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Conductivity of random resistor-diode networks
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We investigate the behavior of the conductivity in random lattice networks of resistors and

Ohmic diodes —elements which behave like an ideal resistor in the forward direction. We study

the case where the orientation of the diodes is fixed, corresponding to the geometrical model of
directed percolation. New critical behavior is predicted because the structure of the underlying

conducting network is characterized by two independent orthogonal correlation lengths. We use

the node picture of a percolating network to derive the anisotropic scaling relation between

directed percolation and conductivity exponents. In the mean-field limit, we find a directed con-

ductivity exponent t+=2, in contrast to an isotropic conductivity exponent of t =3. In two

dimensions, we employ the renormalization group to study the critical behavior of the directed

conductivity. We predict that the conductivity should approach zero with an infinite slope

(t+ & 1) as the transition is approached from above. This is consistent with the intuitive expec-

tations developed from the node picture. We also briefly discuss conduction in networks with

superconducting diodes (which have an infinite conductivitiivity in the forward direction), and

possibility of a directed conductor-superconductor transition. Additionally, we describe a more

general network with Ohmic and superconducting diodes within the renormalization-group

framework by introducing a larger parameter space which includes "leaky" diodes.

I. INTRODUCTION

Similarly, the superconducting transition can be
described by a percolation process in which the lattice

bonds have infinite. conductivity with probability p,
and finite conductivity with probability 1 —p. In this

case, as p approaches p, from below, G (p) diverges
as

(p —p, ) *. (1.2)

In the mean-field limit, valid for spatial dimension

d ~6, t =3 and s =0,~~ while for d (6 these ex-

ponents have been calculated by a wide variety of ap-

proaches. ' ' In d =2 and 3, theoretical estimates

One important application of the percolation prob-
lem" has been the description of conductivity in

random conductor-insulator and conductor-
superconductor mixtures. ' In the former case, as the
concentration of insulating material is increased from
zero, the system undergoes a continuous transition
from a conducting to an insulating state. This transi-

tion can be modeled quite simply by bond percolation
in which the conductor is represented by a regular

lattice whose bonds have a finite conductivity. The
dilution by insulating material corresponds to ran-

domly removing conducting bonds from the lattice.
As the bond concentration p approaches the percola-
tion threshold p, from above, the conductivity G(p)
vanishes as

are in good agreement with current experimental
results. ' '7 Thus there has been considerable pro-
gress in understanding the conductivity in random,
but isotropic systems.

In this article, we investigate the conductivity of
networks in which diodes (one-way bonds) are intro-
duced. The motivation for our study is twofold: (1)
The geometrical properties of random networks in

which diodes are added becomes considerably more
interesting'8 than networks consisting only of resis-
tors (two-way bonds). A study of conduction in

diode networks thus complements previous investiga-
tions of the geometrical properties. (2) There may

exist physical systems where directionality con-
straints enter in a fundamental way, and these con-
straints may be modeled by a random network con-
taining resistors and diodes. One possibility that has
been considered is conduction due to electron hop-

ping in strong electric fields, 5 6 and other examples
have been suggested theoretically. It is hoped that
our study of conductivity in diode networks will

stimulate further investigations, both theoretically
and experimentally.

The organization of the remainder of this article is

as follows'. In Sec. II, we define the random net-
works of resistors and diodes that are treated in later
sections. In Sec. III, we present an effective-medium
approach for the conductivity. It gives fairly good es-
timates for the locations of conductivity transitions,
along with the standard result of conductivity ex-
ponents equal to unity. This effective medium ap-
proach displays some shortcomings, however, which
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seem to be indicative of some rather interesting ef-
fects. In Sec. IV, a sca1ing theory for the conductivi-
ty based on thc node pictUI'c ' of thc pcl'colating
network is prcscntcd. %c usc this to coIDparc the
critical behavior of the conductivity in a random
diode and a random resistor network. In addition, wc
dcrlvc an Rnisotroplc scaling rclatlon between thc
conductivity and correlation length exponents of ihe
diode network, Rnd thereby obtain thc IQcan-flcld
limit for the exponents.

IQ Sec. V, we present a position-space
renormalization-group study of the critical behavior
of the conductivity in two dimensions. Our calcula-
tions indicate that the conductivity should vanish
with an infinite slope near the transition, a result that
is consistent %ith thc expectations dcvclopcd from
the node picture. In Sec. VI, we treat networks with
supercondueting diodes, bond elements which possess
an infinite conductivity in the forward direction. In
this case, thc network conductivity is quite interesting
beciuse several combinations of electrical responses
in the forward and reverse directions are possible.
To describe the system self-consistently by the renor-
Inallzatlon group, wc IQtI'Oducc 8 largcl parameter
space which includes "leaky" diodes. The exponents
associated with a directed conductor-superconductor
transition Rre also calculated. Finally, Sec. VII con-
tains 8 brlcf summary RQd dlscusslon.

A. FQHy directed percolation

For coQCI'ctcQcss, wc shall consider networks on 8
d-dimensional hypercubic lattice. In fully directed per-
colation, each edge in the lattice may be either occu-
pied by a diode with probability p+, or empty with 8
probability 1 —p+. The diodes arc oriented so that
they condUct only along thc positive dlrcctlon with
respect to a given Cartesian axis [Fig. 1(a)]. Thus
they may be thought of as being "aligned" or "polar-
Izcd 81ong an cxtcrnal blas or anlsotlopy- parRHcl to
the diagonal (1,1, . . . , 1).

The orientational order of the diodes. produces a
macroscopic anisotropy near the directed percolation
threshold. Asymptotically, cluster shapes may be
characterized by two independent diverging correla-
tion lengths, """""one parallel Rnd onc
transverse to the anisotropy axis [Fig. I(b)]. The
divergences of these two lengths arc governed by the
longitudinal and transverse correlation length ex-
ponCntS, P]] Rnd Pg, respeCtlvely. BCCRUSC 'v]] P Pg 1Q

general, the pair connectedness becomes long-ranged
only along thc Rnisotropy Rxis at thc percolation
threshold. Above thc threshold, 8 cone-shaped re-
gion of finite opening angle about the anisotropy axis
opens up, within which it is possible to percolate.

(cj

FIG. 1. (a) Fully directed percolation in t~o dimensions.
Each pair of nearest-neighbor sites may be joined by a
directed bond- (diode) Which conducts either up%'ard 01' to
the right. (b) Schematic picture of a typical cluster in direct-
ed percolation near the transition. Notice that tw'o points, rl
and r2, on opposite sides of the cluster are connected only in
the sense that they are joined to a common origin. (c) Par-
tially d11ected pe1colatlon 1n t%0 dimensions. Resistors may
occupy the horizontal edges of the lattice while diodes which
conduct upward may occupy the vertical edges. The occupa-
tion probabilities for the two bond elements are equal. (d)
Oriented resistor-diode netvvork. Each occupied bond may
be a diode (which conducts either upward or to the right) or
a resistor. There is a connected path which goes from the
origin to the right edge by a path of resistors and diodes.

This represents 8 trBnsition from RQ insulating to 8
diodclikc state whose study is one of thc aims of this
paper.

8. Partially directed percolation

In this fHOdcl~ thc dMdcs Rrc Rhgncd along RQ

external bias that is parallel to a particular Cartesian
axis [Fig. 1(c)],while perpendicular to this axis, the
system is isotropic. The isotropy in the trRnsverse
d][rcctions May bc Rccomplishcg, , clthcI' by randomly
occupying thc lattice edges by resistors, or by diodes
with no average oricQtational Order. For simpllclty
we shall consider only the first possibility, with the
further simplifying condition that the occupation
probabilities for the resistors and diodes arc equal.
%C define this as partiaI(y dI'treeted percolation. 39 As
we shall sce in the next section, the partially directed
IYlodcl ls very convenient for applying effect1vc-
mcdlum theory.
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FIG. 3. The current-voltage characteristics of (a) the

model "Ohmic" diode, (b) the model "superconducting"

diode, and (c) a typical laboratory diode.

FIG. 2. Phase diagram for the oriented resistor-diode net-
work. For any point inside the composition triangle, the
perpendicular distance to an edge gives the relative concen-
tration of the bond element labeled at the opposite corner.
Fixed points of the renormalization transformation are indi-
cated by heavy dots. The two second-order lines divide the
figure into the three phases shown. The second-order lines
meet to define a tricritical point at the isotropic percolation
threshold. Here, there are two relevant eigenvectors (ar-
rows) related to concentration and orientational variables.

C. Oriented resistor-diode network

This model is a simple generalization of fully
directed percolation. Each bond may be occupied by
a resistor with a probability p, by a positively oriented
diode with a probability p+, or the bond may be
unoccupied with a probability q =1 —p —p+ [Fig.
1(d)]. The system exhibits three distinct phases
depending on the reIative concentrations of the bond
elements (Fig. 2). There may exist an isotropic infi-
nite cluster (conducting phase), or a unidirectional in-

finite cluster, in which connected paths propogate
predominantly in one direction (diode phase). The
network may also consist of only finite clusters (insu-
lating phase). By varying p and p+, one can pass
between these phases, and probe several interesting
conductivity transitions. First, there is the transition
between the diode and nonconducting state, already
discussed in Sec. II A above. In addition, there is a
transition from the conducting to the diode phase,
where the conductivity opposite to the orientation of
the diodes, vanishes. Furthermore, the three phases
of the system meet at a common point where they
are simultaneously critical, that is, a tricritical point
where new conductivity exponents may be defined.

D. Electrical response of the diodes

To discuss directed conductivity transitions in more
detail, we need to specify the electrical response of
the diodes comprising the network. Two natural
choices are: Ohmic diodes and superconducting diodes
(Fig. 3). The former are defined to have an infinite
resistance if the voltage is biased in the backboard

direction, but a finite, nonzero resistance under a
forward-bias voltage. Such a response approximates
that of a real diode and resistor in series. On the
other hand, the superconducting diode is defined to
have zero resistance in the forward direction. This
represents a rough approximation to a real diode
which allows a very small leakage current to flow in
the backward direction, but which becomes highly
(and nonlinearly) conducting in the forward direction
[Fig. 3 (c)].

In the following sections, we will be primarily in-
terested in networks with Ohmic diodes. Several
conductivity transitions can occur where directionality
effects play an essential role. %e define these transi-
tions in the context of the oriented resistor-diode
network, which encompasses both fully and partially
directed percolation. In the transition from the diode
to the insulating phase, the forward conductivity,
G+(p,p+), should vanish continuously as

(2.1)

as p+ p+ from above. This defines the forward or
C

directed cooductivity exponent t+. On the other
hand, as one goes from the conducting to the diode
phase, the reverse conductivity, G (p,p+), should
vanish continuously as

(2.2)

as p p, from above. Finally, at the tricritical point,
both conductivity processes, (2.1) and (2.2), are
simultaneously critical, although with potentially dif-
ferent numerical values for the exponents,

For networks with superconducting diodes, there
exists a transition where the forward conductivity
diverges continuously as the concentration of diodes
approaches a threshold value from below, awhile the
reverse conductivity remains analytic. This diver-
gence may be described by the power law.

(2.3)

which serves to define a forward superconducting ex-
ponent, s+.

In the following sections, we shall study the con-
ductivity properties of the networks defined above.
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III. EFFECTIVE-MEDIUM THEORY

i~=g V (3.la)

Next, one bond in the effective medium is now as-
signed a different conductivity g, and the external
voltage is adjusted to maintain a total current I pass-
ing through the lattice (Fig. 4). In this case, an addi-
tional current 5i passes through the conductor g.
Consequently, a current —Si must flow from one ter-
minal of g —defined to be a —through the remainder
of the lattice, to the other terminal of g —defined to
be b. Because of this current perturbation, there is
an additional voltage drop, 5 V, across g. From these
considerations we find

—Si = G,p5V

i~+Bi =g( V~+& V)

(3.1b)

(3.1c)

where G,q is the conductivity of the rest of the lattice

b
-8[

&ob
E

gm Vm

FIG. 4. In the effective-medium approximation, we re-
place the random network by the regular lattice shown, in
which each bond has a conductivity g~. When the conduc-
tivity of one bond (shown as a heavy line and labeled by the
end points, a and b) in the effective medium is changed, a
voltage fluctuation is produced. The arrows indicate
schematically the additional current due to this fluctuation.
The uniform current i is not shown. In analyzing this situ-
ation, the lattice is equivalent to the system shown to the
right.

In effective-medium theory (EMT), the macro-
scopic conductance of a random system is determined
in terms of the conductance of an equivalent periodic
system using a procedure reminiscent of the
effective-field approximation in magnetism. We will

apply EMT ideas to obtain results for fully and par-
tially directed percolation in this section. To begin,
we outline the basic steps of conventional EMT for a
random resistor network.

First, we replace the random network in which
each bond has a finite conductivity go with probability

p and zero conductivity with probability 1 —p, by an
equivalent uniform effective medium in which every
bond has the same conductivity, g . Across each
bond parallel to the field, a mean current i flows
due to a mean voltage drop V . These quantities are
related by

between the terminals of g [Fig. 4(b)]. Finally, we

require that 5 V averaged over the conductivity proba-
bility distribution for each bond, pg(g —go)
+ (I —p) 8(g), is zero. This gives4'4'

fm go p gm I p

(Gob+go) Gab
=0 . (3.2)

It is convenient to write G,b
= eg, where a is a

lattice-dependent constant of order unity. With this
definition, we find

g =gp[p(I+a) —I]/a . (3.3)

Thus we find that the forward conductivity, G+, van-
e+

ishes as (p+ —p+ ) +, with p+ =I/%3=0.5773. . . ,
C C

and t+= 1. This value for the critical concentration is
a good approximation to the estimate p+ = 0.555

C

+ 0.002 found by low-density series. '
To obtain an EMT for fully directed percolation,

we apply the field along the diagonal [Fig. 5(b)]. In
this case, it appears most natural to focus on two
next-nearest-neighbor sites in order to evaluate the
voltage fluctuation. Between these two sites, there
are only two paths of nonzero conductivity. We em-

ploy a two-bond approximation in which the conduc-
tivity of both bonds on one of these paths is given by
the correct probability distribution. For this path
then, a conductivity —,go occurs with probability p+,
while a conductivity 0 occurs with probability 1 —p+.
Since G,b=

2 g, the analog of Eq. (3.2) is

(8 V) = 2 V p+ + ( I —p+ )
, gm+go

Setting (SV) =0 leads to

(3.5)

(3.6)g =go(2p+ —I)
That is, p+ =I/&2=0. 7071. . . , and t+=1. The

value p+ obtained by EMT should be compared with

Thus the conductivity vanishes at p, =1/(1+ a) with
a conductivity exponent t =1.

An important feature for obtaining a self-consistent
EMT for directed percolation is that we must apply
the electric field parallel to the anisotropy axis. If the
field and the anisotropy axis are not parallel, EMT
apparently fails, and we discuss this below in more
detail. Accordingly, we first treat partially directed
percolation in two dimensions. In evaluating the vol-
tage fluctuation across the conductor g, an essential
feature is that the current —5i between a and b can
flow only within a 1 x ~ strip of the lattice [Fig.
5(a)]. Thus only the conductivity of this strip enters
into the effective medium equation (3.1b). In this
case, elementary considerations give G,b

= (J3 —1)g .
Inserting this value into (3.2), we find

g. =go(~3p+ —I)/(~3 —I) . (3.4)
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FIG. 5. (a) In partially directed percolation, the current

perturbation is confined to a 1 & oo strip of the lattice. The

remainder of the lattice is shown dashed. (b) For fully

directed percolation, the lattice is rotated by 4
m. In this

case, there are only two paths of nonzero conductivity

joining a and b that enter into the effective-medium

calculation. The irrelevant part of the lattice is sho~n
dashed.

the estimates p+ =0.6445 —0.6447 obtained by more

accurate numerical methods. ' " ' ' The agreement
for the critical concentration here is some~hat worse
than in partially directed percolation. This is not
surprising given the crudeness of our approximation
in which only four bonds in the entire lattice play a

role in EMT.
If the lattice is oriented so that the field is parallel

to a Cartesian axis, then the EMT presented here
breaks down. This stems from the fact that the con-
ductivity G,q between two sites separated by one lat-

tice spacing parallel to the field is infinite, and (8V)
vanished identically.

A related pathology seems to occur in numerically

calculating the conductivity for fully directed percola-
tion. Consider a diode which forms a "bridge" join-
ing two otherwise independent parallel conducting
paths (Fig. 6). It is not possible to determine wheth-

er the diode in the bridge is forward biased —i.e.,
active —without already knowing the voltages at both
ends of the diode. This requires the solution to the
entire network problem. It is possible that a substan-

tial fraction of these bridge diodes may be back
biased. Thus at a given total concentration of diodes,

the concentration of active diodes will be somewhat
less. This may lead to interesting behavior if the ra-
tio of active to total diodes has anomalous behavior.
However when the anisotropy axis and the field are
parallel, there is considerably less ambiguity because
almost every diode in the conducting backbone is ac-
tive. "" Work is presently underway in simulating the
conductivity of this simpler system. "' It is interesting
that the calculational problems outlined here mirror
the situation encountered in EMT.

IV. NODE PICTURE AND SCALING THEORY
FOR DIRECTED CONDUCTIVITY

An appealing way to study the conductivity of a
random network is based on a simple "node" geome-
trical picture. ' ' Above the percolation threshold, it
is often very convenient to schematically view the
structure of the random system as a network of con-
nected paths joining together an irregular array of
nodes —points at which there are at least three in-

dependent paths leading to infinity. The average
separation between neighboring nodes scales as the
correlation length, g. In the de Gennes —Skal-
Shklovskii scaling theory, ""a basic hypothesis is to
replace the irregular network of nodes by a regular

lattice with a concentration-dependent lattice spacing
also equal to g. Various transport properties of the
random network above the percolation transition can

then be described simply in terms of those in a spa-

tially regular network. Based on this equivalence,

scaling relations between conductivity and percolation

exponents can be derived. Our goal here is to apply

these ideas to directed percolation and obtain the ap-

propriate anisotropic scaling relations between direct-

ed percolation and conductivity exponents.
Cons1der a system of 11near dimension L wh1ch 18

bounded by two (d —I )-dimensional capacitor plates
of area L~ ', across which the potential is applied
(Fig. 7). Near the directed percolation threshold, we

FIG. 6. A schematic picture of a conducting network in

which one diode forms a bridge between two conducting

paths. The difference between the voltages V& and V&

determines whether the diode in question conducts.

FIG. 7. Schematic picture of the node structure of a
directed network above the percolation threshold, Two

distinct lengths are required to characterize the structure of
the infinite network. Notice the noncollinearity of the node

structure with the microscopic lattice structure (lower right).
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represent the conducting network as a regular array
in which the lattice spacing parallel to the electric
field is gm, while the lattice spacing perpendicular to
the field is gj,. 6 [In terms of the original lattice
structure, ho~ever, the field points along the diago-
nal (1, I, . . . , I).] Thus the effective one-
dimensional conducting paths parallel to the field are
separated by gq, on average, leading to (L/gq)
such independent parallel paths. On the other hand,
each conducting path consists of (L/g~~) node-to-
node segments, Furthermore, the conductivity of
each node-to-node segment should vanish as the per-
colation threshold is approached because the node
separation diverges. %e define this segment con-

ductivity to vanish as (p+ —p+ ) . As a result, the

conductivity of a single path joining the parallel plates
varies as

Superposing the (L/gq)~ ' independent paths leads

to a lattice conductance that scales as (p+ —p+ ) +

w'ith

r+~ g++ (d —I ) pg pp (4.1)

For comparison, the same considerations for an iso-
tropic network lead to t =)+(d —2)v.

For dimensions greater than or equal to an upper
critical dimension of d, =5, mean-field theory
predicts 0' 2 p}}=1,pg= 2, and from considering the

Cayley tree, one can obtain )+=1. ' From these ex-
ponents, we find the mean-field limit, 1+=2. This is
in contrast to t = 3 of the isotropic random resistor
network ~ for d ~ d, =6. ' Below five dimensions,
the general inequality t+ & t appears to be valid. This
is based on (4.1) and the relationship between v~~ and
v~ with the isotropic correlation length exponent i.
For a0 d, numerical calculations indicate that
v & v}}.'~ " ' In addition, for d =2, the numerical
estimate for

vobis

less than v, awhile in d=5, vq=v,
The result vq~ v ( vg, in conjunction with (4.1),
suggests that t+ & t. Consequently, at a fixed dis-
tance from the phase transition, the directed conduc-
tivity should have a sharper concentration depen-
dence than the isotropic conductivity.

Physically, there are two effects which contribute to
this sharper conductivity variation. The first is that
long tortuous paths which lower the conductivity of
an isotropic system near the threshold cannot occur
here. Because of the overall orientation of a con-
ducting path of diodes, its length must scale linearly
with the straight-line distance joining the end points
of the path. Secondly, due to the reduced transverse
lattice spacing, gq, of the node picture, a higher den-
sity of independent conducting paths can be packed
into a system of fixed size compared to the isotropic
case. These two effects lend support to the inequality

t+ & t. This feature is corroborated to some extent
by our renormalization-group approach.

V. POSITION-SPACE RENORMALIZATION
GROUP

As we have seen in Sec. IV, we expect different
critical behavior for the conductivity in directed ran-
dom networks than for isotropic networks. To obtain
a rough quantitative estimate of this difference, we
calculate conductivity exponents using the position-
space renormalization group (PSRG). Our method is
based on the cell approach first introduced by Reyn-
olds et al."9 5' for isotropic percolation, in conjunction
with a conductivity rescaling, following methods
developed by many authors. ' '2' For directed
conductivity, there are two new features which must
be addressed: The first is that there is a direction as-
sociated with the microscopic bond conductivity. A
second, more interesting point is the presence of two
independent diverging correlation lengths. Because
of this, care is required in making the connection
between length rescaling and the critical exponents of
bulk thermodynamic functions, such as the conduc-
tance.

To perform the rescaling, we first break up the lat-
tice into b & b cells, and map them to elementary
1 & I cells (Fig. 8). To renormalize the occupation
probability, we consider all configurations that "per-
colate" across a given cell. If the configuration per-
colates both ways across the cell, it maps to a resis-
tor, while if the configuration percolates in only one
direction, it maps to a diode. The total probabilities
for each of these two cases give the recursion rela-
tions for p' and p+, respectively. We write these as

(5.1a)

(5.1b)

To renormalize the, conductivity, consider the
binary probability distribution for the conductivities

FIG. 8. Rescaling procedure in the cell PSRG approach.
We show a typical configuration of diodes and resistors in
the b & b cell on the left, and its rescaled counterpart in the
1 x 1 cell on the right.
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(5.3a)

Here cr+ is the microscopic forward conductivity of
each bond, and Ap+ =p+ —p+, . Upon rescaling, the
lengths in the system transform anisotropically.
For rescaling factor b, L(~ = Ls//b, but Lq = L~/b~,
with 8 = vq/v~~ ( 1 characterizing the anisotropy.
From this, the conductance transforms as

G+(p+) —[(LJb')" '/(Ls/b)]a+&p++ . (5.3b)

Near the critical point, this conductance should
remain invariant under rescaling. Thus equating
(5.3a) and (5.3b) leads to

vpln(a. +/a+)
E+= +(d —1)vi—vii .

lnb
(5.4)

This generalizes the scaling relation t = [ d —2
+ ln(a/a. ')/lnb] v to an anisotropic system. Notice
that (5.4) is essentially the same as (4.1) obtained
from the node picture.

In principle, the conductivity rescaling together
with the anisotropic scaling relation (5.4) forms the
basis of a renormalization-group calculation. Howev-
er, in implementing this procedure there is a problem
in that the direction of the diodes is not collinear
with the anisotropy axis. In renormalizing the bond
elements, we look for connected paths which span a
cell in the x or y directions. However near the per-

of each bond element. For example, the forward
conductivity for each diode may be written as,
P(a+) = (1 —pq) 8(o.q) +p+5(o.~ —a.+). After re-
scaling, the conductivity distribution for the cell be-
comes more complicated, being a sum over many 5
functions. To simplify the situation, we replace the
sum of 8 functions by a new binary distribution. For
cell configurations which map to a diode, we write
for the transformed binary distribution, P(a '+)
= (1 —p+)5(a+) +p+5(a+ —a.+), with o.~ being the
mean of the rescaled distribution. ' ' ""As dis-
cussed by Bernasconi et al. , the geometric mean of
the conductivity is expected to give the best numeri-
cal results. Rescaling the geometric mean is
equivalent to calculating the following recursion rela-
tion for the conductivity:

6"Ina= Xtp(lna; (5.2)
I

where 6'; is the probability of a configuration with
conductivity 0.;, and 6 '

is the rescaled probability
which may be either p' or p+.

To relate the conductivity rescaling with the for-
ward conductivity exponent, t+, consider the macro-
scopic forward conductance in a system of linear
dimensions L[~ and L~, parallel and perpendicular to
the anisotropy axis, respectively. This quantity
should vary as

f+
G+(p+) —(Lg '/L()) a~Ap++

colation threshold, connected paths propogate pri-
marily along the diagonal. Thus, the meaning of the
parallel and perpendicular directions with respect to
the anisotropy is somewhat ambiguous in our pro-
cedure. To understand this definitively, a method
that clearly distinguishes v[] from vq is needed. Fur-
ther work is required to resolve this interesting ques-
tion.

Based on this renormalization approach, we now
consider the oriented resistor-diode network. From a
2 x 2 cell renormalization, the phase diagram shown
in Fig. 2 is obtained. The three phases are character-
ized by whether the forward or reverse conductances,
G+ and G, respectively, are zero or nonzero. In the
diode phase, only G+~0 while G =0. In the resis-
tor phase both G+ ~ 0, and in the vacancy phase
both 6+=0. Between the vacancy and diode phases
there is a line of second-order phase transitions along
which G+ 0. On the other hand, between the
diode and resistor phases, there exists a line of
second-order transitions along which G 0. These
transition lines are governed by the directed and re-
verse fixed points, respectively. Thus, we study con-
ductivity rescaling near these two points in order to
calculate the exponents t+ and t which describe the
vanishing of G+ and G, respectively. Furthermore,
the two critical lines in the system originate from the
isotropic fixed point where both G+ and G vanish
simultaneously, leading to tricritical behavior. If we
approach the fixed point along the p axis (or from
anywhere within the isotropic conductor phase), we
expect that both G+ and G will vanish in a way
governed by the isotropic exponent t. On the other
hand, there exists a second independent exponent, t,

which describes the vanishing of G+ only, as the
transition is approached from the positive diode phase.

To illustrate our calculation, first consider the
behavior near the isotropic percolation threshold. At
the fixed point, p'= —,, p+ =0, the geometric mean
of the isotropic conductivity rescales as a '/a
=0.5425. Employing the isotropic scaling relation for
t, along with v = 3, we find t = 1.176. If we use the

value v = 1.428 from the 2 x 2 cell approximation in-
stead, then we find t = 1.260. Our estimates for t
should be compared with the value t =1.32+0.02
obtained by a similar PSRG approach" and with
values in the vicinity of 1.33 determined by numeri-
cal methods. "' We see that the better estimate for
t is found by using only results from the 2 & 2 ap-
proximation, although it is not clear that this will be
optimal in general.

To obtain the exponent t describing the vanishing
of G+, we approach the fixed point along the second
eigendirection, parallel to the p+ axis (see Fig. 2). In
this case, the eigenvalue is 1.5, leading to a correla-
tion length exponent v =1.710. Since the system is
isotropic at the fixed point, we use the isotropic scal-
ing relation between conductivity and correlation
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length exponents. These considerations lead to an
exponent t =1.509.

At the directed fixed point, we rescale the
geometric mean of the forward conductivity. In this
case, the anisotropic scaling relation evaluated at
p+ =0.6447 in conjunction with the numerical esti-

C

mates ' ' ' v~~=1.74 and vq=1.10 gives t+=0.69S.
This calculation indicates that t+ & 1, or a forward
conductance which vanishes with an infinite slope.
Qualitatively, the lowering of t+ predicted here is in

accord with the general ideas of the node picture
given in Sec. IV.

At the reverse fixed point, a rescaling identical to
the one given above can be formulated for the re-
verse conductivity exponent t . We assume that the
reverse transition has the same anisotropic nature as
in directed percolation, due to the self-dual nature of
this model. ""'" In this case, the anisotropic scaling
relation (5.4) applies. Under this assumption, the re-
scaling of the reverse conductivity together with the
numerical estimates for v~~ and v~ quoted previously,
gives t =0.891. Thus the reverse conductance is also
expected to vary relatively sharply near the transition.

VI. NETWORKS WITH SUPERCONDUCTING DIODES

The conductivity of a network containing supercon-
ducting diodes is considerably different than the
Ohmic case. This stems from the fact that there is
the possibility of several interesting combinations of
conductivities in the forward and reverse directions.
It thus becomes necessary to enlarge the parameter
space in order to describe the system self-consistently
by the renormalization group. To understand this,
suppose that we initially consider a system containing
only resistors, superconducting diodes, and vacancies.
This is basically the oriented resistor-diode network
defined in Sec. II, but with superconducting rather
than Ohmic diodes. On a coarse-grained level, a fi-
nite cell may contain a percolating path of supercon-
ducting diodes and resistors in series. The electrical
response of the cell is that of an Ohmic diode.
Therefore under lattice rescaling, the cell should map
to an Ohmic diode. A more interesting case is a cell

containing two independent percolating paths, one
consisting of only superconducting diodes and one
consisting of only resistors. The electrical response
of this cell is superconducting in one direction and
Ohmic in the opposite direction —a "leaky" diode.
Finally, because Ohmic diodes have been generated
by rescaling, it is then possible to construct a cell
configuration which is Ohmic in both directions, but
with different conductivities —an "asymmetric" resis-
tor.

Thus starting with only vacancies, resistors, and
superconducting diodes, the renormalization group
requires us to include leaky and Ohmic diodes, and
asymmetric resistors as well. The system is described

by five parameters, and in order to visualize the
phase diagram, we consider only the special case of
no vacancies. Furthermore, as a rough approxima-
tion, we replace an asymmetric resistor by a sym-
metric one by averaging over the conductivities in the
two opposite directions. In this case, the phase dia-

gram is defined by a three-dimensional composition
tetrahedron within the space spanned by p, p+, and

s+, the concentration of superconducting diodes, and
1+, the concentration of leaky diodes (Fig. 9).

The phases of the network can now be determined
very simpiy. The condition 1~+s+=0.645 (corre-
sponding to the threshold for directed percolation),
determines a surface of second-order transitions
where the forward conductivity diverges. It divides
the tetrahedron into two regions, one where the for-
ward conductivity is infinite for 1++s+ )0.645, and
one where it is nonzero but finite for 1++s+ ( 0.645.
On the other hand, the condition p + 1+=0.355 (cor-
responding to the threshold for reverse percolation),
defines another second-order surface where the re-
verse conductivity goes to zero continuously. Thus
for p +1+)0.355, the reverse conductivity is finite,
while in the opposite case the reverse conductivity is
zero. These surfaces meet obliquely, thus dividing
the figure into four phases characterized by the four
combinations of electrical responses possible. In the
forward direction the conductivity may be either fin-
ite or infinite, while in the reverse direction the con-
ductivity may be either zero or nonzero but finite. If
vacancies are introduced, then an isotropic noncon-
ducting phase occurs as well, and the resulting four-
dimensional phase diagram is divided into five dis-
tinct regions.

There is one subspace in the phase diagram that is
particularly interesting and amenable to simple calcu-

G ~0~ P+

FIG. 9. Phase diagram of a network containing supercon-
ducting, Ohmic and leaky diodes of fixed orientation, and
resistors. There are two second-order surfaces which divide
the figure into four regimes. One surface (dotted) separates
the region of infinite forward conductivity (behind the sur-

face}, from the region of finite forward conductivity. Simi-

larly, the hatched surface separates the region of finite re-
verse conductivity (also behind the surface), from the re-

gion of zero reverse conductivity. On the s+ —p+ axis, there
is a fixed point (heavy dot) which describes the directed su-

perconducting transition.
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lation. This is a network containing only Ohmic and
superconducting diodes. The system is closed in the
renormalization-group sense as the reverse conduc-
tivity is always zero. Thus the network may be
described by a single parameter, s+. The divergence
of the conductivity as s+ approaches a threshold
value from below represents the analog of the
conductor-superconductor transition in an isotropic
system. To calculate the nature of the divergence,
we now rescale the bond resistivity p+, using
methods exactly analagous to those described in Sec.
V. Furthermore, we must now write a scaling law re-
lating the directed superconducting exponent with the
correlation length exponents of directed percolation. "
To accomplish this, we consider the macroscopic for-
ward resistance, which near the transition should vary
as

&+(s+) —(1.)~/I. j' ' ) p+/s. s',+ . (6.1)
Following the same steps that led from (5.3) to (5.4)
we obtain a scaling law for the superconducting ex-
ponent,

~ii»(p+/p+)S+=- + pii (d 1)pi (6.2)
lnb

From rescaling the resistivity, and substituting

v~~
= 1.74 and vq= 1.10 into (6.2), gives s+ = 1.90.

This should be compared with the result s = t =——, in

two dimensions for the isotropic exponents. There is

a sharper divergence at the directed superconducting

transition. This is consistent with the general picture

already found for the directed conductor-insulator

transition.

VII. DISCUSSION AND SUMMARY

We have investigated some of the simpler types of
conduction processes that can occur in random net-
works containing resistors and diodes. Our primary
interest has been to delineate a variety of interesting
conductivity transitions, and study them qualitatively.
The systems we have studied are constructed from
diodes of two fundamentally different electrical
responses. We have considered Ohmic diodes, which
have a finite resistance in the forward direction and
an infinite resistance in the reverse direction, and
superconducting diodes, which have zero resistance
in the forward direction. The former case is in-

herently simpler because the possible macroscopic
electrical responses of the network are rather limited
in number.

We have first focused on networks of Ohmic
diodes, and we found that effective-medium theory
yields good approximations for the locations of the
conductivity transition, while the de Gennes-
Skal —Shklovskii node picture gives anisotropic scaling
relations and a simple way of obtaining the mean-
field limit. In this limit, valid in dimensions d ~ 5,
the directed conductivity exponent, t+ =2. This

should be compared with a mean-field conductivity
exponent of 3 in an isotropic random network, valid
for d ~6. Thus we expect a steeper concentration
dependence for the directed conductivity than for the
isotropic conductivity, and this is consistent with the
node picture for the structure of conducting paths.

The position space-renormalization group was ap-
plied to calculate the exponents associated with
directed conductivity transitions in two dimensions.
Qualitatively, our predictions are consistent with the
behavior suggested by the mean-field limit. In partic-
ular, we predict a directed conductivity exponent in
the vicinity of 0.7, in sharp contrast to an isotropic
conductivity exponent of approximately 3

. However,

the presence of two diverging length scales associated
with the transition makes the interpretation of length
rescaling in the renormalization group somewhat am-
biguous, and our numbers may be suspect. Further
work is required in order to resolve this interesting
problem.

For a system of superconducting diodes, the con-
ductivity of the network is considerably richer be-
cause there are more combinations of electrical
responses possible in the forward and reverse direc-
tions. It is necessary to enlarge the parameter space
and include both Ohmic and leaky diodes in order to
describe the system self-consistently within the renor-
malization group. One special case is fairly simple,
however. This is a network containing only oriented
superconducting and Ohmic diodes, in which the for-
ward conductivity diverges continuously at a critical
concentration of superconductor. This represents the
analog of the conductor-superconductor transition in
an isotropic network. We found an exponent
s+= 1.90, which is considerably larger than the iso-

tropic superconducting exponent s = 3. Thus again,

there is a sharper conductivity variation of the direct-
ed network relative to the isotropic network.

Finally, there is a wealth of interesting phenomena
that has not yet been addressed. For example, when
the orientation of the diodes is allowed to be arbi-

trary, a transition from a diodelike state of a given
orientation to one of the opposite orientation can oc-
cur. This leads to new types of threshold behavior.
We hope to treat some of these problems, where
orientational degrees of freedom play a central role in

the conductivity transitions, in a future publication.
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