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Heat capacity and density of states of a normal-metal —superconductor bilayer
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The 8ogoliubov equation is solved for the case of a normal metal of thickness a„ in contact
with a superconductor of thickness a, . The excitation energies and density of states are calculat-

ed for energies both less than and greater than the pair potential 5, in the superconductor.

These results are used to calculate numerically the heat capacity of the bilayer as a function of
temperature. As the thicknesses become large, the heat capacity approaches the value which

would be present in the absence of a proximity effect. For layers less than a coherence length

the heat capacity approaches that of a homogeneous superconductor with an effective pair po-

tential determined by the volume average of the pair potential in the bilayer.

I. INTRODUCTION

The heat capacity of a normal metal in contact with
a superconductor differs from the sum of their indi-

vidual heat capacities because of the proximity effect.
In the past there have been few studies of this effect
because of the difficulty in preparing suitable bulk
samples but in recent years fabrication techniques for
preparing laminar and filamentary composite rnateri-
als have improved, allowing heat-capacity measure-
ments to be made on several bulk samples in the
proximity-effect regime. '~ These measurements
have concentrated on the discontinuity in the heat
capacity at the transition temperature which, as ex-
pected, is less than that for the superconductor alone,
but quantitative agreement has been elusive.

The heat-capacity measurements are usually com-
pared to a Ginzburg-Landau theory in which the free
energy is expanded as a function of an order parame-
ter."This type of theory should give a reasonably
accurate spatial variation of the order parameter and
its resulting contribution to the free energy but it
completely ignores significant microscopic details
such as Andreev scattering of quasiparticles near the
normal-metal —superconductor interface. Andreev
scattering can give rise to bound states belo~ the en-
ergy gap6 8 and other structure in the density of
states "and should be taken into account. Such ef-
fects are important in electron tunneling measure-
ments' " and have been included in theories of elec-
tron tunneling.

It is the purpose of this study to determine the ef-
fects of these microscopic details on the heat capacity.
The tunneling density of states cannot conveniently
be used to predict the heat capacity because it is a lo-
cal density of states at thc free surface and not the
average or total density of states required. Instead
the microscopic effects are taken into account by

solving the Bogoliubov equation for a normal-
metal —superconductor bilaycr. In Sec. II the excita-
tion spectrum is determined and in Sec. III the densi-
ty of states is calculated. The heat capacity is calcu-
lated from the density of states in Sec. IV and the
resulting discontinuity at the transition temperature is
discussed in Sec. V.

II. EXCITATION SPECTRUM

The system to be investigated consists of a
normal-metal film (X) of thickness a„which is in
contact with a superconductor (S) of thickness a, at
the x =0 plane. For simplicity it is assumed that the
metals differ only in their transition temperature or
electron-phonon interaction. For clean materials
(where I, &) a„,a, ) the excitations of this system can
be determined from the Bogoliubov equation

eQ=o., V' EF P+o„h(x—)P,

where Q= [„"l is the two-component wave function
and h(x) is the position-dependent pair potential. To
make the problem tractable it is assumed that
h(x) =5, in the superconductor (a, )x &0) and
that 4(x) =0 in the normal metal (0 )x ) —a„).
This should be a good approximation for thin films
where a„and a, are less than a coherence length
since the pair potential cannot vary rapidly over dis-
tances shorter than that in a given metal. On the
other hand, for very large thicknesses this approxi-
mation should be reasonable since most of the varia-
tion of h(x) will occur within a few coherence
lengths of the x =0 interface.

To find the excitation energies we look for a solu-
tion to Eq. (l) with the boundary condition Q =0 at
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the free surfaces of the metal. " The solutions are of the form

n+ sinks(x +a„)
stnk (x+a ) (2)

and

&+0 . e—0
y+sinq+(x —a, ) + y sinq (x —a, )

1'(x) = ~~ ~~ e 2 for x)0
y+sinq+(x —a, ) +y sinq (x —a, ) (3)

with the following definitions:

$/2

k+= 2m (E cos'8+~)''
A2

F

sin8 = k2/kF,
i/2

qy=
2

(EFcos28 + 0)'~2m

( 2 g2)1/2

By matching 1C1 and d1i1/dx of Eqs. (2) and (3) at
x =0 there is a nontrivial solution for the four coeffi-
cients n+ and y+ only for values of e which satisfy
the equation

0 coshk cosAq —e sinhk sinhq = II cos(k+ q), (4)

most one additional solution for each increase in
k+q from n2r to (n +1)2r which corresponds to a
maximum number of solutions (k+q), „/2r=2kF
(a, +a, )/2r The . actual number of solutions can be
even less if there are values of cosH for which the
LHS becomes greater than O.

As a check on Eq. (4) we look for solutions for the
case e » 4, where superconducting effects should
be small. In that limit Eq. (4) becomes

cos(Ak+hq) =cos(k+q)

or

Ak+dq =+(k+q) +22rj

~here j is an integer. Substituting the expressions
for Ak, Aq, k, and q leaves

where
2 7rk kF cosH

(5)

29~ 6
6k=(k+ —k )a„=

2r A, COS8

2a, Qaq=(q, —q )a, =
2r(A, COS8

k = (k++ k )a„=2kFa„cos8

q = (q++ q ) a, = 2kFa, cos8,
AvF

mh,

The spacing between levels is 2rt'kF cos8 [m(tr,
+a„)] ' which is precisely the result for an electron
confined in single dimension to a length a, +a„. In

~ LHS RHS ~(ll)I, l" I

To arrive at the above solution it has been assumed
that e(EFcos8) ' « 1. We need only consider posi-
tive values of cosH since excitations with cosH (0
represent the same excitations owing to the specular
reflections at x =-a„and a, .

If the energy e is held fixed the right-hand side
(RHS) of Eq. (4) is a rapidly oscillating function of
cosH since the argument of the cosine is usually
much greater than 1. If the RHS and left-hand side
(LHS) of Eq. (4) are graphed against angle 8 as in

Fig. 1, then the points of intersection correspond to
the values of H for which there are solutions at this
particula'r energy. As can be seen in Fig. 1, because
the LHS is a slowly varying function there can be at

e=o
cosa= I

8=—
2

cosa=0

L I, t

FIG. 1. Qualitative sketch of the left-hand side (LHS)
and right-hand side (RHS) of Eq. (4) as function of H or
cosH. The points of intersection correspond to different
modes of excitations at a fixed energy.
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addition the values of cosH which satisfy Eq. (5) are
evenly spaced [again assuming e(EFcosH) ' « I]
with

kF(a, +a„) .
cosH j

as would be the case for the confined electron. In
this case there are two solutions for each value of

cosH —one with j positive and one with j negative
corresponding to the usual excitations above and
below the Fermi surface.

To compute the thermal properties of this bilayer it
will be necessary to know how the excitation energies
vary with I,. The derivative Be/BI, is easily calcu-
lated by differentiating Eq. (4) with respect to b,'
which gives

Beg I ag Q cositk sin+q + age sln~k cos~q —
2 1r(e/Q) (+g cosH slnkk slnkq

Bhg2 2 (a„Q2+a,e') sinhk cos/kq+eQ(a, +a„)coshk sinhq —(g/Q) gcosHsinhk sinhq

The label j has been added to the derivative as a
reminder that the quantity depends on the quantum
number j (or angle cos8) in addition to the energy.
In the extreme cases a„or a, =0, Eq. (7) reduces to
Be/85,'= (2e) ' and 0, respectively, as one would
expect.

Be Gennes and Saint-James were the first to point
out that a proximity-effect bilayer such as we are
considering should give rise to bound states with en-
ergies less than 5,. For these states 0 is imaginary
and it is more convenient to define p = i 0
=(g —e')'i'. Then Eq. (4) becomes

p coshk coshb q' —e sinhk sinhhq' =p cos(k + q)

where hq'=iraq =2a,p(m(bgcosH) '. The hyper-
bolic functions often cause the LHS of Eq. (8) to be
greater than p so that there are usually far fewer
modes for a given e (4, than for e & 5,. Putting
the hyperbolic functions in exponential form this be-
comes

r

e ~ sin Ak —cos

—e ~' sin Ak+cos ' =— cos(k+q)2p

which agrees with the calculation of De Gennes and
Saint-James who assumed an infinitely thick super-

. conducting layer.

III. DENSITY OF STATES

The density of states for these excitations can be
calculated from the excitation spectrum of Sec. II us-
1ng

VkF2 . d Hi
tll (e)= cosHJ slnHi

2Ã ag + arr de

2+X(0) V E dcosHi

kF(a, +a„) de

~here Vis the volume of the bilayer and the quan-
tum number j indicates the mode. The total density
of states is the sum of Eq. (9) over all quantum
numbers n(e) = X ni(e)

For the case ~ && 5, the derivative required for
Eq. (9) can be calculated directly from Eq. (5). The
result is that ni(e) = mW(0) V[kF(a, +a„)] ' and is
independent of mode. The total density of states is
then

n(e)= Xni(e) =ni(e) ' " =2K(0) V .
2kF(a, + a„)

J m

In the limit a, » /COSH so that hq » 1 this
reduces to

s~n Ak —cos ' =0
1

The factor of 2 comes from the counting of excita-
tions both above and below the Fermi surface.

For the case of arbitrary energy the derivative
d cosHj/de can be determined by differentiating Eq.
(4) with respect to e. This leads to [still assuming
e(EFcosH) '«1]

~~(0) V Q(a„Q2+ agel) inksk c)oslq + e(Q1ag+)acoshk sinhq —
2

grhlgsinb k sinhq
ni(e) =

kF(a, +a„) (a, +a„)Q'sin(k+q) (10)
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In the extreme cases a„or a, =0 this expression
reduces to the appropriate value [i.e., 2N (0) V/
(e' —5,')'~' for e )6, and 2N(0) V, respectively) but
in general a numerical calculation is required. The
calculation of Eq. (10) is a rapidly varying function of
~. For e & 24, the density calculated using this equa-
tion can fluctuate 5—10% about a smooth curve and
for lower values of energy the fluctuations can be
much greater. To obtain a smoothed curve it is use-
ful to either average n(e) for several values of nearly
the same energy or to solve Eq. (4) and calculate the
derivative in Eq. (9) numerically. The results of
these smoothed calculations are shown in Figs. 2—4.

Unlike the case of an isolated superconductor the
density of states for the bilayer in general does not
diverge as e 4, although there is a discontinuity at
e = 6, when a, & g. For film thicknesses much
greater than a coherence length, the peak near e =6,

becomes large and approaches what one would expect
in the absence of a proximity effect, namely,

n(e) =2N(0) V(1 —p, )+ 2 ~ »2p, for e) 6,
&2 g2 1/2

=2N(0) V(1 —p, ) for e & 5,

which is just the sum of the density of states for an
isolated normal metal and superconductor. Here

p, =a, (a, +a„) which is the fraction of the bilayer

which is a superconductor. For films thinner than a
coherence length there is no longer a discontinuity at

For the bound states with ~ ( 4„substitution of
Eq. (8) into Eq. (9) leads to

( ) vrN(0) V

kp(a, +a„)

p(a„p —a, e ) sin)5k coshhq'+ (a, +a„)op cosh k sinhhq'+ z mh, gcos8 sinhk sinhAq'
X

(a, +a„)p sin(k+q) +(p /2EFcos 8) [(a„+a,)epsinAkcoshAq'+(a„e —a,p ) coshksinhAq']
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FIG. 2. Calculation of the normalized density of states vs

energy for bilayers of several different thicknesses.

FIG. 3. Calculation of the normalized density of states vs

energy for several different superconductor thicknesses. For
all curves the normal-metal thickness is held constant at
a„=5/.
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FIG. 4. Calculation of the normalized density of states vs
energy for thin films which differ in the fraction of super-
conducting material in the bilayer. The-dashed lines are the
densities expected for a BCS superconductor of energy gap

~err =~s~s

proaching zero. These states will not always show up
in the calculation of Eq. (11) since that was based on
an approximation which is got valid for angles too
close to 8= —,m. But with the exception of these

states, many of the properties (e.g. , heat capacity,
thermal conductivity) of these thin films should ap-
proach those of a HCS superconductor of the ap-
propriate "effective" energy gap.

In Eqs. (9)—(11), the Fermi energy EF comes in
explicitly. As would be expected, varying Ep by as
much as an order of magnitude results in orily
minimal changes in the density of states and heat
capacity. The values of b„/Ep used for these calcula-
tions were in the range 4 x 10 to 4 & 10 3 which are
somewhat larger than ~ould be the case for most ma-
terials but have the advantage of reducing the
number of modes and hence the time required for
the calculations. This trade-off seems justified con-
sidering the insensitivity of the calculation to this
parameter.

IV. HEAT CAPACITY

As with the expression for e & 6, the density is a
rapidly fluctuating function of ~ and averaging is
often useful to obtain a smooth curve. For large
values of the superconductor thickness the density
approaches the sawtooth curve of De Gennes and
Saint-James6 (see Fig. 2). The abrupt cutoff of the
peaks is because of the absence of a given bound
state mode above a certain energy. As the supercon-
ducting layer is reduced in width, the sawtooth be-
comes less distinct until the structure is washed out
completely except for a single peak at low energy.
For layers of less than a coherence length in thick-
ness the density approaches a BCS-like density with
an effective pair potential 4,ff or energy gap given by
the volume average of the pair potentials in the bi-
layer (i.e., 4,fr =p, h, ) as shown in Fig. 4. The
reason for this can be seen from Eq. (3) which shows
that the quasiparticle states of energy less than 4, can
extend within the superconductor a distance of order—gcos8. If this is greater than the superconductor
thickness then the value of lgl' is nearly position in-

dependent and the probability of the excitation being
localized in the superconductor is just ps. The
minimum energy of an excitation essentially confined
to the superconductor would be 5, so one would ex-
pect the minimum energy of an excitation with a pro-
bability p, of being in the superconductor to be p,4,.
For 8 close enough to , n, the va—lue of g cos8 will al-

ways be smaller than a, and this argument will break
down. As a result there will always be a small
number of states arbitrarily close to moving parallel
to the interface in the normal metal with energies ap-

The electronic heat capacity of the Mbilayer can
be calculated'~ from

C(T) =2 Xc
QT

dh2
=2ksP2Xf(l f)e s+P—

where f= (e's+ I ) ' and P = (ks T) '. The first
term represents the ordinary part of the heat capacity
due to the quasiparticle distribution changing with
temperature w'hile the second term takes account of
the temperature dependence of the excitation ener-
gies, The sum over states can be put in the form of
an integral over energies and a sum over the quan-
tum number j characterizing the angle 0

J S

Calculations using Eq. (12) and the density of states
from Eq. (10) are shown in Fig. 5 normalized to the
normal-state electronic heat capacity at T„
C„(T,) =

3
m2N(0) Vks2T, . Also shown are the heat

capac1tles for a b11aye1 assuming no proximity effect
(npe) and that of an ordinary BCS superconductor.

The calculation with thicknesses of 5/0 is represen-
tative of the thick film case. Here 6 s should have
essentially the magnitude and temperature depen-
dence of a BCS superconductor. The calculated heat
capacity approaches the npe result as would be ex-
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FIG. 5. Calculated normalized heat capacity vs the re-
duced temperature t = T/T, . For the curve with

a„/ge a,/ge =0.3 a reduced pair potential has been as-
sumed as discussed in the text. The inset shows greater de-
tail for the curves near I =0.

seems plausible to assume that h, a (the low-
temperature value of 5,) will be reduced in such a
way as to allow 2h, rr/ksT, 3.53 at low temperatures.
This would make 4,e = 3.53ks T,(2p, ) ' where T,
refers to the actual transition temperature of the bi-
laycr.

Using this value for the pair potential and assum-
ing the same temperature dependence as in the bulk,
the heat capacity (Fig. 5) is quite similar to that of a
homogeneous BCS superconductor as should be ex-
pected from the BCS-like density of states. At the
lowest temperatures however there are significant
differences. Unlike a BCS superconductor which has
a true energy gap leading to an exponential decay of
the heat capacity at low temperatures the bilayer has
no real gap for there are always a small number of
states near 8 =

2
m which can have energies arbitrarily

close to zero. From Fig. 4 it can be seen that at low
energy the density of states is approximately linear in
» leading to a roughly T dependence for the low-
temperature heat capacity. For thinner films the
number of states below h, ff would be even less,
reducing this component to the heat capacity.

V. DISCONTINUITY IN THE HEAT CAPACITY

pected since a similar behavior was found for the
density of states. At lower reduced temperatures
there is some deviation from the npc result caused by
the sawtooth density of states for the bound states. '
A peak in the density of states near e-0.35, is
responsible for the bump in heat capacity near
t -0.2. The heat capacity is roughly proportional to
T' at still lower temperatures duc to the small linear
density of states near zero energy. " These low-

temperature deviations from npe disappear as the
normal-metal thickness is made greater.

For films of thickness less than a coherence length
the calculation is complicated by the fact that in this
Cooper limit the transition temperature and the pair
potential 5, are expected to be reduced from the bulk
values. Although the reduction in transition tem-
perature has been calculated, '2 that for the pair po-
tential has not. In view of the results of Sec. III in
which thc bilayer has a nearly BCS density of states it

86g $ Qg

Qg +QN

m4, af'ccosqsinhk sinAq

4(a, +a„)» sin(hk +/t q)

(14)

The values of cosq are evenly spaced [see Eq. (6)] so
the sum over quantum numbers can be replaced by
an integral

Most experimental investigations' ' of the heat
capacity in the proximity-effect regime have focused
on the discontinuity at the transition temperature so
it is worthwhile to calculate this quantity explicitly.
At T, ihe pair potential 5, 0 and the important ex-
citations have energies much greater than 4,. In this
hmit Eqs. (7) and (10) reduce to

„( ) mN(0) V

kF(a, +a„)

rl»i dg 2kF(a, +a„) 8»g dgXnj(»)»+p i, ' ' " „d(cose)nj(»)»+p
dp m'

Substituting the limiting behavior of Eqs. (13) and (14) into Eq. (12), the normalized heat capacity at T, be-
comes

r

g (T) 6p,' ~- 6p4 dg pr 'tr/kge(e cosH sink k stn+qd», 1 —,»2+ ' ' d» f,(l — )» ' d(cosq)
2» 4(a, +a„)»'sin(4k+&q)

(15)
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where the subscript e indicates that the quantity is to be evaluated at T,. The first term is the contribution from
the temperature dependence of the quasiparticle distribution and is equal to one. The second term then gives the
normalized discontinuity in the heat capacity b C/C„(T, ). Substituting y hk+hq and integrating over cos8
leads to an expression for the discontinuity'

~C 3p,' «*'
I "d h(y)

C.(T.) 2m' dP,
' * "o siny

where
r

h(y) ~slnPoy sin(1 Pg)y tanhby
lncoshby

y
by

booporrko

4(a, +a„)

The integral contains an infinite number of divergences but they are all integrable. The Eq. (16) can be put in
a form for easier computation by noting that

woo
h (y) we/2

h (y)
~ elle

h (y) to(n+i/2)e h (y)
dy = dy + X ' dy

— + dy
siny «siny „& "(~--')& siny slny

2

Using the periodicity of siny and substituting ~ = nm —y in the first integral in the parenthesis and ~ =.n m +y in
the second, ihe quantity in parentheses becomes

( 1)„'"/'d h(nm+w) h(nn w—)—
40 sine

Expanding h(nm+w) and h(nn —w) in a Taylor series about nm we arrive at

40 d h(y) +2 x "" x(-I)"D&'*"'h( )
siny «siny, ~ (2s+1)!„ i

~/2 2@+)

g2g+1 =
~ sinN

Neither the first integral in Eq. (17) nor gq, +i
diverge. The integral of Eq. (16) is then easily
evaluated and is shown in Fig, 6. Only the first few
(arid irl man/ CRscs only tllc first) terms ln s arc im-
portant.

For thick films, b && 1 and the tanhby
—(lncoshby) /by factor in h (y) is large only in the
region y && l. In that range the oscillatory factors of
h (y) cause the integral to vanish as is seen in Fig. 6.
In this limit then

kC 3Pe d~s
C.(T,) 2m' 'dP,

0.8—

C:
EO

9 o
I CO
CL OA—

t I ) ) t
) } I

I ~
I'

I i « I I «

O.OI O. l - I.O I 0

which is just the npe result.
In the opposite limit of thin films b &&1 in which

case the dominant contribution to the integral of Eq.
(16) comes from the region y (( l. In that limit the
sine functions in the integral can be approximated by

FIG. 6. Numerical calculation of the factor in Eq. (16) vs
the parameter b for several different values of the fraction
of superconducting material p, .
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their arguments giving
r

t dy ".y -)" dye, (1-p,) tanh~y-'"-'h@' y-'

=p(1 —p) .

Substituting this in Eq. (16) then gives

dC 3pe 2d~s 3pe d~err

C, (T,) 2m' '
dP, 2m' dP,

The last expression is just the discontinuity for a BCS
superconductor with an energy gap of A,ff. If the
magnitude of the pair potential from Sec. IV is
correct (i.e., 2d, rq/ks T, = 3.53 at low temperatures),
then the bilayer in this Cooper limit should have the
same discontinuity in the heat capacity as would a
BCS superconductor having the same transition tem-
perature as the bilayer.

approach the npe results. For film thicknesses much
less than a coherence length the density of states is
BCS-like with an effective pair potential determined
as a volume average over the bilayer. There is some
uncertainty as to the magnitude and temperature
dependence of the pair potential for the superconduc-
tor in this limit but a reasonable guess gives rise to a
BCS-like heat capacity. In the intermediate thickness
range numerical results are given with both the den-
sity of states and the heat capacity containing struc-
ture due to bound states.

A more realistic calculation would determine the
pair potential self-consistently and take into account
the finite mean free path of the excitations.
Nevertheless the purpose of this calculation was to
include the details of Andreev scattering and bound
states in the heat capacity —details which could not be
included in a Ginzburg-Landau calculation. It is be-
lieved that a more realistic calculation would arrive at
qualitatively similar results.
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