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Soliton excitations in Josephson tunnel junctions
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A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is

compared with experimental measurements on junctions with different L!A,q ratios. The

soliton picture is found to apply well on both relatively long (L/kJ ——6) and intermediate

(L/A, q
——2) junctions, We find good agreement for the current-voltage characteristics,

power output, and for the shape and height of the zero-field steps (ZFS). Two distinct

modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to
the fundamental frequency fi on all ZFS's and (ii) a "symmetric" mode which on the

Nth ZFS yields the frequency Nf i. Coexistence of two adjacent frequencies is found on

the third ZFS of the longer junction (L/A, q ——6) in a narrow range of bias current as also
found in the experiments. Small asymmetries in the experimental environment, a weak

magnetic field, e.g., is introduced via the boundary conditions of our numerical model.
This gives a junction response to variations in the applied bias current close to that ob-

served experimentally.

I. INTRODUCTION

The study of soliton dynamics in connection
with large Josephson tunnel junctions has recently
drawn considerable theoretical' and experimen-
tal ' attention. Fulton and Dynes' conceived the
idea that the Josephson tunnel junction could sup-
port the resonant propagation of a soliton (or flux-
on} trapped in the junction. The soliton being a 2m

jump in the phase difference (p) across the insulat-

ing barrier which separates the two superconduc-
tors. The moving soliton is accompanied by a
voltage pulse (-P, ) which can be detected at ei-
ther end of the junction. The dc manifestation of
the motion is a sequence of equidistantly spaced
branches in the current-voltage characteristic of
the junction. These near-constant voltage branches
which were first reported by Chen, Finnegan, and
Langenberg are known as zero-field steps (ZFS)
because they occur in the absence of an external
magnetic field. In contrast, the so-called Fiske
steps are found only when a magnetic field is ap-
plied. ' The ZFS's appear at voltages given by
V =N@trc/L, where N is an integer, the flux quan-
tum 40——h/2e=2. 064X10 ' Wb, c is the elec-
tromagnetic wave velocity in the junction, and I. is
the length of the junction. On the first ZFS
(N = I) a single soliton pendles back and forth

along the junction with a velocity =-c, hence pro-
ducing a periodic voltage-pulse train of frequency

fi c/2L at bo——th ends On th. e Nth ZFS the mo-
tion of N solitons is involved and X pulses are pro-
duced within one period I/f i. The detailed fre-
quency spectrum of the voltage will depend on the
distribution in time of the N pulses within the
period. Analog ' and numerical studies have sug-
gested that configurations where the solitons are
bunched (or congealed) play an important role in
explaining the dynamics of the motion. This is
supported by recent detailed measurements on
niobium-lead junctions and by comparison with
numerical siumulation" with parameters chosen in
accordance with experiments.

In this paper we report on the detailed numerical
study and comparison with the experiments on two
junctions with different length-to-Josephson-
penetration-depth (L/Az) ratios. We demonstrate
that the shunted-junction (SJ) model, which leads
to a perturbed sine-Gordon equation, ' explains the
experimental observations quantitatively even down
to very subtle details. We find good agreement for
the current-voltage characteristic, power output,
and for the shape and height of the ZFS's. On the
second ZFS we find two distinct modes of soliton
oscillations, the perfectly symmetric mode and the
bunched mode, thus confirming previous results by
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SQLITQN EXCITATIONS IN JOSEPHSON TUNNEL JUNCTIONS

tric energy stored in the barrier and is given by

C =e,e0$'/t, „, (2A)

where e„ is the relative dielectric constant of the
barrier oxide layer and eo ——I/36m )& 10 F/m.
The dissipative currents per unit length {the quasi-
particle tunneling) are represented by the term GV,
where 1/G is an effective normal resistance. The
supercurrent per unit length is given by joshing. Fi-
nally j~ represents an externally applied bias
current per unit length.

Equations (2.1b), (2.2a), and (2.2b)-combine into
the third-order partial-differential equation

(Lp/Jt p)4xxr+4xx LpCP—r7 GLpk—r

=(2nLpjo/@o)(sing Js/jo—} . (2.5)

(2.7)

where Az is the Josephson length,

A,y =(@o/2' oLp)'~,

and ohio is the Josephson plasma frequency

coo=(2mjo/@oC) ~
~

yields

P0 i+0 A~ a%i=—»n0 —}'. —
The constants a, P, and y are defined by

(2.8)

(2 9)

(2.10)

(2.11)

(2.12)

Jay= .
jo

(2.13)

Tllc valllcs of 'tllc two paralnctcls Ag alld Qlo al'c

especially important for the dynamics of the junc-
tion. The Josephson plasma frequency coo is the
lowest possible frequency of small-amplitude oscil-
lations in the unbiased junction, whereas the
Josephson length A,z can be viewed as a screening
length over which the magnetic field induced by
the Josephson supercurrent causes noticeable
changes in P." The propagation velocity of elec-
tromagnetic signals in the junction is c =A,zco0
=(LpC) '~ . The space-time behavior of the volt-
ages and currents is governed by Eq. (2.10), which

Introduction of normalized space and time coordi-
nates, x and t, related to laboratory coordinates by

(2 6)

without the dissipative terms and the external bias
current is the famed sine-Gordon equation with
well-known soliton solutions. This fact will be
used in the numerical computations presented in
Sec. III.

Using the normalized time t, we rewrite Eq.
(2.1b) as

I'=(@no/2~)A =—I'~A . (2.14)

H,„S'
$„(0,t}=$„(l,t)=-

I@
(2.16)

Here, the dimensionless quantity g represents the
external field. In most of our computations we
have assumed "open-circuit" boundary conditions,
i.e., q =0, thus neglecting loading effects due to ra-
diation loss. However, in order to model asym-
metries in the experimental system due to small
external magnetic fields, e.g., we have sometimes
used values of g different from zero.

The quasiparticle tunneling-loss parameter o; is
determined through Eq. (2.11) from the slope (G)
of the linear part of the experimental I-V curve.
Owing to the nonlinear nature of this curve, a can-
not be determined unambiguously. -%e assume e
to be constant in the range 0.01 & u & 0.05 for the
junctions considered here. The parameter P is
determined by Eq. (2.12) which is also the inverse
of the Q of the superconductor surface impedance
at m0 and describes the quasiparticle losses in the
film electrodes. The value of P is readily obtain-
able from recent measurements. ' Relevant junc-
tion parameters are listed in Table I.

III. RESULTS FOR THE LONGER
JUNCTION (l =6)

The experimentally determined parameters in
Table I have been used in our numerical solution

Further we mention that Eqs. (2.6) and (2.8), com-
bined with the time integral of Eq. (2.2a), yields

ii = Vo4—)4.= JN4——

Equation (2.15) can be used to establish the boun-
dary conditions for the junction. The supercon-
ducting surface current i

~ gives rise to a magnetic
field perpendicular to the length direction of the
junction. Thus, fixing an external magnetic field
in the Y'direction (H,„)at the two ends of the
junction corresponds to specifying p„at these
points. Considering a junction of length l =L/Aq,
we get
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TABLE I. Junction parameters used in the calcula-
tions.

Sample

75

O

50—

L
8'
l
a

A J
COp

973 pm
119 pm
-6

0.05
0.02
1.56)& 10 m
5.8 &( 10' s

467 pm
67 pm

0.012
0.01
2.25 X 10 m
4 P)( 101P —1 0.0 2.5 5.0 10.0

of Eq. (2.10). From a Fourier analysis of P, (l, t)
we obtain the dc I-V characteristic and the har-
monic contents of the voltage excited at the end of
the junction. These numerical results are then
compared with the corresponding experimental re-
sults. From Eq. (2.14) follows that the zero-order
Fourier component (average value) of P, corres-
ponds to the junction dc voltage. Thus, a plot of
(P, ) Vz versus the applied bias current Id, jsL—
will correspond to the experimental I-V charac-
teristic of the junction. The higher-order Fourier
components of P, (l, t) will give us information on
the frequencies excited.

Before we go into the detailed discussion of our
results we draw attention to the following basic ex-

perimental observation: On all the observed ZFS's
in the I-V characteristic, radiation with the same
fundamental frequency f( c/2L is foun——d. This is
somewhat unexpected, because a priori one might
expect that the N soliton mode on the Nth ZFS
would have the solitons arrive at either end of the
junction evently distributed in time, thus leading to
a fundamental frequency of Nft. The experimen-
tal finding of the frequency f&

on all the ZFS's
can be accounted for by introducing the notion of
congealed or bunched solitons. Instead of N indi-
vidual solitons, one or several bunches of solitons
are formed, giving rise to an excitation with the
fundamental frequency ft. Such bunches of soli-
tons are indeed what we observe in the numerical
solutions of Eq. (2.10). The dc tnanifestation of
our computations is shown in Fig. 2 for the first
three ZFS's. The experimental result is shown as
a full curve. Higher-order steps (N & 3) have also
been found experimentally, but we have not pur-
sued these numerically. Figure 2 shows good
agreement between numerical and experimental re-

sults, in regard to height, shape, and position of

FIG. 2. dc voltage vs applied bias current for sample
1 (E=6) showing the first three ZFS's. Circles indicate
the numerical results and solid lines represent the exper-
imental results.

the steps. We shall now discuss the dynamics on
the individual steps.

A. First ZFS

$,((,1)

10

1200 1250

FIG. 3. Numerical solution of Eq. (2.10) with
y=0.35, a=0.05, P=0.02, t) =0, and l=6. Approxi-
mately one period of oscillation on the first ZFS is plot-
ted in terms of P„(x,t) for 10 time units. The inset
shows $,(l, t) for 50 time units.

In Fig. 3 we show a typical numerical result of
the oscillatory motion of one soliton after steady
state has been reached. [Deftned operationally as
the state which occurs when the first four Fourier
components of P, (l, t) attained a constant value to
within 2%%uo.] For runs on the first ZFS this state
in general occurred after 1200 normalized time un-

its. As initial conditions we have used the one-
soliton solution of the unperturbed sine-Gordon
equation augmented by the "ground-state" solution

P(x, t) =sin 'y, in order to prevent unnecessary
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generation of plasmons. In order to obtain soli-
ton confinement on the junction the soliton was
launched with initial velocity equal to 0.9. The in-
set of Fig. 3 shows the voltage pulse train at x =I
after repeated reflections.

In Fig. 4 we show the harmonic contents of the
power versus the applied dc bias current. The
power is here defined as the square of the Fourier
components of the voltage in arbitrary units. The
oscillation is found to be stable for 0.1 «y «0.71.
For yg0.71 the soliton disappears and the solution
switches to a spatially uniform P excitation. (In
the I-V curve this change corresponds to a jump
from the ZFS to the Ohmic background. ) For
y «0.1 a transition to a static solution is found.
(In the I-V curve this change corresponds to a
jump from the ZFS to a point on the axis

(P, ) =0). From Fig. 4 it is clear that the ratio of
the first three harmonics is nearly constant over a
wide range of bias values. However, for the higher
values just below switching, the contents of all the
harmonics is nearly equal. This is of course a
manifestation of the fact that the soliton shape ap-
proaches the step function when velocity tends to
unity. We have not observed the irregular behavior
for small y values found by Erne and Parmentier
[Ref. 5, second listing, Fig. 5(a)).

S. Second ZFS

When two solitons are involved in the oscilla-
tions on the junction the picture becomes more
complex. Two distinct ways of operation are now
possible, the sym. metric mode and the bunched
mode shown in Figs. 5 and 6, respectively. From
the insets it is clear that the frequency doubles
when we pass from the bunched mode to the sym-
metric mode. In Fig. 7 the harmomc contents of

$)((,t)
10-

FIG. 5. Numerical solution of Eq. (2.10}with y=0.125,
a=0.05, p=0.02, I)=0, and 1=6, showing the sym-
metric mode on the second ZFS in terms of P„(x,t) for
10 time units. The inset shows P,(l, t) for 50 time units.

the power is shown as function of the dc bias
current. The figure was obtained in the following
way: For y=0.5 (Ref. 19), we use the initial con-
ditions consisting of two superimposed sine-
Gordon one-soliton solutions (plus the sin 'y term)
launched with equal velocity 0.9. This choice of
1n1tial cond1t1ons corresponds to a bunched mode.
When steady state was obtained for (r =—2000) the
computations were stopped, the bias current was
increased by 0.01 (i.e., to y=0.51), and the compu-
tation restarted, the initial conditions now being
the steady-state solution obtained for y=0.5. This
procedure was continued until a switched from the
second ZFS to the background curve occurred for
y=0.65. This is the upper limit in y for stability
of the bunched mode. The process was now re-
versed and the bias current was decreased in steps
(0.01). Continuing downwards we found transition

—1st harm
--- 2nd harm

3rd harm

0—

l
I I 1 i

0.5 1.0

dC Bias

FIG. 4. Harmonic contents of power vs the dc bias y
oil tile fll'st ZFS. Obtained by nllmcflcai sollltlon of Eq.
(2.10}with parameters for sample 1.

FIG. 6. Numerical solution of Eq. (2.10) with y=0.3,
II=0 05, p=0.02, I)=0, and 1=6, showing the bunched
lllodc oil thc second ZFS ill tefms of p (~,t) for 10 time
units. The inset shows p, (l, t) for 50 time ulnts.
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~20
C

15—
CL

—1st harm
--- 2nd harm

3rd harm

—1st harm
--- 2nd harm
"""3rd harm

—40 —:.

-5
0.0 0.5 1.0

dC Bias

I i
)

I I I -60
) . l (

0 1000 2000 3000 4000 5000

TIME

FIG. 7. Harmonic contents of power vs the dc bias y
on the second ZFS. Obtained by numerical solution of
Eq. (2.10) with parameters for sample 1. The arrows in-
dicate the direction in which the bias current was varied.
The inset shows the near vanishing of hysteresis when a
small external magnetic field is applied (g =0.1).

Q I
I

l
I C

II
a

-20 —i
I

—1st harm
--- 2nd harm

3rd harm

to the symmetric mode at y=0.16. In Fig. 7 the
first and third harmonics vanish for this value of
y. At y=0.09 the lower limit of stability was
reached and the oscillations extinguished. %hen y
was increased again, the symmetric mode remained
stable even beyond the point where the transition
from bunched to symmetric mode occurred for de-

creasing bias. The symmetric mode finally
switched from the second ZFS into the solution at
the background curve at the same point as the
bunched mode did (y=0.65). Thus, we have found
that over a large range of y values both the sym-
metric and the bunched mode are stable. Further
computations for y=0.25 confirmed the stability
of the symmetric mode as well as the bunched
mode, with symmetric and bunched solitons in the
initial conditions, respectively. In Figs. 8(a) and
8(b) the harmonic in the power are shown as a
function of time in the two cases. After a tran-
sient the harmonics settle down at constant values.
In Fig. 8(a) the second harmonic is dominant,
corresponding to the symmetric mode. The ripples
on the first and third harmonics (50 dB below) are
due to numerical noise. In Fig. 8(b) the bunched
mode is characterized by the dominant first and
third harmonics.

%e emphasis that our computational way of
changing y simulates the experimental way of re-
gulating the bias current. Thus, the I-V charac-
teristic (Fig. 2) has been obtained experimentally be
careful sweeps in the bias current. The change
from a bunched mode into a symmtric mode for
decreasing values of y has also been found experi-
mentally. However, starting in a symmetric mode
and increasing y we observe no spontaneous transi-
tion to the bunched mode as is found experimen-

-40—

-60
I ) I I

0 1000 2000 300Q 4000 5000

TIME

FIG. 8. Harmonics in power vs time on the second
ZFS obtained by numerical solution of Eq. (2.10) with
y=0.25, a=0.05, p=0.02, i)=0, and 1=6. (a) depicts
initial conditions rcpfcscnting a symmetric mode. (b)
shows initial conditions representing a bunched mode.
Both modes are stable.

tally. In the experimental setup small asymmetries
due to weak external magnetic fields cannot be
completely ruled out. In our calculations we
model this feature by introducing nonzero boun-
dary conditions [e.g., rl =0.1 in Eq. (2.17)j. In
the inset in Fig. 7 the resulting transition region
between bunched and symmetric modes is shown.
Only a small reminiscent of the hysteresis
phenomenon observed for il =0 is left and a rever-
sible transition from symmetric to bunched mode
is found for y=0.16. The spontaneous transition
is also shown in Fig. 9, where the effect of a gra-
dual increase of the external magnetic field is illus-

trated for a fixed value of bias current (y=0.25).
The figure was obtained in the following way: At
t = —2500 we started a symmetric mode, i.e., two
sine-Gordon solitons launched with velocities 0.9
and —0.9, respectively. For —2500 g t ~ —1250
(not shown) we kept q =0. At r =—1250 the mag-
netic field il was increased to 0.05. The computa-
tions were then continued until t =0. At t =0 the
magnetic field was raised to g =0.1, and the results

up to t=1000 are shown in the figure. For
0 & t g 5000 we see a rapid increase towards a con-
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~ 20
IXI

—1st harm
--- 2nd harm
""-. 3rd harm

())t{l,t)

10

-20—

-40—

-60
I I I I

0 2000 4000 6000 8000 10000

TIME

FIG. 9. Transition from the symmetric to the
bunched mode when an external magnetic field is gradu-

ally increased up to g=0.1 (see text). The other param-
eters are as in Fig. 8.

stant value in the first and third harmonics. In the
interval 4000 & t & 6000 the second harmonic drops
10 dB. These changes signify a transition from
symmetric to bunched mode at l =-5000. The final
levels of the harmonics compare with levels in Fig.
g(b).

C. Third ZFS

Most phenomena observed on the second ZFS
reappear on the third ZFS where three solitons are
simultaneously excited on the junction. In Figs. 10
and 11 the symmetric mode (three single solitons)
and the bunched mode (three bunched solitons) are
shown. We shall denote the two modes the
1 + 1 + 1 and the 0+ 3 configuration, respective-

ly. In addition we find a third mode, where one
soliton moves as a free entity and two solitons
travels in a bunched configuration. We shall
denote this mode a 1+2 configuration. The velo-

city of the single soliton is different from that of
the two-soliton bunch. Figure 12 shows the situa-
tion where the single soliton and the two-soliton

$,{l,t)
. t

SO0O

FIG. 11. Numerical solution of Eq. (2.10) with
y=0.35, a=0.05, P=002, rl =0, and 1=6, showing the

bunched mode (0+ 3) on the third ZFS in terms of
P„(x,t) for 10 time units. The inset shows P,(l, t) for 50
time units.

bunch have the maximum separation. At later
times the picture looks much like that in Fig. 11.
This 1+2 configuration is only found stable in a
narrow range of y values as seen in Fig. 13 where
the first harmonic of the power versus y is shown.
The 1+2 configuration manifests itself as rapid
oscillations in the first harmonic in the interval
0.34& y & 0.41. Figure 13 is obtained in the same
manner as Fig. 7. In Fig. 14 the first, second, and
third harmonics are shown as functions of time for
a number of selected y values in the range
0.34&y&0.42. For y=0.34 [Fig. 14(a)] and
y=0.42 [Fig. 14(d)], the first harmonic settles to a
constant value larger than the second and third
harmonics. This implies the 0+ 3 configuration
for these y values. In Fig. 14(b) (y=0.36) and Fig.

yt(t, t)

10

FIG. 10. Numerical solution of Eq. (2.10) with
y=0.2, a=0.05, p=0.02, g=O, and 1=6, showing the
symmetric mode (1 + 1+ 1) on the third ZFS in terms
of P„(x,t) for 10 time units. The inset shows P,(l, t) for
50 time units.

FIG. 12. Numerical solution of Eq. (2.10) with
y=0.40, p=0.02, t)=0, and l=6, showing the (1+2)
bunched configuration on the third ZFS in terms of
P, (x, t) for 10 time units. The inset shows $,(l, t) for 50
time units.
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40~

30 g

20 g
10—

—1st harm

—10—

—1st harm
""- 2nd harm
-" -. 3rd harm

—10
0.0 0.5 1.0

dc Sias

-20 (a)
I I I I

0 2000 4000 6000 8000 10000

TIME

FIG. 13. First harmonic of the power vs the dc bias

y on the third ZFS obtained by numerical solution of
Eq. (2.10) with parameters for sample 1. The arrows in-

dicate the direction in which the bias current was varied.
The rapidly oscillating range indicates the coexistence of
two adjacent frequencies in the signal.

20
CKl
"O

10-
6

0 —:

—1st harm
--- 2nd harm
"""3rd harm

14(c) (y=0.40), an oscillatory variation in the har-
monics is found indicating the co-existence of os-
ciBations at two adjacent frequencies. The two-
soliton bunch moves with velocity u, thus given
rise to the fundamental frIequency f, =u/21. The
single soliton moves with velocity u +Au giving
rise to a second frequency separated from f, by

hf =b,u/2/. This simultaneous excitation of two
adjacent frequencies was also found experimentally
on both the third ZFS and the higher-order
ZFS's. ' ' The experimentally observed separation
was approximately 50 MHz. The oscillation
period in Fig. 14(c) (y=0.40) indicates that
hf =-23 MHz in reasonable agreement with the ex-
periments. [For this estimate Eq. (2.7) and nill

(Table I) have been used. ] For lower values of y
the frequency separation bf gets smaller and van-
ishes completely at @=0.34. %hen the bias
current is decreased further, we find a transition to
the symmetric mode at y=0.25, in a manner simi-
lar to that found on the second ZFS. The sym-
metric mode is stable down to y=0.15 where the
solution switches from the third ZFS to the back-
ground curve. As on the second ZFS no spontane-
ous transition from the symmetric mode
(1 + 1 + 1) to a bunched mode (0+ 3 configura-
tion) is found for increasing y values, nor does the
1+ 1+ 1 mode enter the 2+ 1 configuration when

y varies through the interval (0.34,0.42). This cal-
culation was carried no further than to y=OA2.

Introducing an external magnetic field (rl =0.1)
did not change any quanlitative aspects of the tran-
sition from the 0+ 3 configuration to the 1 + 2
configuration. In Fig. 15 the time evolution of the
harmonics is shown for two cases. In Fig. 15(a)

-20
I I I

0 5000 10000 15000 20000

TIME

—1st harm

2nd harm

3rd harm

(c)
I I I

0 2000 4000 6000 8000 10000

TIME

10—

IJ

0 —,t

—1st harm
--- 2nd harm
"""3rd harm

-10-'

(y=0.34, r) =0.1) steady state is reached earlier
than for y=0.34 and r) =0 [Fig. 14(a)]. Also the
magnitudes of the second and third harmonics are
interchanged. The oscillatory behavior of the har-
monics in Fig. 15(b) (y=0.40, i) =0.1) is also some-

I I I I

0 2000 4000 6000 8000 10000

TIME

FIG. 14. Harmonics in power vs time on the third
ZFS obtained by numerical solution of Eq. Q. l0) with
Ix=0.05, P=0.02, i)=0, 1=6, and (a) y=0.34, (h)
y=0.36, (c) y=0.40, and (d) y=0.42.
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FIG. 15. Harmonics in power vs time on the third
ZFS obtained by numerical solution of Eq. (2.10) with
a=0.05, P=0.02, rl =0.1, 1=6, and (a) y=0.34 and (1)
@=0.40.

what modified compared to the behavior in Fig.
14(c) (y=0.40, rl =0). We found the position and
the range of stability of the 2+ 1 mode unchanged
as a small external magnetic field was applied.
Also the range of stability shows no sensitive
dependence on the initial conditions as long as
these have the 0+ 3 or the 2+ 1 configuration.

FIG. 16. dc voltage vs apphed bias current for sam-
ple 2 (1=2), showing the three ZFS's. Circles indicate
the numerical results and the solid line represents the
experimental results.

than the measured ones. Experimentally the short
junction showed the same characteristic features as
found on the longer junction~mission of micro-
wave power with the same fundamental frequency
on all ZFS's. Thus, we expect the bunched-soliton
configurations to be stable also on the short junc-
tion. In Figs. 17—19 we show typical results of
the oscillatory behavior on the three steps. Ap-
proximately half a period of steady-state oscillation
on the first ZFS is shown in Fig. 17 (y=0.4). The
bunched configuration on the second ZFS is shown
in Fig. 18 (y=0.3). When y was decreased a tran-
sition to the symmetric mode was seen for y=0. 15.
The irreversible behavior found for the longer junc-
tion is also seen here. Thus, no transition from
symmetric mode to bunched mode is found for in-

IV. RESULTS FOR THE SHORTER
JUNCTION (l=2)

0 (1,&)'
20-

Experimental results are also available for a
junction of relative short length (l=2). The
relevant parameters for this sample (no. 2) are
given in Table I. We have performed numerical
calculations similar to those described in Sec. III in
order to ascertain whether the soliton picture ap-
plies for shorter junctions too. One might expect
the soliton confinement to be more difficult on
these junctions.

In Fig. 16 we show the experimentally (solid
curve) and numerically (points) obtained I-V curve.
Both in the experiments and in the computations
only three ZFS's were found. There is a good
agreement between the shape and position, whereas
the height of the computed steps is generally lower

FIG. 17. Numerical solution of Eq. {2.10) with
y=0.4, a=0.012, P=0.01, g =0, and l=2, showing ap-
proximately half a period of oscillation on the first ZFS
plotted in terms of P„(x,t) for 2 time units. The inset
shows pt(l, t) for 10 time units.
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&,(i, t)
20- bad. In Fig. 20 the solid curves are the numerical

results and the points indicate the experimental ob-
servations. The agreement is good for the first
ZFS, but gets worse for the second and third ZFS.
However, the qualitative behavior and the relative
power levels are well reproduced.

FIG. 18. Numerical solution of Hq. (2.10) with
y=0.3, a=0.012, P=0.01, q=O, aud l=2, showing the
bunched mode on the second ZFS in terms of P, (x, t)
for two time units. The inset shows P, (l, t) for 10 time
units.

creasing y. However, introduction of a small

asymmetry in the model, through the boundary
conditions, e.g., again removes the hysteresis. On

the third ZFS only the bunched mode was found
to be stable, shown in Fig. 19 for y=0.25.

A comparison between the measured and calcu-
lated power emission at the fundamental frequency

f( is shown in Fig. 20 versus the bias current. The
calculated output power is determined through the
relation 8 = V (f& )/2Rz, where we use the load
resistance RL as a fitting parameter. Using the
value indicated by the arrow we find Rl ——17 kQ
which indicates that the open-circuit boundary
condition [q =0 in Eq. (2.16)] is a good approxi-
mation. This result also shows that the experimen-
tal matching to the ambient microwave circuit is

By detailed numerical calculations we have
sho~n that the SJ model, which leads to a per-
turbed sine-Gordon equation, is able to explain re-
cent experimental observations on junctions of dif-
ferent length. We conclude that the soliton picture
applies well on both relatively long (1=6) and
intermediate-length (I=2) junctions. Our calcula-
tions show the existence of the bunched-soliton
configuration which is crucial for the understand-
ing of the internal dynamics of the junctions. The
bunched oscillation gives rise to a signal with fun-
damental frequency f~, while the symmetric mode
found on the lower part of the Eth ZFS yields the
frequency Nf ~. We remark that even though the
symmetric modes shown in Figs. 5 and 10 are
solutions of the perturbed sine-Gordon equation
[Eq. (2.10)] it might be more natural to interpret
them as current-driven cavity modes. Introduc-
tion of a small asymmetry via the boundary condi-
tions, representing a weak magnetic field, e.g.,

Sample P

) (I,tj
2Q

CL

O

0.5

N=1

0

FIG. 19. Numerical solution of Eq. (2.10) with
y=0.25, a=0.012, P=0.01, g=O, and l=2, showing the
bunched mode on third ZFS in terms of P, (x,t) for
three time units. The vertical scale is half of that of
Figs. 17 and 18. The inset shows P,(l, t) for 10 time un-
its.

~«(mA)

FIG. 20. Microwave power emitted from the short
junction (1=2) at the fundamental frequency f&. %=1,
2, and 3 indicates the first, second, and third ZFS,
respectively. The discrete points are experimental re-
sults and the solid lines are the numerical results. The
arrow shows the power value used as a fitting parameter
(see text).
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yields a junction response to variations in the ap-
plied bias current in agreement with experiments.
Also the bunched-soliton configurations on the
third ZFS explain the appearance of two simul-
taneous signals in the experiments. Finally we
mention that some work regarding the detailed ef-
fects of the loading of power from the solitons to
the ambient microwave circuit still remains, also it
would be interesting to see if the recently pro-
posed2o soliton picture of the Fiske steps applies
when the calculations are followed into steady
state.
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APPENDIX

We have used an implicit finite-difference methods in order to solve Eq. (2.10) numerically. Denoting the
restriction of P(x, t) to a square mesh by P,

"=$(ih. ,nk), we get the following approximations for the deriva-
tIves:

(P,
"+'

P,
" ')+O—(k'),

, (P,
"+'

2it,"+it—," ')+O(k'), (A2)

, (i',"+,' 2$,
"+'+i',"—+,'+. P,",' . 2P,

" '+P,"—,')+. O(h' k'),
2h

(A3)

(A4)

c1'4 p1 +c2fi +el/i 1 c3(iti—+1 +iti 1 ) c4iti —+c50i +c6(sinai

(yn+1 2yn+1+yn+1 yn 1+2yn——1 yn 1)+O—(j 2+k2)
2kb

Substituting Eqs. (Al) —(A4} in Eq. (2.10) and negliecting O(Ii ) and O(k ), we get the following system of
equations:

1p2yo n»ySp n =0,1,. . .

ci ——p+k, C2
———(ah +2h /k+2p+2k), C3

——p —k,
c4 ——(uh —2h /k+2P —2k), c5 ———4h /k, C6=2h k .

The boundary conditions are treated by introduc-
tion of imaginary points and Eq. (A5) is solved in
a standard manner by means of the tridiagonal al-
gorithm. The nonlinear term in Eq. (A5) is
evaluated by a predictor-corrector loop. First, Eq.
(A5} is used to compute the predictor iI},

"+', then
this solution is reused in Eq. (A5}, but now with
the nonlinear term replaced by the average

z (sin((}; + sini}},
" '). The accuracy of the nu-

merical scheme has been checked by a systematic
halving and doubling of time and space steps. In
the results for the longer junction we have used
0.025 for the time step and 0.05 for the space step.
For the shorter junction these values were 0.02 and
0.04, respectively.
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