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We describe Monte Carlo simulations of a model three-dimensional inhomogeneous super-
conductor in which small superconducting grains are coupled together by Josephson tunneling.
Disorder is included, but Coulomb effects arising from finite grain capacitances are omitted. An
ordered simple cubic array of grains is found to exhibit a phase-ordering transition to a state of
long-range phase coherence and zero resistivity. The phase-ordering transition becomes conspi-
cuously well separated from the single-grain transition when the intergrain normal-state resis-
tance is about #/e2 ~4000 Q. The specific heat also changes from bulklike to single-particle-
like behavior at this resistance. The specific-heat anomaly arising from the phase-ordering tran-
sition is found to be very weak. Disorder is studied in a model incorporting random intergrain
coupling, via site dilution, and a model with random single-grain transition temperatures. The
site-diluted model shows few qualitative differences from the ordered lattice, except that long-
range phase coherence disappears as expected below the percolation threshold. If the volume
fraction of superconducting grains is a function of temperature, then the phase-ordering tem-
perature is found sometimes to occur above the peak in the specific heat, in agreement with ex-

periments on granular Al

I. INTRODUCTION

Inhomogeneous superconductors differ strikingly
from conventional, bulk superconductors.”? In par-
ticular, the resistivity, instead of dropping abruptly,
falls gradually to zero over a range of temperatures,
and the specific heat is usually rounded, rather than
discontinuous, at the transition.>™ Various other
anomalies show up in the critical currents, magnetic
susceptibility, current-voltage characteristics, and ac
response. Many kinds of composites behave in this
way, including mixtures of superconductor with nor-
mal metal, superconductor with semiconductor, and
superconductor with insulator.

It is widely believed that many of these properties
can be understood in terms of superconducting grains
which are coupled together via Josephson or
proximity-effect tunneling.®~® According to this pic-
ture, the composite may sometimes exhibit two transi-
tions.> ! The first is the superconducting transition
of the individual grains. The second occurs at the
temperature T, where the coupling causes the phases
of the superconducting order parameter on different
grains to line up and produce long-range phase coher-
ence. This corresponds to the resistive transition in
the inhomogeneous superconductor, i.e., the tem-
perature at which the resistivity vanishes. These two
transitions may be widely separated in temperature
and quite distinguishable experimentally especially in
resistivity measurements.

In the present work, we analyze this double transi-
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tion in terms of an often discussed thermodynamic
model for inhomogeneous superconductors.”® The
model is basically a discrete version of the Ginzburg-
Landau free-energy functional which describes bulk
superconductors. The main distinction is that the
bulk gradient term is replaced by a discrete tunneling
term which represents the superconducting weak
links. The model is idealized, but it does allow for
the inclusion of disorder, which certainly plays a role
in many inhomogeneous superconductors. Disorder
can be included in the intergrain coupling or in the
single-grain transition temperature.

Our main results are the specific heats and resistive
transition temperatures. These can be studied as
functions of normal-state sample resistivity, grain
size, and other relevant quantities. We find that, in
general, the specific-heat peak lies at temperatures at
or above the resistive transition. This is not an
unexpected result: The specific heat should mainly
reflect amplitude degrees of freedom of the super-
conducting order parameter, which turn on at the
single-grain transition, while the resistive transition at
T, reflects the behavior of the phases, which should
become coupled at lower temperatures. This particu-
lar sequence persists even if disorder is introduced
into the intergrain coupling. However, if the indivi-
dual grains are assumed to go superconducting over a
range of temperatures, then the order can be reversed,
i.e., most of the specific-heat peak can lie below the
resistive transition. This model thus offers a possible
explanation of results reported in granular Al
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Besides the correlation just mentioned, the paper
also provides evidence that T, falls smoothly with in-
creasing normal-state resistivity. Results of this na-
ture were already presented earlier, in abbreviated
form,!! and are in accord with widely held beliefs
about the behavior of the present model, and of in-
homogeneous superconductors.

The methodology we use in this paper is Monte
Carlo simulation,!? which permits us to extract the
thermodynamic properties of the model essentially
exactly, within the limitations of a finite-sized com-
puter sample. The size limitation is probably unim-
portant except insofar as it prevents the calculation of
quantities such as critical indices, and of percolation
effects arising from long tenuously connected super-
conducting clusters whose correlation length exceeds
the size of the sample.

The remainder of the paper is organized in the fol-
lowing way. Section II reviews the model, outlines
its justification, and points out which experimental
features are included and which neglected. Section
III gives results for a perfectly ordered three-
dimensional array of identical, coupled superconduct-
ing grains, supplementing an earlier paper in which a
few special cases were shown. Sections IV and V il-
lustrate the effects of introducing disorder into the
coupling strengths and into the single-grain transition
temperatures. A discussion follows in Sec. VI.

II. MODEL

The basis of our calculations is the following model
for the Helmholtz free energy of a granular supercon-
ducting composite (in units such that the Boltzmann
constant kg=1) (Refs. 7, 8, and 11):
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Here ¢;=|y;lexp(i¢;) is a dimensionless complex
energy-gap parameter for the /th grain, related to the
energy gap A; by y;=ToA;; Ty is a normalizing tem-
perature (for example, the bulk transition tempera-
ture); T is the absolute temperature; t =T/Ty; T; is
the single-grain transition temperature of the ith
grain; t;=T;/ Ty, 8, is a dimensionless size parameter
defined by'® 8,=1/[N;(0)v;T;], where N;(0) is the
electronic density of states per unit volume at the
Fermi energy for the /th grain and v, is the volume
of the ith grain; R is the normal-state tunneling
resistance between the /th and jth grains; and

Ry=7%/e*~4000 Q is a characteristic resistance. The
integrals in (1) run over all possible complex values
of the variables y;.

The physics underlying (1) is straightforward. § is
the Ginzburg-Landau free-energy functional of the
system when the gap parameters have the particular
values (Y1, ¥y, . . . ,quG) where Ng is the number of

grains. In effect the internal degrees of freedom of
the various particles have been summed out, except
for the gap parameters. The phase-space integral in
(1) performs an average over the possible values of
the ¢;’s. Thus F behaves from the point of view of
statistical mechanics as an effective, temperature-
dependent classical Hamiltonian.

The functional F is made up of two parts, a single-
grain piece and an intergrain coupling term. The
single-grain part is the standard Ginzburg-Landau
form in the absence of a magnetic field. It presup-
poses a spatially uniform order parameter within each
grain, but allows for the possibility that different
grains have different intrinsic transition temperatures
T; as well as possibly different volumes and densities
of states at the Fermi energy. The coupling arises
from Josephson tunneling in the case of a
superconductor-insulator composite, and from the
proximity effect for normal superconducting mix-
tures. The coefficients given in (1) are appropriate to
Josephson tunneling between identical superconduct-
ing grains near their common transition tempera-
tures, or between unlike grains provided the gaps in
each are small compared to kzT.'* In the absence of
a magnetic field, the coupling is always such as to
tend to line up the phases ¢; on different sites. For
grains with different intrinsic transition temperatures,
it also tends to force them to go superconducting at
the same temperatures.

Omitted from (1) are ‘“‘charging energies’’, i.e., the
Coulomb energies associated with the finite capaci-
tances of the grains.!>™2! These tend to inhibit phase
ordering, but do not seem to have a major qualitative
effect on the transition itself, as has been discussed
by other workers. The Ginzburg-Landau form of (1)
limits its validity, in principle, at temperatures close
to the various 7T;’s. Farther away, additional terms
should be added to both the single-grain and the cou-
pling terms. But the effects of these additional terms
should only be quantitative, and the general types of
behavior we find should be unaltered by them.
Equation (1) does allow for the effects of quenched
disorder, which is certainly one of the most important
factors to consider in real composites.

III. ORDERED LATTICE OF GRAINS

As a first example, we have considered a simple
cubic lattice of identical grains with nearest-neighbor
coupling only. The model free-energy functional in
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(1) is then replaced by the simpler form
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which (except for Ty which merely scales the tem-
perature) is characterized by two parameters; the
nearest-neighbor coupling R and the size parameter
S.

We have simulated the thermodynamics of (1) and
(2) by standard Monte Carlo techniques, as briefly
outlined in our earlier note. An equilibrium average
(denoted (O)) is obtained from

(0)=Z"‘f[Hdzd;,-IO({!bi})exp(—fF/T) ,
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The specific heat Cy=— T (8*F/9T?) , can be found
by differentiating the energy numerically,

Cy=(9E/dT), where
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Alternately, Cy can be obtained from the fluctuation
expression Cp=T72((F¢) — (Fo)?2), which is the
analog for a temperature-dependent Hamiltonian of
the usual fluctuation expression for the specific heat.
We have calculated Cy both ways and found very lit-
tle discrepancy between the two. Calculations were
mostly carried out for 5 X5 X 5 cubic arrays with
periodic boundary conditions, except where conspicu-
ous size effects warranted use of a larger (e.g.,
10 x 10 x 10) samples. Typically 4000 to 10000
Monte Carlo passes were made through the entire
lattice.

Figures 1 and 2 show the specific-heat, long-range
phase-order parameter m, and mean-square gap
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FIG. 1. Specific heat C}, phase-order parameter v, and mean-square energy-gap parameter {|¢|?) for an ordered simple cu-
bic lattice of coupled superconducting grains. The three vertical panels represent results for the three coupling strengths corre-
sponding to R/Ry=0.1, 1, and 10. All three cases have particles with size parameter §=0.1. Arrows denote estimated position
of phase-ordering transition. The solid curve in the upper right is for isolated particles (R = o). Note the two different scales
for Cy at left and right of figure; the right-hand scale gives Cy in kg per cm? of the superconductor for a metal of the same

free-electron density as Al.
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FIG. 2. Same as Fig. 1 but for larger particles (§=0.01).
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as calculated for a range of the parameters & and R,
the nearest-neighbor normal-state resistance. 7 is de-
fined by the equation

Ng

Sexplio)| ),

-1

n=Ng! (6)

and is a measure of the long-range phase coherence
in the sample, going to zero at the critical tempera-
ture 7, at which the thermodynamic phase transition
occurs (in the same universality class as the three-
dimensional XY model). T, is also the resistive tran-
sition temperature, at which the resistivity vanishes.
The arrows in Figs. 1 and 2 denote an estimate of 7,
deduced from the behavior of ». In our Monte Carlo
calculations, n does not actually vanish at this point
but remains nonzero to considerably higher tempera-
tures, because of the finite size of the Monte Carlo
sample. Cy is plotted both in kp per grain and also in
kg per cm? of the superconductor; the latter is es-
timated assuming a density of states at the Fermi en-
ergy typical of Al. Finally, we have also included two
solid lines in the figures for Cy; these represent the
single-particle specific heats corresponding to R = oo,
and may be calculated exactly by numerical evalua-
tion of a Gaussian integral as described by
Miihlschlegel et al. 13

The transition temperature T, in Figs. 1 and 2 is
monotonically decreasing with increasing R, as was
already noted in Ref. 11, T, reasonably well obeys
the mean-field equation?? T,/To=Ro/(Ro+zR)
where z = 6 is the number of nearest neighbors of a
given grain. Thus T, first begins to separate substan-
tially from T, when R ~ Ry~ 4000 Q. This corre-
sponds to a resistivity p = R oa, where a is the inter-
grain separation, assuming that the normal-state
resistivity is dominated by the intergrain tunneling
resistance and not by the internal resistivity of the
grains themselves. Taking a =100 A, we get
p ~ 4000 u Q cm, which is typical of the resistivities
for which broad superconducting transitions are ob-
served.

Even for very small particles (8§ =0.1), there is no
contribution to the specific heat clearly attributable to
the phase-ordering degrees of freedom—these are
very few in number (of the order 1 per grain) com-
pared to the number of amplitude degrees of freedom,
which is of the order of the number of Cooper pairs
per grain. In the curves for 8 =0.1, there is some in-
dication of a A-like specific-heat anomaly at
R/Ry=1, but when R/R, is as large as 10, this ano-
maly seems to have shrunk down to just a slight ex-
cess over the single-grain specific heat near 7.. A
clear observation of this anomaly is therefore likely
to be very difficult (except conceivably by observing
changes of the peak in an applied magnetic field).

In the curves for smaller particles (8§=0.1), C) be-
comes sharper and more bulklike as R /R decreases.
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This occurs because the phase degrees of freedom are
so strongly coupled that the system is tending to
behave as one large particle, as was already pointed
out in Ref. 11. The crossover from single-particle to
bulklike behavior occurs near R = R,

The behavior of the specific heat is largely mir-
rored in the mean-square gap. Generally, {|y|?)
behaves in a more bulklike manner (varying linearly
with temperature) for the samples with smaller & and
smaller R. In the other limit, we see (largely single-
grain) zero-dimensional fluctuations producing a tail
in the gap above T, the nominal single-grain transi-
tion temperature. Since the gap measures the ampli-
tude degrees of freedom, it is little affected by the
phase-ordering transition. Only in the curve with
8=0.1 and R/Ry=1 is there a slight excess value of
the gap near T,. This anomaly is probably outside
the error bars of the simulation, but it is not very
large and would be hard to see experimentally.

An issue of experimental interest is the relative po-
sitions of T, and the temperature at which the peak
specific-heat anomaly occurs, which we call T,,. In
Figs. 1 and 2 (and for other parameters we have stud-
ied in an ordered lattice) T, always lies at or below
T... This is easily understood, for the effective cou-
pling between grains is proportional to the product of
the order parameters on the different grains. The
coupling is therefore nearly absent until the individu-
al grains become superconducting and the specific-
heat peak forms.

IV. EFFECT OF RANDOMNESS IN COUPLING
STRENGTHS: SITE-DILUTED
LATTICE OF GRAINS

We next examine how the results of Sec. III
change when the coupling between S grains is made
random in some fashion, as would be expected in
real materials. The randomness is introduced by
means of site dilution. We consider a simple cubic
lattice of grains, with nearest-neighbor coupling, the
sites being occupied or empty with probabilities p and
1 —p, and with no correlation between the occupation
probabilities of any two sites. While this model is
clearly artificial, it is probably adequate to give a
rough idea of real composites with disorder in the
coupling strengths. We have, in fact, tested this con-
jecture by simulating various other ways of including
random intergrain coupling, including so-called bond
disorder (where the strengths of different bonds are
random and uncorrelated), and found results which
do not much differ from the ones described below.

We have considered three different site occupan-
cies: p=0.5,0.35, and 0.25. The first is well above
the percolation threshold p. at which there forms an
infinite cluster of grains connected by nonzero cou-
pling. The second and third are respectively just
above and just below p,, which is 0.312 +0.01 for a

very large site-diluted lattice.”® In the particular

10 x 10 x 10 lattices we studied (with periodic boun-
dary conditions) p =0.25 was, indeed, below percola-
tion, and the other two were above. For the two
larger volume fractions a phase-ordering transition
should occur, while for the lowest there should be a
good amount of short-range phase coherence but no
long-range order.

Figure 3 shows the specific-heat, long-range order
parameter, and mean-square energy gap as calculated
for all three site occupancies, for particles with
8=0.01 and R/Ry=1 (results for other parameters
are similar). Also shown is the short-range phase or-
der parameter S, defined by

S=-L 3 (cos(di—4)) Q)
N, (if)

the sum running over all pairs of nearest neighbors

connected by bonds (N, is the number of such

pairs).

The curves for Cy and (|¢;|?) show no substantial
dependence on the volume fraction p at all: They are
insensitive to the occurrence or nonoccurrence of a
phase-ordering transition. The reason for this is, as
in the ordered case, that these quantities primarily re-
flect amplitude degrees of freedom. They are largely
decoupled from the phase degrees which bring about
the resistive transition.

The curves for n show that a resistive transition
does occur, as expected, for p =0.35 and p =0.5, but
not for p =0.25. For p =0.35 and 0.5, » approaches
a nonzero value at T =0. This value is different
from unity, because some of the occupied sites are
attached to finite clusters which are not linked and
hence not phase locked to the rest of the sample,
even at 7 =0. At p =0.25, the order parameter is
zero at T =0 to within a small value which arises
from finite-sample-size fluctuations. This merely re-
flects the lack of long-range phase coherence below
the percolation threshold.

The short-range order parameter S always behaves
smoothly, for all three site-diluted samples, and ap-
proaches unity at 7 =0. Thus, there is essentially
perfect local phase coherence at 7 =0 and the lack of
perfect long-range phase coherence is due to the
presence of disconnected clusters. The persistence of
S above T, almost certainly implies a substantial fluc-
tuation paraconductivity in this temperature range.
However, the present, static theory unfortunately
cannot provide an estimate of this paraconductivity.

A feature which seems to distinguish the disor-
dered samples quantitatively from the ordered ones is
the shape of the curve for n( 7). In site-diluted sam-
ples, n(T) falls off more or less linearly with increas-
ing 7, while in the ordered ones (Figs. 1 and 2) the
decline is more abrupt, and » approaches zero at T,
with an exponent less than unity. Since 7 is the ana-
log of the superfluid density for a granular system,
any quantity, such as critical current, which depends
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FIG. 3. Same as Fig. 1 but for site-diluted samples. All three cases are for 8=0.01 and R/Ry=1. In center panel, dots
represent m; squares, the short-range order parameter S. The three vertical panels represent concentrations of 25%, 35%, and
50% site occupancy and are carried out for 12 x12 x12, 11 x11 x 11, and 9 X9 x 9 lattices with periodic boundary conditions.

on this density should show similar effects of disor-
der. A similar quasilinear falloff with increasing T
has been reported for the order parameter of amor-
phous ferromagnets.?* In both cases, the gradual on-
set of long-range order is probably related to local
fluctuations in the coupling strengths.

Figure 3 also shows the variation of mean-squared
energy gap with temperature for the three cases
described above. As expected, the energy gap is
unaffected by phase ordering, at least for the
moderate coupling strengths shown—that is, the gap
is controlled by single-grain properties.

To summarize, the site-diluted lattices (and other
models we have examined with randomness in the
coupling strengths) show no qualitative differences
from the corresponding ordered-lattice results, except
for the obvious effects of a lack of infinite cluster
below p.. This does not rule out unusual effects
from large clusters that might form on a statistical
basis in a real composite. But since we are really
studying a quasiperiodic system in this work (because
of the periodic boundary conditions), our samples are
too small to see such behavior in our calculations.

V. EFFECT OF RANDOMNESS IN SINGLE-GRAIN
TRANSITION TEMPERATURES

Besides random intergrain coupling, a real compos-
ite might have random single-grain properties. For

example, the grain size or the single-grain transition
temperature might vary from grain to grain. The first
is not likely, by itself, to cause any striking change in
the thermodynamics of the composite. But a ran-
domly varying transition temperature can lead to
unusual effects, as we show in this section. A vari-
able single-grain transition temperature might occur,
for example, in granular Al. This metal often has a
higher T, as a composite or a thin film than as in
conventional bulk form.2>26 The reason for this effect
is not known, but perhaps the large surface area, and
soft surface phonons, enhance the electron-phonon
coupling and raise T,. Since the effect seems to re-
quire small particle dimensions, we consider a model
in which the single-grain transition temperature is
correlated with particle size; smaller grains having
higher transition temperatures (up to a certain lower
limit of size).

Figure 4 shows the specific-heat, long-range order
parameter, and mean-square energy gap for a model
of this kind. The free-energy functional is Eq. (1).
The single-grain temperature 7; is assumed to be a
random variable, with T; uniformly distributed
between 1 and 3. §, is taken to be related to ¢ by the
equation

8,‘=0.01t/2 » (8)

so that small grains correlate with high ¢’s within this
range of sizes. These choices are arbitrary, but are
intended to simulate what might be occurring in
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FIG. 4. Same as Fig. 1 but for model of Sec. V, with random single-grain transition temperatures and nonrandom couplings

as indicated. Solid line represents R = oo,

granular Al. However, our results do not depend
strongly on how the ¢’s are distributed, or how they
are correlated with 3;. In order to focus specifically
on random single-grain properties, we also assume
that the intergrain coupling is nonrandom. Figure 4
shows results for three coupling strengths as indicat-
ed.

The three vertical panels of Fig. 4 show very dif-
ferent behavior which correlates with the coupling
strength. For weakest coupling, T, is relatively low; it
occurs in the middle of the specific-heat peak. The
specific heat and mean-square gap are typical of a col-
lection of isolated particles of a range of sizes and
transition temperatures. To make this connection
more apparent, the specific-heat curve for R = o is
superimposed as a solid line on the upper right of
Fig. 4. On the other hand, for the strongest coupling
(R/Ry=0.1), the proximity effect forces the entire
system to act somewhat like one large particle, all of
which goes superconducting at the same temperature.
Thus, the specific heat sharpens towards a bulklike
shape, and the mean-square energy gap does the
same.

The most novel behavior is at R/Ry=1. Here, we
have sufficiently strong coupling that, as soon as
enough grains have gone superconducting to form an
infinite cluster, the entire sample acquires long-range
phase coherence. On the other hand, the coupling is
not so strong to force the entire sample to behave as

a single grain. The result is that 7, lies above the
temperature T, of the specific-heat peak. The latter
occurs where the bulk of the amplitude degrees of
freedom turn on, whereas the phase ordering occurs
when only about 30% of the grains (and the smaller
ones, with fewer amplitude degrees of freedom) have
gone superconducting.

Figure 4 also shows that 7, does not increase
monotonically with increasing coupling. For the
strongest coupling, the grains with the highest transi-
tion temperature have their superconducting tem-
perature depressed by the proximity effect from
neighboring normal grains (in the model), and so T,
decreases slightly. This effect has not been observed
experimentally, although there is no objection in
principle to its occurrence.

VI. DISCUSSION

The most surprising result of this paper is that, for
an appropriate model, the resistive transition tem-
perature T, may lie above the peak T, in the specific
heat. Since this behavior has occasionally been ob-
served in real superconducting composites, it is
worthwhile to examine this result in more detail. It
is obtained only in the model of Sec. V, which in-
vokes a temperature-dependent volume fraction of
the superconductor arising from a variable single-
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grain transition temperature 7;. Aside from this
feature, the details of the model are not very impor-
tant, as we have found by doing similar calculations
with different distributions of 7; and particle size.
Random coupling models generally give 7., > T..
Thus we find that the experimentally observed results
in Al need a model in which the superconducting
volume fraction is temperature dependent.

It is not clear if the model of Sec. V applies specifi-
cally to granular Al. The assumption of the model is
that each grain is essentially a different material, with
a different transition temperature. Since the resistive
transition temperature of Al definitely rises above the
bulk T, for samples made of very small particles, one
might speculate, as have others,? that the phonon
structure or electron-phonon coupling is stronger in
small particles than in bulk. This suggests that the
coupling, and hence T;, will also vary from particle to
particle, even possibly if they are nearly the same
size. Howeveré the effect seems greatest for very
small (~ 100-A radius) particles, and those are near
the limit for the use of a Ginzburg-Landau theory.
Thus a complete explanation of experiment may re-
quire a more microscopic theory than is presented
here.

Deutscher et al.?’ have presented a somewhat dif-
ferent percolation model to explain resistivity and
specific-heat data in granular Al. They consider a
random variation of coupling strengths, and assume
that each grain becomes part of an infinite supercon-
ducting cluster as the transition temperature for the

bond is passed. Our results suggest that the same
kind of effect can be obtained by having random
grain transition temperatures. Possibly the two
models could be reconciled by imagining that our
‘‘grains’’ are actually clusters of more or less strongly
coupled clusters of grains, although verification of this
point of view would require a study beyond the scope
of our numerical simulation.?®

To summarize, we have presented in this paper a
numerical study of a model of granular superconduct-
ing composites, including the effects of disorder. For
ordered samples, we confirm the behavior found pre-
viously, that the superconducting transition becomes
substantially broadened when the intergrain resis-
tance approaches %/e% For disordered samples, we
find no very surprising effects arising from random
coupling strengths. The persistence of short-range
order in this case (and also in all the others studied)
suggests that there is a considerable paraconductivity
arising from Josephson fluctuations. A model in
which the volume fraction of superconductor depends
on temperature can lead to an inversion of the specif-
ic heat and resistive transition temperatures, and may
help explain some experimental work in which such
an inversion is observed.
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