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The previous theory on the thermal boundary resistance between small particles and liquid

He II (Phys. Rev. B 24, 6421 (1981}]is extended to the case for normal liquid 3He in terms of
Landau Fermi-liquid theory. It is shown that the toroidal-mode phonons in small particles con-
tribute to the heat flow through the excitation of transverse zero sound in contrast to the case
of liquid He II. The calculated resistances exhibit a T behavior above some temperature
which depends on the size and elastic property of the small particle. In this temperature regime,
the calculated results for silver and copper particles agree well with the observed resistances in

both magnitude and temperature dependence. At lower temperatures the theory predicts ex-
ponentially increasing resistances with decreasing temperature as in the case for liquid He II.
The relative contributions to the heat Aow due to longitudinal and transverse zero sound are
obtained as a function of temperature.

L INTRODUCTION

The heat transfer between liquid He II and a solid
produces a temperature discontinuity at the interface
of the two media. This phenomenon, which is re-
ferred to as thermal boundary resistance, was first
discovered for liquid He II by Kapitza. ' A similar
temperature discontinuity also appears at the boun-
dary of normal liquid He and a solid, and it is iden-
tified that the thermal resistance is not peculiar to su-
perfluid 4He. In experiments on the heat exchange
below about 100 mK, solids have been often used in

the form of small particles with p, size in order to
make the surface-to-volume ratio large, It has been
expected3 that the finite size of the small particles
may play some important roles for the heat flow.

In a previous paper, 5 hereafter referred to as I, we
have developed a theory of thermal boundary resis-
tance between small particles and liquid He II. The
paper I was an extension of the Khalatnikov's acous-
tic mismatch theory6 by allotting the finite size of
solids, in which the heat transfer was assumed to be
due to phonon conduction and the energy is carried
away in the form of sound waves in liquid He II.
The theory developed in I may be applicable to not
only the case for liquid He II but also that for normal
liquid He in the hydrodynamic regime. In such a
temperature regime, only the first sound plays as a
collective mode. Below about 0.1 K, ~here the I.an-
dau theory is known to be applicable to liquid 'He,
zero sounds propagate as the collective modes in nor-
mal liquid 'He and the heat may be carried by longi-
tudinal and transverse zero sound and single-
quasiparticle excitations.

The purpose of the present paper is to develop a

theory of thermal boundary resistance between small

particles and normal liquid 3He below about 0, 1 K in
terms of Landau Fermi-liquid theory. This paper is
organized as follows; in Sec. II, Landau Fermi-liquid
theory is briefly reviewed in terms of spherical coor-
dinates which make it easy to treat the energy emis-
sion from a spherical small particle. In Sec. III, the
general expression for the heat conductance from a
small particle into liquid He is given. The eigen-
modes of ~aves in a spherical particle are described
in detail. In addition, these ~aves are quantized in
this section. In Sec. I tt', the numerical results of the
thermal resistances are presented for the cases of
copper and silver particles. Summary and discussions
are given in Sec. V.

II. KINETIC EQUATION AND EMISSION OP
ZERO SOUND FROM A SPHERICAL PARTICLE

Theoretical attempts for the thermal boundary
resistance between normal liquid 3He and a bulk solid
have been made by Bekarevich and Khalatnikovs and
Gavoret in terms of Landau Fermi-liquid theory.
Recently Toombs et al. ' justified these phenomeno-
logical theory from the microscopic viewpoint.
Although the transverse zero sound has not been
considered in these works, it has been pointed out by
Fomin~~ that the transverse zero sound contributes to
the heat flow. In this section, we describe briefly the
kinetic equation of Fermi-liquid theory in terms of
spherical coordinates.

The kinetic equation is expressed as

QPf ~ Qg~ QPf ~ 86~p~ BPl ~p~

8p 81 8 r Bp
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where n -, is the quasiparticle distribution function

with a momentum p and a spin cr. «-„ is the quasi-

particle excitation energy and I[n-, ] is the collision

integral. For convenience, we suppress the spin in-
dex o using the definition p = [p, o }.

Hereafter we concentrate on the collisionless re-
gime because the presence of the finite lowest fre-
quency emitted from the small particle of p, size leads
to the condition, ' co~ && 1, in the temperature re-
gime (T ( 100 mK) considered in the present work.
In this regime, Eq. (2.1) is rewritten by introducing
the function v-„defined by Sn-=- —(Bn-, /ip-, )v-, ;

v-= (Fpvp+Ff v& p)
s —p,

(2.8)

The scalar product in Eq. (2.7) is rewritten in terms
of the column and row vector representations,

where p, =p j -cos8~. s is the dimensionless velo-
city of a collective mode defined by s = co/vfq. vf is
the Fermi velocity of the quasiparticle. It should be
noted here that the direction of q is parallel to that
of r due to the spherical change of the distribution
function. From Eq. (2.7), v-, becomes

—v +v ' (v +Sp )=00 (2.2)
vi'P = (vip'. vip, vip) (I iM ) cost)~

(I —p, ') ' 'sing~
(2.9)

Here v - is the quasipartigle velocity and 5«- is the
variation of «-, produced from a change of the distri-

bution function. The variation of energy can be writ-
ten as

where the azimuthal angle p~ is measured from the
polar axis parallel to q. The dispersion relation of
longitudinal zero sound is obtained by integrating Eq.
(2.8) over the solid angle, which yields

1Sp- = p- —e- =—Xf,8nQ

P P P

P

(2.3)
F[w (s)s

VQ = Vlr
1 —w(s)Fp

where

(2.10)

where f,/ V is the interaction energy between
P P

quasiparticles. The summation is replaced hereafter
by the integral as defined by

v
(2mg')'

8«~=FQvQ+Fi vi'p (2.4)

where p = p/i p i. The moments vp and v t are given
by the following integral with respect to solid angle0-

P

dO-
P

VQ= ~ V~
4m

dO-
A P.

V]=, i V~P
4m

(2.5)

Now let us consider a spherical elastic particle in

liquid 3He whose surface is executing vibrations.
These vibrations act as a periodic perturbation to
liquid He and cause the change in the distribution
function as

v-, (q, r ) = v-, (q) exp[i(q—r rpr)] f(e,y)—

Equation (2.3) may be expanded in terms of the Lan-
dau parameters such as

1 s —1w(s) = —I ——sin s+1

The number conservation law is derived by in-
tegrating Eq. (2.6)

svp=(1+ 3F[)vi,1 s (2.11)

By combining Eqs. (2.10) and (2.11), we have the
dispersion relation of the longitudinal zero sound,

w(s() =[F$+FfsP/(I+ ,'F[)] ' . — (2.12)

The dispersion relation of transverse zero sound is
also derived by multiplying p to both hand sides of
Eq. (2.2) and integrating with respect to momentum:

w(s, ) = 2 1 1

1 —s, Fi 6
(2.13)

In results, we have the change of the distribution
function due to the surface vibrations of a spherical
particle as

v-= (F)vp+Ff @vs„)+ F[(1—p, )'
Si jtl

(2.6)
x (cosQ~vt p+sinQ~v&p) (2.14)

—sv-+ p(v-+F)vp+F[ vi ~ p) =0 (2.7)

where R is the radius of the particle and r denotes
the position vector from the origin. f (ll, g) is the
dimensionless function dependent on the polar (e)
and azimuthal (P) angle. Substituting Eq. (2.6) into
Eqs. (2.2) and (2.3), we have the equation for v-(q)
at a distance far from the origin,

III. HEAT TRANSFER FROM A SPHERICAL
PARTICLE INTO NORMAL LIQUID 3He

A. Energy current

The vibrating surface of a spherical particle gives
rise to excitations in liquid He as described in Sec. II
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8&~p
Q=

p

/pl ~
P

5n — 5e- d7
P

P

and the excitations carry away the energy from the
small particle. Energy current takes the form in
terms of the Landau theory

v =X(0)le(1+ 3 Ff ) l t (3.8)

tion Sn are related with the moments vo and v~ as
follows:

fd. = XV/(2~a)' „Id'p .

8n = N(0)lQ

From Eqs. (3.8) and (3.9) the heat current Q, is
rewritten as

(3.9)

The quasiparticle energy ~
p

is expressed as ~
p

~
p

+8Q-, and eQ-, = uf(p —pf) + p, pf denotes the Fer-
mi momentum and p,, is the chemical potential of
the quasiparticle. Then, we have the energy current

Q expressed as

0

Q = —l f J pQQ- (l -+8Q-) dr
P Q~ 1

P

r 0

p8Q (l -+8&-) dr . (3.2)
p g p P

P

The first term of the right-hand side of Eq. (3.2)
vanishes because of the parity of the integrand. Per-
forming the integral of the second term, we have the
expression for Q in terms of moments l Q and l l

Qp = FQSfllf( 8!l)1

$$

2 (Sfvfll~ +SlllfUQ+SlvfllQ)2 2X

W(ojufl 1+-Ff

(3.io)

E= „' Q„(r )r'dft/4mB' . (3.11)

The energy currents Q at the respective positions r
and R, are related to each other through; Q, ( r )
= Q„(R)Al/rl. Then we have the averaged energy
flux Eas

By integrating Eq. (3.10) with respect to a closed sur-
face surrounding a small particle, the averaged energy
flux E becomes

Q=vfw(0) [(1+—,'Ff)FQlQl l+Ffl l. [ll]], (3.3) E = J, Q„(R) d 0/4m (3.12)

where Q(0) is the density of quasiparticle states at
the Fermi surface defined a»(0) = frl"pf/(lr'&').
The second-order moment [v2],~ is defined by the re-
lation

[l,],q ——J (p), (p)~l -, d0-, /4' . (3.4)

The momentum conservation law derived from Eq.
(2.2) takes the form in the column vector representa-

tion,

&9'1r &2rr

S
&t&1e &2re +

3 ~0+0 0

StP)y P2ry 0

Substituting Eqs. (2.11) and (3.6) into Eq. (3.5), we

have

As far as it is concerned with the spherical zero
sound, it is sufficient to take into account the radial

component of energy current Q such as
f

'I

Q, =vfW(0) F)(1+—,Ff) vvQ„lF+f $ l i@2„
i retts

t

(3.5)

In I, we adopted the boundary condition that the
normal component of fluid velocity near the surface
is equal to that of the displacement velocity at sur-
face. Because of the presence of viscosity in normal
liquid He, the appropriate boundary condition may
be the nonslip condition; all components of fluid
velocity near the surface equal those of the surface
velocity of spherical particle. Thus, we put the condi-
tion that the fluid near the moving surface oscillates
in phase with the surface motion of spherical particle.
The condition is expressed as

where B,u —= [u„,uQ, u&] is the time derivative of the
surface displacement of a spherical particle. v is the
fluid velocity near the surface. n is the number den-

sity of liquid 'He which is taken to be the global
averaged value. Using Eqs. (2.11), (3.10), and
(3.12), the energy flux 1is expressed as

E =atpLcf „I u, d&/4rr+alplc, „I (uQ +uQ) dO/4m

(3.14)

Qp vfN (0) [FQsf PQ +Ffsfvt @+Ffsg(PlQ + vlQ) ] ~ (3 ~ 7)

The fluid velocity v and the number density fluctua-

Here the prefactors a~ and a2 are defined by

a, =FQ pL/[N(0) cP (m')'] +al,
a,= F, p, /[W(O) pft], (3.i5)
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where pL, is the mass density of liquid He;
pL, = nmH„and cI and c, are the velocities of longitu-
dinal and transverse zero sound; cI = sIvf and
cf = sgvf, respectively.

8. Surface vibrations of a spherical particie

In order to estimate the energy flux W(T) from a
small particle at temperature T into liquid 3He, we
must know the phonon states in a particle. The prop-
erties of phonons in a small particle have been de-
scribed in I. Phonons in a spherical body consist of
both the toroidal and spheroidal mode. %e have also
presented in I the quantized form of the spheroidal
mode which contributes to the heat transfer into
liquid He II. Here we shall give briefly the procedure
of the quantization of toroidal mode.

The elastic wave equation in a spherical particle for
the displacement u ( r, r) is written by Eq. (3.1) in I.
The solution u for this equation can be expanded in
terms of the potential fields

u = Q p)+ p' X Q2+ Q X Q X Q3 (3.16)

where the vector potentials Q2 and g3 are defined as

y;=( 0r, 0)y, , i -2, 3 (3.17)

Now let us consider the small particles in contact
with liquid 'He. Since liquid He has a small mass
density (pL —0.0815 gem ') compared with that of
small particles, the appropriate boundary conditions
determining the eigenmodes may be taken as those
for a stress-free surface. This condition allows us
two types of oscillations in a spherical particle as
described in I. One is the spheroidal mode and the
other is the toroidal mode. The displacement vector
belonging to spheroidal mode is expressed by the first
and third term in Eq. (3.16). The displacement vec-
tor due to toroidal mode is expressed by the term

V x P2 in Eq. (3.16). It should be noted here that
the spheroidal mode contributes to dilatation. The
eigenvalue problem for the toroidal mode is described
in the Appendix. In I, we have taken only the
spheroidal mode into account for the heat flow be-
cause the transverse sound does not propagate in
liquid He II. In the collisionless regime of liquid He,
the contribution from the transverse zero sound, in
addition to longitudinal one, plays an important role
for the heat transfer. " The spheroidal mode is ex-
pressed by the sum

uo =Ag( V f) +Kg 7 x V && f3)

and the toroidal mode is

J ~t~ x 42

where the lower suffices s and t mean the spheroidal
and toroidal mode, respectively. The upper J acts for
a set of quantum numbers specified by (I,m, oo),
where l and m give the order of spherical harmonics
and co is the angular frequency. Here A J and A J are
the normalization factors for each mode. Although
the first and second term on the right-hand side of
Eq. (3.18) are actually independent of each other in a
bulk solid, in the present cases those terms are com-
bined into spheroidal modes owing to the boundary
condition. The uj in Eq. (3.18) indicates the ratio of
the second to the first term, which is given by Eq.
(4.3) in I. These displacement fields, Eqs. (3.18) and
(3.19), can be quantized by introducing creation and
annihilation operator for bosons.

C. Energy flux from a spherical particle
at temperature T

The energy flux W~(T) at T can be obtained by
taking the thermal average of Eq. (3.14) and by sum-
ming up all over the modes as follows. '

W~(T) = a)pic) X „' (u„,(K)u,„„,(K)) rd0/4m
Ja sf

+u»«~ X J~(u.I, ,s(K)u.o, ,p(K)) rdn/4n
J, a~s, t, p~g, p

(3.20)

where the angle brackets denote the thermal average at T. The thermally averaged squared displacement can be
written explicitly in te'rms of the Bose-Einstein distribution function ns(cu, T) as

J~ J g J
( u op. o u op, a) r = ns( &J& T) I u oPSJ

(3.21)

Substituting the expression for u, and u, into Eq. (3.21) we have the heat flux given by

ps
X(2/+I)& (,T)( (&,')'G,',(&)+,[(A,')'G,', (8)+(A,')'G,'(8)]} .«ps I, ,

(3.22)
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The normalization factors 3, and A, are related to

J
' ~R '-112

f R ' -1/2
dE I Gtt

(3.23)

(3.24)

G, (r) =jp(c«r/v, ) (3.27)

where v, and v, are the velocities of spheroidal and
toroidal waves, respectively; v, = [(2p, +X)/ps]'l'and
v, = (p/ps)'l', and X and p, are Lame coefficients.
The explicit form of a(l) is given as

Here we have defined,

G,'„(r) = [Bj((a«/v, ) l'

+ [a(l) l(I +1)j~(cur /v) r ']', (3.2S)

G,««(r) = l(l +1)[jp(cur/v, ) r

+ a'( l)jp2(r«r/v, )],

The prefactor (2l+1) in Eq. (3.22) denotes the de-
generacy due to the sum over the quantum number
Nl.

IV. NUMERICAL RESULTS FOR Rg BETWEEN
METALLIC PARTICLES AND LIQUID 3He

Let us consider the heat flow from a small particle
at temperature T+hT into liquid He at T. The net
heat flux across the interface is given by

(4.1)

(4.2)

where the heat conductance hg is defined by

5 Wr ( T) = W~ ( T + d T) —WL ( T)

where W~(T+ 6 T) is the heat flux into liquid 'He
when a particle is maintained at temperature T+5'1
and WL( T) is the heat flux from liquid 'He into
small particle at T. Since the net heat flux has to
vanish at equal temperature (lt T =0), we have the
relation Wr, ( T) = W~( T). If the difference in tem-
perature d Tis small, Eq. (4.1) becomes

2(l —Ibi(0) 24Ji+i(0')—
a(l) =

[g' —2(l' —1)]j((q) —2', +t (rf)
(3.28) (4.3)

where g=««R/v, and rf=oiR/v, In Eq. .(3.22), the
summation is carried out with respect to l and ~J.

The thermal resistance Rg is the inverse of h~, i.e.,
R» = h»'. From Eq. (4.3), we have the expression
for the conductance as

X (2l +1)«)JB«ns(mJ, T) {atc((A, ) 'G„(R) +a2ct[(A, )'G„~ (R) + (3, )'G, (R) ]]
4mpg ]„

(4.4)

Now we can estimate the resistance A~ using the
formula (4.4). We need the numerical factor at and

a2 and the velocities of zero sounds c~ and c, in Eq.
(4.4) from the Landau parameters F«and F[. Pro-
vided that the parameters are quoted from Ref. 12,
we obtain the numerical estimation such as a~ =1.54,
a2=0.64 c&=3.456yf, and c, =—ef, respectively. Let
us consider the case of the heat transfer between
liquid 'He and copper or silver particles. The eigen-
value equation for the spheroidal mode in a small
particle has been solved in I and shown in Table I of
I. The eigenvalue equation for the toroidal mode
[Eq. (AS) in the Appendix] is solved numerically
in the present work, in which a set of parameters
are taken as v, = 5.01 && 10' cm/sec and v, = 2.27
x 10' cm/sec for copper and v, =3.60 & 10' cm/sec
and v, =1.66 x 10 cm/sec for silver particles, respec-
tively. The mass densities are p~ =8.96 g cm ' for
copper and p~ =10.5 g cm 3 for silver. All of these
parameters are taken from the corresponding bulk
values. The numerical results on the eigenvalues of
the toroidal modes for copper particle are given in

Table I of the Appendix up to / =10. It should be

I

noted that the lowest eigenvalue for the toroidal
mode (««,~=1.14 X 10'«sec ') is slightly larger than
that of the spheroidal mode (cu«=1.11 & 10'«sec ')
for a copper particle 1 p.m in diameter. It will be
seen from TaMe I that the number of states per unit
interval of q increases with approaching the larger
part of eigenvalues. The reason of this tendency is
identical with that for the spheroidal mode, i.e., the
wavelengths at large eigenvalues are short compared
with the size of a particle. Then the number of states
in the region of large eigenvalues becomes denser.

A number of experiments" 2' have been made on
the thermal resistances between metals and liquid
'He, in which the various sizes and shapes of metallic
particles have been used. %e have calculated the
thermal resistance from Eq. (4.4) and compared it
with the observed data. Figure 1 sho~s the calculat-
ed results of the thermal boundary resistances R~
between liquid 'He and silver particles with 8 =0.55
and 2,5 p,m in radii, ~here the eigenvalues up to

q =100 are taken into account. We see from Fig. 1

that the resistances exhibit a T ' dependence above
about 10 mK for 8 =0.55 p,m and 2 mK for
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FIG. 1. The thermal boundary resistances as a function of
temperature between liquid 3He and silver particles with 0.55
and 2.5 p,m in radii. The curves give the contributions
from both longitudinal and transverse zero sound. The ob-
served data from Ref. 20 are given for dirty silver particles

with R 0.4 p,m in radius (k) and for clean silver particle
with R =0.55 p,m (0), respectively.

FIG. 2. The thermal boundary resistances Rz vs tern-

perature between liquid 3He and copper particles with 0.5
and 2.5 p,m in radii. The solid curves exhibit the contribu-
tions from both the longitudinal and transverse zero sound,
and the dashed curves are only because of longitudinal
mode. The data from Ref. 17 for copper flakes (thickness( 1 p,m and diameter —30 p,m) are shown by circles.

R =2.5 p,m. At low temperatures, the resistances
R~ increase exponentially with decreasing tempera-
ture. These exponential behavior may be caused by
the size effect of small particles as explained in I.

The measured resistances for silver particles with
R =0.55 p,m are also plotted from Ref. 20 in Fig. 1.
The circles and triangles are the data of clean parti-
cles, including dilute magnetic impurities, and the
dirty particles involving a lot of impurities, respec-
tively. Above roughly 10 mK, the calculated resis-
tances for R =0.55 p,m agree well with the observed
data in both magnitude and temperature dependence.
At temperature less than roughly 10 mK, the ob-
served resistances show closely to the T ' depen-
dence and are about two or three orders of magni-
tude smaller than the calculated values. These
discrepancies between theory and experiments may
suggest the importance of other dominant mechan-
isms for heat exchange between metallic particles and
liquid 3He.

The calculated resistances for copper particles with
R =0.5 and 2.5 p,m are given in Fig. 2. The similar
tendency on the temperature dependence of the resis-
tances is found as in the case of silver particles. For

references, we also plot the measured resistance
using copper flakes with thickness ( & 1 p,m) and di-
ameter (-30 pm) from Ref. 17. As seen from Fig.
2, in the high-temperature regime ( T ) 10 mK), the
agreement between theory and experiments is excel-
lent as well as the case of silver particles.

The thermal resistances only due to longitudinal
zero sound for copper particles are also given in Fig.
2. The contribution to the thermal conductance due
to transverse zero sound is not negligible as shown in
Fig. 2. We plot in Fig. 3 the relative contributions to
the heat conductance due to longitudinal and
transverse zero sound. The ordinate in Fig. 3 is tak-
en to be h» (transverse or longitudinal zero
sound}/h»(total). As is seen from Fig. 3, the longi-
tudinal zero sound excited by spheroidal mode plays
a dominant role to the heat transfer throughout the
temperature region. At very low temperatures, the
conductance from the spheroidal mode into
transverse zero sound almost vanishes because the
lowest mode of spheroidal waves gives only the
volume expansion and/or contraction and does not
have the tangential component of the surface dis-
placement. The heat transfer from toroidal mode to
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Cu- He3

~ s a I

10
T (mK)

100

FIG. 3. The relative contributions to the heat conduc-
tance due to the longitudinal or transverse zero sound. S
and T, mean the spheroidal and toroidal mode, respectively.
L and T indicate the longitudinal and transverse zero sound.
The ordinate is defined as the ratio h&(S L, S T, or

T, T)/h&(total). The abscissa is the temperature.

transverse zero sound becomes comparable to that
fro~ spheroidal mode to longitudinal zero sound at
around 3 mK. This originates from the difference in
the lowest eigenvalues between spheroidal and
toroidal mode.

V. SUMMARY AND DISCUSSIONS

We have studied the thermal boundary resistance
Rg between small particles and liquid 3He in terms of
Landau Fermi-liquid theory. The expression of the
thermal resistance, Eq. (4.4), has been derived by il-

lustrating a spherical particle with an arbitrary size. It
has been shown that both the spheroidal and toroidal
mode in a particle contribute to the heat transfer
through the excitation of longitudinal and transverse
zero sound in contrast to the case of liquid He II.
The eigenvalues of the toroidal modes have been
solved numerically from Eq. (AS) in the Appendix.
Using these eigenvalues and those for spheroidal
modes obtained in I, the resistances R~ have been
calculated for silver and copper particles with various
sizes in Figs. 1 and 2. At temperatures higher than
those corresponding to the finite lowest eigenfre-
quency of small particles, the calculated curves in

Figs. 1 and 2 exhibit the T ' dependence and the
magnitude is in agreement with the bulk limit. The
physical meaning of these results is clear because the
dominant phonons contributing to the heat transfer
in this temperature regime have much shorter
wavelengths than the size of particles, then the shape
is irrelevant and the resistance Rg will approach to
bulk limit. The exponential behavior for the resis-
tances at very low temperatures would be common
for the various shapes of particles, because the pres-
ence of the lowest eigenfrequency in any particles
with finite size is essential to this dependence. We
have calculated in Fig. 3 the relative contributions to
heat transfer due to longitudinal and transverse zero
sound, respectively, and shown that the transverse
zero sound contributes to the heat transfer in com-
parable degree with the transfer due to longitudinal
zero sound.

Andres and Sprenger2 have observed the resis-
tance between silver particles 0.55 p,m in radius and
liquid 3He. We have compared our theoretical results
with their data in Fig. 1. As seen from Fig. 1, the
agreement between theory and experiments is excel-
lent above about 10 mK. At temperatures less than
roughly 10 mK the measured resistances become
proportional to T '. This has been also found to be
the case for the resistance between other metals and
liquid He, ' which may suggest that the unknown
process transferring heat effectively is present. We
have also compared the theory with the measured
resistance R~ for copper flakes' in Fig. 2. At tem-
peratures higher than roughly 10 mK the calculated
result agrees with the observed values on R~ in both
magnitude and temperature dependence. The mea-
sured resistances' deviate from the calculated curves
at very low temperatures as in the case of silver parti-
cles. At the present stage, the physical origin of
these discrepancies is not clear and it seems to need
further investigations on these points.

In conclusion, we have studied the thermal boun-
dary resistance between small particles and liquid 3He

due to zero sound excitations by taking account of
the size effect of small particles. The present results
will provide useful physical insight into the further
understanding for the problems.
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APPENDIX' EIGENVALUES OF TOROIDAL MODES

Here, we shall solve the eigenvalues equation for
the toroidal mode. Substituting Eq. (3.16) into the
wave equation for the displacement vector [Eq. (3.1)
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TABLE I. The dimensionless eigenvalue q of toroidal mode. The integer I of the column means the order of Legendre poly-
nomial. The integer n of the row indicates the nth modes belonging to the Ith-order oscillation.

10

1

2
3
4
5
6
7
8

9
10

2.50
3.86
5.09
6.26
7.40
8.51
9.62

10.71

4.27
5.76
7.13
8.44
9.71

10.95
12.16
13.36
14.54
15.72

7.59
9.09

10.51
11.88
13.21
14.51
15.78
17.04
18.28
19.51

10.81
12.32
13.77
15.17
16.54
17,88
19.20
20.50
21.78
23.05

13.99
15.51
16.98
18.41
19.80
21.18
22.52
23.86
25.17
26.47

17.16
18.68
20.17
21.61
23.03
24.43
25.80
27.15
28.49
29.82

20.32
21.85
23.34
24.80
26.24
27.65
29.04
30.42
31.78
33.12

23.47
25.01
26.51
27.98
29.43
30.86
32.27
33.66
35.03
36.39

26.62
28.16
29.67
31.15
32.61
34.05
35.47
36.88
38.27
39.64

29.77
31.32
32.83
34.32
35.79
37.24
38.67
40.08
41.49
42.88

in I], we have the equation for the vector potential

2s

ps 7 42 p& + 42=0
2

(Al)

r x V(ps', —p, V'y, ) =0 . (A2)

Provided that there is no potential source in the elas-
tic body, we have the scalar wave equation as

ps% —p'7'6 =0 (A3)

The displacement field due to the mode (I,m) are
derived using the definition of the vector potential

~here pq is the mass density of a small particle.
Specifying the form of the vector potential P2 as r P2
and utilizing the identity that '7 x [ r p2] = —r
x V p2, we derive the equation for the scalar func-
tion Q2,

=2(r, 0, 0)p 2and Eq. (3.16),

ji+t('rt) —(I —1)ji('rt) j'rt =0 (AS)

We see from Eq. (A4) that the toroidal mode has
no radial component. By solving numerically Eq.
(AS), we have the eigenvalues as shown in Table I,
in which the dimensionless eigenvalues q = k2R are
tabulated up to 1-10.

u' 10

u~P = —mA,' j1(k2r)PI (cos8) i smnP/ i s8ne '"'

A~™j~(k2r) P (cose) cosm pyg ~ m

l t

(A4)

Making use of the stress-free boundary conditions at
the surface (r = R), we have the eigenvalue equation
for the toroidal mode for I ~1,
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