrying filament or cylinder
the FL’s are in equilibrium: they are parallel to
the local field (14) and the local current density
vanishes. In the region where the current density
is high, the FL’s in general are at an angle with
the current and thus start to move. The entire
specimen then switches to a dissipative flux-flow
state. Thus, if the FL’s can tilt freely, an arbitrari-
ly small applied current leads to a dissipative state
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FIG. 3. Distribution of the applied current in a long
ellipsoid in the superconducting state. Left: point con-
tacts, right: ring contacts. Initially the current flows
along the surface (solid lines). This surface current
“pulls” at the flux-line ends and causes the flux lines to
twist. Local equilibrium is reached when the current
caused by the twisted flux lines just compensates the
surface current. The total current flows then along the
axis or a cylinder connecting the contacts (dashed lines).

triggered by the spatial concentration of the
current. This conclusion was arrived at also in
Ref. 10 using an energy argument.

IV. CONCLUSION

The mechanism of Sec. III (instability due to
end effects in a long ellipsoid) and the one pro-
posed by Campbell® (buckling of current filaments,
or pinch effect in deformable conductors) are both
based on a self-concentration of the longitudinal
current. In contrast to this, the spontaneous heli-
cal deformation of the FLL of Sec. II does not
change the longitudinal current density: to lowest
order in k it generates a current density [the curl
of (3)]

7 =(Bappi /110)k [ £ cos(kz) —§ sin(kz)]
+0(k?),

which is perpendicular to the longitudinal current.
This shows that the tendency for current concen-
tration is not essential for the onset of instability in
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longitudinal geometry, though it might be impor-
tant during the evolution of the flux-flow state.

In spite of considerable effort in theory and ex-
periment,! little is known as yet about the resistive
flux-flow state in longitudinal geometry. The
problem is similar in some respect to turbulence in
hydrodynamics. Although the “simple” (but non-
linear) Navier-Stokes equation is believed to com-
pletely describe the situation in many cases, theor-
ists have not been able to solve it even for quite
general features of turbulent flow.!?> Unfortunate-
ly, the equations describing the flow of FL’s in a
type-II superconductor are more complex than the
Navier-Stokes equation.

Our result that the longitudinal critical current
is zero for an infinitely long superconducting wire
with no pinning has its analog in hydrodynamics,
where the critical velocity for the onset of tur-
bulence vanishes between walls of infinite distance
(the Reynolds number is then infinite). A further
analogy is that the flux flow (or the turbulent flow)

25

is very sensitive to the geometry of the supercon-
ductor and of the contacts (or of the vessel and its
supply pipes).

In order to put forward the investigation of flux
flow in longitudinal geometry, further experiments
should be performed with well-defined shape and
pinning properties of the specimen. In addition to
spatially averaged properties such as voltage and
magnetic moment, the electric and magnetic fields
should be measured in as many points as possible
on the surface. This may be performed by fixed’
or sliding® contacts or a combination of these.
Precise alignment of the specimen in the applied
field is required. Time resolution of the signals,
which turn out to be rapidly oscillating,'* provides
further valuable information. Finally, small-angle
neutron scattering would offer a means to look
into the specimen and obtain the temporally and
spatially averaged distance and orientation of the
FL’s."
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