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Effective stopping-power charges of swift ions in condensed matter
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The effective charge of energetic ions as it pertains to the stopping power of solids is calculat-

ed in a dielectric-response approximation. The density distribution of N electrons bound in an
ion of atomic number ZI is given by a variational statistical approximation. The effective
charge ZI e is always larger than the ionic charge QI = (Z~ —N) e, because of close collisions. A

comprehensive low-velocity formula predicts Z~ e for given Q as a function of the ratio between

the ion size and the mean electron spacing in the medium. At high velocities one obtains a par-

tition rule of stopping powers for the effective charge of ionic projectiles. The results are com-

pared with new precision stopping-power measurements on C, Al, and Au with 7N ions.

I. INTRODUCTION

Consider an atomic projectile moving with velocity
vl in a dense medium. For the moment, let the
medium be the valence electrons of a solid of density
3/4m r,'a03, where r, is the radius of the average
volume occupied by each electron in units of
ao=ir2/me2 =0.529 A. Values are typically r, = 2,
but they range from r, =1.5(Au, W) to r, =5.88(Cs).
Two things happen. First, the onrushing electrons
eject bound electrons from the projectile. This leaves
the projectile with an ionic charge Q& = (Z& —N) e,
where Z~ is the atomic number of the projectile and
N the number of electrons still bound to the projec-
tile nucleus. The degree of ionization or, for short,
the ionization q = (Zt —N)/Z~ is u~ dependent, of
course, for the higher the relative velocity e, between
the ion and the electrons in the medium the more
electrons are stripped from the ion. The ionization
cross section for bound electrons drops to zero when
the ionization energy exceeds the kinetic energy of
the electrons hurled at the ion. It follows that N(u„)
comprises electrons which in steady state are bound
so tightly to the ion that —in the language of the
correspondence principle —their orbital velocities are
larger than v„. Second, the projectile through
Coulomb interaction transfers momentum p to
electrons of the medium. Leaving screening in the
medium aside, this momentum transfer,
-2Zt" (b) e2/b ut, is proportional to an "effective
charge" Z&" (b) e of the ion as seen by an electron of
charge —e at impact parameter b. The energy loss of
the projectile in this encounter -2ZI'2 (b) e4/m u2lb2,

when integrated over electrons with all possible im-
pact parameters b, yields the rate of energy loss of
the ion in the medium. That is, the stopping power,
S = dE/dx, of the medium for —an ion is, in this first
approximation, proportional to a mean-square
effective-ion charge.

The difficulty arises in defining the effective
charge. Obviously, electrons that approach the ion
with impact parameters b that are larger than the ion
radius A see the ion as a moving point charge Q ~

ir-

respective of the internal ion structure. But if b & A,
medium electrons penetrate the screening cloud
of N bound electrons. The energy transfer is then
governed by an effective charge ZI" (b) e that is larger
than Q~. Thus on general grounds, close collisions
should make the mean-square effective stopping-
power charge (Z~"e)' larger than QI'.

The description of ZI'e has eluded satisfactory treat-
ments and the entire concept of an effective charge
has been in question. It is the purpose of this paper
to derive the effective stopping-power charge of a
projectile of given ionization q(v, ). The approach is
to remain so transparent throughout the development
that the salient parameters that characterize the ion
are always kept in sight. This conveys an intimate
physical understanding and still yields reliable formu-
las for the interaction of heavy ions with condensed
matter, if judged by new precision measurements in
this laboratory designed to test some of the details of
the work presented here.

There has been a vigorous resurgence of interest in
the problem of effective stopping-power ion charges
recently, spurred by the needs of fusion research,
space exploration, and materials development. This
has stimulated large-scale compilations of literature
data. They reveal striking disagreements in the ex-
perimental evidence of what "best" stopping power
data might be. The theoretical tools available for
clarification were restricted and blunt. All this has
given focus to new measurements. An understand-
ing of the source of earlier discrepancies is emerging.
The data begin to converge toward a consistent base
by which to gauge new theoretical developments.

The early history of the effective-charge concept
was reviewed by Betz, ' and complications of early
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data were published by Ziegler et al. and by Yar-
lagadda et al. The stripping of ions to the charge
Q~(v, ) has been formulated in the statistical approxi-
mation and applied to new data. ' A systematic at-
tack on the effective-charge problem was launched
recently in this laboratory. 7 The present report del-
ineates the theoretical results of this effort.

Section II states the technical steps encountered in
the calculation of the stopping power of an ion in an
electron gas, and prepares the ground by formulating,
through variational methods, a statistical model of
the ion that is analytically suitable for our (BK)
needs. It resembles closely the Lenz-Jensen (LJ)
model in important respects, The LJ model, also
based on the variational principle, was conceived as
an improvement over the Thomas-Fermi (TF)
model. Section III uses the BK model to calculate in

a dielectric-response approximation the stopping
power of an electron gas for an ion of ionization q,
with new results. The discussion, in Sec. IV, makes
contact with experiment and summarizes new trends.
Atomic units e =t = m = 1 are used hereinafter, ex-
cept when stated otherwise.

II. STATEMENT OF PROBLEM

into Eq. (2) yields

mv)" k

/kilt
&& J d a& a) Im

0 s k, ru

For spherically symmetric charge distributions p„,(k)
is real, i.e., ~p„,(k) ~'= p„',(k), and Eq. (6) reduces to
a formula given by Ferrell and Ritchie. 9

We wish to use Eq. (6) for the derivation of the ef-
fective stopping-power charge of the ion. To main-
tain contact with parameters that describe the state of
the atoms, we seek forms of p, and e that permit
analysis without exclusive recourse to numerical
methods. To this end, we chose for p, (R) the sim-
ple form

(R) —s/AA

4m A R

%e treat the screening length A as a variational
parameter. The internal energy of the ion

E =E., + XE„+E„,„,
with potential energy from electron-nucleus interac-
tions

The charge density of a projectile of nuclear charge
Z~ moving with N bound electrons at velocity v~ in a
medium is given by

p ( r, t) =Ztg„( r —v~t) —p, ( r —v~t)

E = —Zi ~I dR p, (R)R ' =—Zi¹/A,
electron-electron interactions

(9)

where Z~S„and p, denote the nuclear and electronic
charge densities of the ion, subject to the condition

& p, d r =
¹ The stopping power S = dE/dx of the-

medium for this ion

S = '
Jtp„,( r, t)E( r, t)d r

V&

is determined by the electric field E which acts on the
ion in the medium. In terms of the wave vector k
and frequency ~ in Fourier space, the field

E„=—,
'

J dKJ dII' ' ' =W/4A, (10)

E&;. JI d&p, (R)[3~'p———(R)]"=a¹"/A
(11)

~eighed for correlation in an average manner by the
variational parameter A., and with the electron kinetic
energy

E(k, co) = i kP(k, cu)—

set up by the potential Q(k, cu) according to

k's(k ~)$(k, ~) 4rrp„, (k=)8(ru —kv&)

(3)

(4)
8E 0 8E 0
8A BN N Z)

(12)

where a =
2 ( 4

e )' '( —,)' 'I'( —,) =0.240. The energy

fulfills the conditions

is the response of the medium with dielectric
response function s(k, co) to the moving ion. The
right-hand side of Eq. (4) is the Fourier transform of
p ( r, t), since

One obtains

Z/ 'N'/ '

1E=-
4a Z)

Z N
1 ——

4 Zi
(13)

p (k, co) =2rrp (k)5(ao —k ~ v) (5) The screening radius A calculated according to

where p„,(k) is the Fourier transform of p„,( r ) in
the rest frame of the ion. Inserting Eqs. (3) to (5) Jl dRR 'p, (R)

A N
(14)
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Equation (7) gives immediately

z q+(kA)'
1+(kA)2 (16)

to be inserted in Eq. (6). With suitable approxima-
tions for im( —1/e) we can then calculate the frac-
tional effective charge of an ion of given ionization q
as

' 1/2
1

Z$ Sq

where S~ ~ is the stopping power for the bare nucleus.

FIG. 1. Comparison of energies in the BK statistical ion
mode1, Eq. (13), ~ith those in the I.J model at all degrees of
ionization q. In neutral atoms, q =0, the energies in both
models are very close to those in the TF model.

HI. EFFECTIVE STOPPING-POKER CHARGE

At high velocities where the ion can excite
plasmons in the medium, we employ the plasmon-
pole approximation of the dielectric function'

becomes

2~ (N/z&) '/'

z,'"[1-—,') (A//z, )]

I.O
0.6

N/Zt

0.5
I I

56 {BK)

0.0

with A. =4/7 and ao=1 a u. =0.529 X 10 ' cm.
Under these constraints, the BK model performs

remarkably well when compared with results based
on the LJ model. For example, as shown in Fig. 1,
the energies for different ionizations q =1 —A//Zt
resemble each other closely. In neutral atoms, q =0,
the energies of the BK, LJ, and TF models virtually
coincide. Similarly the BK and LJ screening radii
displayed in Fig. 2 are numerically close for all q.

e(k, co) =1+
s)g+ p k2+ k4/4 —co(co+ iy)

The plasmon energy co~ =3' 2r, and the effective
band-gap energy ~g in semiconductors and insulators
give a collective resonance frequency 00= (au~

+ ru,') '/'. "'2 Dispersion is included through the term
containing p —,kF' where kF = 1.919r, ' is the Fer-

mi momentum. Contributions from single-particle
excitations are accounted for through the square of
the kinetic energy k'/2 of a free electron of momen-
tum k. The small constant y represents damping
processes. It follows that in the limit y 0

Im— 1

e(k, co)
~ S(a) —A) (19)

k+ [2(&2 p2) +2[(&2 p2)2' ft2]1/2]l/2

which gives a threshold for v], viz. ,

(20)

where A'= 002+P'k'+k'/4.
The upper and lower integration limits in k are

the maximum and minimum momentum transfers k+
and k to target electrons

(P2 + fi 2) 1/2 (21)

below which plasmon contributions subside. Then,

0.5
IONIZATION q

I,D

25' — p

Equations (17) and (22) yield

q'=q'+(1 —q) (1—q) (k,A)'+ i (k A)2+1

FIG. 2. Comparison of screening lengths, Eq. {14),in BK
statistical model and those in the LJ model at all degrees of
ionization q.

+(1+q)ln + (2L) ', (23)
(k A)'+i
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At high velocities ut )»,a„Eq. (20) gives k~= 2vt
and k = Qa/ut so that one retrieves the Bethe for-
mula for the stopping number L,

I. = In2trtt/Qa

In this limit, Eq. (23) becomes

the effective charge fraction, Eq. (17), is given by

f2 1

Zt 1 —(kDA)'

l (4kr2A')

Z, [1—(knA)']' l(hark, )

Zt 1 —(kDA) Zt 1 —(koA)2 1(mkF)

( = —, + —,e,1 1 (26) (31)

Equation (26) accounts for the well-known fact that
at high velocities approximately one-half of all energy
losses are suffered in distant collisions and the rest in
close collisions. Neutral projectiles q =0 have an ef-
fective stopping-power charge Z~» =0.7Z~, i.e., the
stopping power of the medium for neutral atoms is
approximately one-half as large as the stopping power
for the bare nuclei. " Contributions from target core
electrons must be included for the assessment of the
total random stopping po~er of the medium.

At low velocities trt & uF, we describe Im( —1/e)
through a screening constant kD = (4kF/m) '~ as'

2k OJ for k «2kF

,
0 otherwise . (27

C(k, ) =
(1+~k,)1(~k,) (33)

depends only weakly on kF (or r, ) as demonstrated in
Table I. Figure 3 exhibits Eq. (32) in the form

The expression I(n kF), Eq. (29), accounts for
screening; it is already contained in the paper by Fer-
rell and Ritchie. Since 2k' is the largest momentum
transfer inside the Fermi sea, the parameter
2kfA -4Ar, ' is a measure of the ion radius A rela-
tive to the spacing, expressed through r„between the
electrons in the medium. Treating 2k~A as small, we
expand f and obtain (see Appendix)

(=q+C(k, )(I -q) in[1+(2k,A)'], (32)

Integration of Eq. (5) yields = C(k, ) in[1+ (2k,A)']
1 —q

(34)

/+tap

S = vt dk. . .p„',(k)
3n "o kt+kDt t

( utI(eke)
2Z1 2

3m

where in terms of the functions

f(z) =In(I+z)—
1 +z

, {In[I+(2k,A)']
1 —(kDA) 2

—k,'A'in(1+ ~k, )],

(2S)

(29)

dragon as curves for different r, values. The figure
compares the curves with numerical values of Eq.
(31), shown as points, calculated for a large variety
of projectiles (6C 7N taA1 53I 92U), with set ioniza-
tion values q =0.197, 0.447, and 0.852 for each, in
targets of different r, values as indicated in the
legend.

Figure 3 illustrates that Eq. (32) is a nearly univer-
sal function for all ion-target combinations. %e have
verified the utility of Eq. (18) in our context: Equa-
tion (32) agrees closely with Eq. (6) after double nu-
merical integration when based on the complete Lind-
hard dielectric function.

TABLE I. Values of C(k~), Eq. (32), for r, values and k~ values resembling those in the
valence electron gas of various target materials. The Fermi momentum kz and the one-electron ra-

dius r„ in atomic units, are related as kr=(9w/4)'~3r, '=1.919r, '.

—material

Au
C
Al
Cs

1.49
1.66
2.12
5.88

1.29
1.16
0.91
0.33

0.49
0.50
0.52
0.59
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FIG. 3. Demonstration of the equivalence of the approxi-
mate formula, Eq. (32), for g with the full expression Eq.
(31) over the relevant validity range of 2k+A -4Ar, ' in the
form of Eq. (34). The solid curves cover the validity range
of Eq. (32) for a statistical description of the ions (Z~ & 4).
The points are numerical values of Eq. (31) for projectiles

Z& 6, 7, 18,53, 92 each at ionizations q 0.197, 0.447, and

t).852 in targets with r, =1.49 (Au), 1.66(C), 2.12(Al),
5.88(cs}.
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FIG. 5. The ratio g/q for ~N projectiles in various targets,
as a function of the relative projectile velocity variable y, ;
according to Eq. (32) with. q (y„) as given in Table II.

IV. DISCUSSION

EXPERlMENT
16.0—

Q Bare Nucleus

l Elsctrca System

Q a Electron System

THEORY

An important consequence of effective-charge
theory as developed here is contained in data on the
stopping power of [111jchannels in single Au crys-
tals for projectiles of fixed ion charges Qt = (Zi N)—
but different ZI for N =0, 1,2.'~'6 The result is that
the stopping power S for given ion charge Qt and ion
velocity sr t increases with Zi (Fig. 4). The experi-

,A Q=7

TABLE II. The mean ionization q(v, }of ions, atomic
number Z&, moving with velocity v„or reduced velocity

y, = trr/Zt2/3 vtt, relative to the electrons in an electron gas, .

as calculated by a velocity-stripping criterion for the
Thomas-Fermi model of the ion (Ref. 4). The table is cal-
culated for the stripping parameter b =1.33. For other b
values at given q, replace y, by y,

' = (b/1. 33)yr. Expressions
for v, (v~, r,} are given in Refs. 5 and 6.

y'
~ Qr=a--

l4.Q

Au (1 tl); E, = EMev/u

6 7 8
C N 0
PROJECTILE Z,

FIG. 4. Comparisons of the predictions of Eq. (35) with

stopping-power data as deduced by a "
&z

height" criterion

(Ref. 15) for fixed ionic charges Qi in Au [Ill j crystal channels.

0.024
0.053
0.098
0.136
0.200
0.251
0.330
0.396
0.456
0.532
0.633
0.697

0.012
0.034
0.070
0.101
0.155
0.197
0.256
0.305
0.344
0.391
0.447
0.480

0.771
0.862
0.975
1.116
1.302
1.556
1.928
2.208
2.567
3.098
3.977
5.932

0.515
0.554
0.598
0.645
0.698
0.756
0.819
0.852
0.886
0.919
0.952
0.981
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FIG. 6. Comparison of theoretical, Eq. (32) with Table II, and experimental (Ref. 17) stopping powers in terms of the

effective-charge fraction g of 7N ions in Au, C, and Al.

ments were performed so that 2kFA &( 1 and report-
ed as S/Qt' = ($/q)'Sat where Sc is a constant. Al-
ready the low-velocity approximation Eq. (32), when
written in the form

r 1 '2

= 1+C(kF) —I in[1 —(2kFA) 1, (35)
q Qt

predicts the trends of these experiments for r, =1.49
(Au) and C(1.919/r, ) = 0.49; one sets for the K-
shell electrons Atx =as/Ztk with Zts = Zt when

N =1 and Z~&=Z~ —0.3 when N =2.
New precision stopping-power experiments were

performed with a variety of projectiles and target ma-

terials to test Eq. (32).'~ The magnitude of the
predicted effect g/q ) I is demonstrated in Fig. 5 as a

function of the relative ion-velocity variable

y, = v, /Zt2~ os, where os= e2//i =2.18 x 10s cm/sec.
The curves in Fig. 5, when multiplied with q (y„) as

tabulated in Table II, appear as curves of dashes in

Fig. 6.' They converge toward the solid curve for
large Z~, r„or v„as 2kpA 0. The solid curve
represents q (y, ). It is well known to give an excel-
lent description of Zt ' (S/Ss)' 2 for heavy ions.
The new experimental data for the light ion 7N in

various metals indicated by the open symbols support
the effective-charge theory as presented here.

ing the time this work was carried out. The research
was supported by the United States Department of
Energy and by the Private University Research Fund
of Japan.

APPENDIX: LOW-VELOCITY EFFECTIVE-
CHARGE APPROXIMATION

(=Lr~+I' df
dl

(AI)

From Eq. (31) follows (r c=q in the limit I'=0
where I =K =0. Differentiation of Eq. (31) at I =0
leads to

d~
I rw

= (1 —q)
1 1I — ln(1+ mk~)— 1

I(wk, ) eke

(A2)

which, in terms of I as given in Eq. (29), can be ex-
pressed as

We derive Eq. (32) from Eq. (31) by introducing

the variable I'—= In[1+(2k~A) ] =In[1+(mkoA/2) ].
In the limit of small 2kFA or I 0, we expand Eq.
(31) as
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