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Dynamic correlations in an electron gas. II. Kinetic-equation approach
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Starting from the exact hierarchy of quantum kinetic equations for the Wigner distri-

bution functions we develop a theory of dynamical correlations in an electron gas. By

making a random-phase-approximation- (RPA) like truncation for the second equation in

the hierarchy we obtain an expression for the proper polarizability of the form

Q=Q +Q', where Q is the Lindhard (RPA) function and Q' is an additional term

which has the following properties: (i) it includes all the three first-order Feynman di-

agrams for the proper polarizability, (ii) it incorporates in addition the coupled propaga-
tion of two particle-hole pairs, and (iii) it leads to an expression for the density-density

response function which satisfies exactly the first- and third-frequency-moment sum rules.

Detailed calculations of plasmon dispersion, damping, and compressibility have been

made. Calculations have also been made for the complex dynamic local field G(k, co) for
arbitrary values of wave number and frequency. Comparison has been made with the

available experimental data for Al (r, =2.0). A critique of the theory is presented.

I. INTRODUCTION

This paper is the second in a series devoted to
the study of dynamical correlations in an electron
liquid at metallic densities. In an earlier paper,
hereafter referred to as I, we used the formalism of
many-body perturbation theory to evaluate the
proper polarizability Q to first order in the inter-
particle potential. Our calculation was performed
for arbitrary wave vector q and frequency co and
thus generalized to the dynamic case the static
(co =0) results obtained earlier by Geldart and Tay-
lor. Having determined Q to first order, a variety
of static and dynamic properties of the electron
liquid were calculated. It was found that the
dynamic structure factor predicted by the theory
for Al agreed in its broad features with the experi-
mental measurements of Batson et al. , particularly
for wave vectors q & kF. Static properties like the
structure factor S(q) and pair correlation function

g(r) were also found to be significantly improved
over their values in the random-phase approxima-
tion (RPA).

A major shortcoming of the first-order theory is
its inability to produce a finite width for the long-
wavelength plasmon. Also, the high-frequency tail
in the experimentally measured dynamic structure
factor cannot be accounted for. Both these effects
arise from multiparticle excitations which lie out-
side the scope of this approximation. If we at-

tempt to include these effects in our treatmerit by
going to higher order in perturbation, we are im-
mediately faced with a number of difficulties. It
has already been mentioned in I that the first-order
theory breaks down in the vicinity of the charac-
teristic frequencies to, = (A'/2m)

~ q +2qkF ~, since Q
becomes singular there. Also the perturbation
series for Q contains terms in second and higher
order which diverge because of the bare Coulomb
potential. Although both types of divergences may
be eliminated in principle by summing to all orders
certain classes of diagrams in the perturbation
series (cf. the discussion in I, Secs. IV and V), such
a procedure does not seem practically feasible. We
therefore conclude that perturbation theory, beyond
the first order, is ill suited as a tool for furthering
our understanding of the electron dynamics.

A completely different approach to the problem
of dynamical correlations is provided by the
kinetic-equation method, which has been recently
applied to the electron gas problem by Niklasson.
In this approach one focuses attention on the
%igner distribution functions of the-system and
writes down the exact quantum-mechanical equa-
tions of motion satisfied by them. The set of cou-
pled equations obtained in this way is the quantum
analog of the classical Bogoliubov-Born-Green-
Kirkwood- Yvon (BBGKY) hierarchy. Whereas
the RPA and other mean-field theories restrict
themselves to the first equations of this chain, our
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considerations are based on an examination of the
second equation in this hierarchy, which describes
the motion of two coupled particle-hole excitations.
By making a simple, physically motivated trunca-
tion of this equation we are led to an expression
for the proper polarizability of the form
Q=Q +Q', where Q is the Lindhard (RPA) po-
larizability and Q' is a correction to it that we

have calculated. It turns out that the correction
term Q' has a number of interesting properties: (1)
it incorporates explicitly the coupled propagation
of two particle-hole pairs, an effect which is absent
in the RPA, (2) it has the correct high-frequency
behavior required to satisfy the first- and third-
frequency-moment sum rules for the spectral
response function, which guarantees that the
theory has a good short-time behavior, and (3) it
contains within it all the first-order diagrams for
the proper polarizability discussed in I, as well as a
certain class of higher-order diagrams.

Occurring in our expression for Q' is the equili-
brium two-particle Wigner distribution function
whose exact form is not known a priori. The two
simple Ansatze that we have tried out for this func-
tion are consistent with all the known constraints
on it. On evaluating Q'(q, co) in the limit of long
wavelength, we find that its real and imaginary
parts are proportional to q . This leads to a reduc-
tion in the plasmon energy from its RPA value
and also to a finite width for the long-wavelength
plasmon. The microscopic origin of this width is
not hard to understand; because of the coupled pair
propagation present in Q' the long-wavelength
plasmon can decay into two particle-hole pairs
with conservation of both energy and momentum,
a channel not open to it in the RPA. Another
modification (over RPA and the first-order theory)
that occurs at long wavelength is in the compressi-
bility, arising from the extra correlational effects
present in Q'. An evaluation of Q'(qco) for arbi-
trary q and co finally provides complete informa-
tion (within the present model) of the static and
dynamic properties of the electron gas.

The organization of this paper is as follows: In

Sec. II we outline the formulation of the problem
in the language of quantum kinetic equations. In
Sec. III we introduce the basic approximation of
our theory and use it to obtain an expression for
the proper polarizability. In Sec. IV we show how
the first-order perturbation theory of I can be
recovered as a limiting case of the present work;
we also propose two approximate representations
of the equilibrium two-particle Wigner function.
In Sec. V we specialize our theory to the limit of
long wavelength and calculate the dispersion and
damping of the plasmon as a function of wave vec-
tor. Our results are compared with experiment for
the free-electron-like metals Al and Na. In Sec. VI
we evaluate our proper polarizability for arbitrary
wave vectors and examine its broad features. In
Sec. VII we obtain an expression for the complex,
frequency-dependent local field G (q, a) ). The static
part of our local field is compared with that of
Geldart and Taylor and the two are found to
agree well at both small and large wave vectors.
In Sec. VIII we calculate the compressibility and
find that the compressibility sum rule is remark-
ably well satisfied at r, =2.0; for r, =4.0, however,
the situation is less promising. In Sec. IX we ex-
plore further the significance of our basic approxi-
mation. In Sec. X we calculate the energy-loss
function 1m[—I/e(qco)] and compare it with the
detailed line shapes for Al obtained by Batson
et al. from their electron scattering experiments.
Results are also given for sodium (r, =4.0). Final-
ly, in Sec. XI we conclude by making a critical as-
sessment of our theory in the light of its overall
comparison with experiment.

II. MICROSCOPIC FORMULATION
OF THE PROBLEM

We consider a system of N electrons contained
in a box of volume V together with a static uni-
form background of positive charge. The second
quantized Hamiltonian for the system in the pres-
ence af a weak external potential 4"' is

~ A'k t 1
k k 2V q X k —( /2) k'+( /2) ' k' —( /2) ' k ( /2)ko q ko k'o'

c.~+—ye ( —q, t)ya-k (-/2) a-„(-/2), U(q) =4ne /q
q ko

(2.1)
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where a k and a k are the creation and destruc-

tion operators for an electron of momentum k and
spin o. The prime on the second term denotes the
omission of q =0 from the summation; this bit is
canceled out by the uniform positive background.
%e shall restrict our considerations to T=O. Also,
we shall work in Fourier (q, co) space, where q and
u represent, respectively, the wave vector and the
frequency of a single Fourier component of the
external potential 4'"'(r, t) which drives the system
out of equilibrium.

where the expectation value is taken in the exact
ground state of the many-particle system. The
electron density is given by

n (q) =gf~kl' (qco) .
ko

The two-particle Wigner function is defined as

(2.3)

The one-particle Wigner function is defined as

f'k'(q t)=&'~ —( /2) (t)ak+( /2) (t)), (2.2)

f'k~, k'~'(q q' t)=&a k —( /2)~(t)ak —(-/2)~ (t}ak +(„'/2) (t)ak+(q/2)~(t)& f k~(q t)f k'~'(q t) (24)

Notice that the uncorrelated part has been separated out on the right so that f' ' is the totally correlated

part of the two-particle Wigner function. Using the Hamiltonian (2.1) and the usual anticommutation rules

for the fermion operators a, at one obtains the following linearized equation of motion for the one-particle

Wigner function:

fuo+iri ——k q f-„'(qto)= —(nk (-/z) —nk+(-„/z) )[q)'"'(qco)+v(q)n(q(v)]

+ VXv(q')X~f"k —( '/2)o, k''(q q 'q ' ) fk+( /2), k'

Note the following: (1) in the above equatjon a
bar over any quantity indicates that it is the devia-
tion of that quantity from its equilibrium value in
the absence of the external potential, e.g., n is the
change in the density from the homogeneous
equilibrium value n=N/V, (2) the quantity ri=0+
has been introduced into the flow term on the left
to ensure that the system response is casual, and
(3) n k is the equilibrium one-particle Wigner
function for a gas of interacting electrons and not
the free-electron Fermi function

0
n k 8(kF ——

~

k
~

). If we neglect the last term in

Eq. (2.5) and further replace n k by n k we re-

cover the random-phase approximation. In order
to go beyond the RPA it is necessary to retain, in
some average way, the short-range exchange-

(2.5)

I

correlation effects represented by the last term in

Eq. (2.5}. In an important class of theories, this

is done by making an ansatz for the two-particle

distribution function f' '. One then finds that the

Hartree mean field is modified by the presence of a
local field factor 6, which is expressible in terms

of the equilibrium pair correlation function. How-

ever, the local field so obtained is usually static
and is unable to account properly for the dynami-

cal phenomena of interest to us. We shall not at-

tempt to push this approach further, but instead

base our treatment on a consideration of the exact
equation of motion for the two-particle distribution

function f
Using the Hamiltonian (2.1), the linearized equa-

tion of motion for f' ' can be obtained as

2

fao+iri —k.q+ —k'. q—' f k k, , (q q'co)=F+&' k, , (q q'co)+F+z'. , k (q'qa))

+Fk~, k~(qq )+ ko, k ~(qq }+ k ~, k~(q q
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This equation describes the coupled motion of two particle-hole excitations of average momenta k and k'.
The expressions for the various terms on the right-hand side and their physical interpretation have been

given in Niklasson's paper. Rather than repeat the discussion here, we will only reproduce those expres-
sions that are of relevance to us and comment briefly on their significance. The first of these terms is

krak 'o(q q ) y[f k —(q+ q

'/2)hark

'(r'( q ) f k ~(q+ q '/2)(rk 'e'( 1 )]@ (q+ 1

Here f' is the equilibrium two-particle Wigner function. This term, in a semiclassical interpretation
represents the force exerted by the external potetnial on the particle k when it is in the presence of the
second particle k '. The term

(2.7)

k, k' '(q q ) [f~k —(q+q'/2), k' '( q ) fk+(q+q'/2), k' '( I )]U(q+q )n(q+q +)+y —q+q 0, o

(2.8)

describes the force exerted by the rest of the medi-
um on particie k when it is in the presence of par-
ticle k '. It consists of a number of parts. The
part actually shown has the structure of a screen-
ing field which acts to screen the external force
term (2.7) shown above. The remaining parts, indi-
cated by dots, include other screening fields (which
act on F' ') and also a contribution arising from
the correlated motion of three particle-hole pairs.
The two-body term I" ', which has not been
displayed explicitly here, represents the mutual
force exerted by the particle k and k ' on each oth-
er. It should be noted that Eq. (2.6) is symmetric

I

in the excitations k and k, i.e., it remains invari-
ant under the interchange (ko q)~(k 'cr'q ').

III. GENERALIZED RANDOM-PHASE
APPROXIMATION

We now truncate Eq. (2.6) in the following way:
On the right-hand side we retain only the forcing
terms due to the external potential (F'"') and those
parts of the medium fields (F ) that go into
screening F'"'. Our approximation for f ' is,
therefore,

f k, k ' '(q q '~)=
V

—- -, , [f'k —( q + q '/2), k ' '( q ) f k +( q + q '/2), k '
V D(k, k', q, q, ')

X [4'"'(q+ q ',co)+u(q+q ')n(q+ q ',co)]+ (3.1)

X [@'"'(qro)+U(q)n(q~)], (3.3a)

where

fg~ ~
D(k, q)=fico+iri —k.q . —

P71

(3.3b)

where the ellipsis represent the interchange term
(q kcr)m (q 'k'o') and where

2 2

D( k, k ', q, q ') =ficu+i ri kq —k '
q
—' . —

Pl Pl

(3.2)

It is useful here to recall the RPA which, in terms
of f ", can be written as

N1) i l 0 0fk (q ) ( k —( /2) k+( /2)I' D(k, q)

I

Equation (3.1) is the direct generalization of (3.3a)
to the case of the two-particle equation and we
shall, therefore, refer to it in what follows as the
generalized random-phase approximation or
GRPA. Our motivations in adopting this approxi-
mation are the following: (i) its analogy with the
familiar RPA, which successfully incorporates the
effects of screening at long wavelengths, (ii) its ex-
act compliance with the first- and third-
frequency-moment sum rules, which guarantees a
good short-time behavior for the theory, and (iii)
the simplicity and tractability it brings to an other-
wise seemingly impenetrable problem.

In making the GRPA we are neglecting com-
pletely the correlated motion of three particle-hole
pairs (contained in F ) as well as certain dynami-
cal two-body terms (the whole of F' ' and part of
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F ). The neglect of F' ' particularly is a cause for
some worry since it includes the effects of
plasmon-plasmon scattering in lowest order and
may be as important at metallic densities as some
of the terms we have retained. However, in view
of the arguments for the GRPA presented above,
we feel there is sufficient appeal in it to warrant
our pursuing it further. The true merits and de-
fects of this scheme will emerge in the course of
our analysis and will be commented on more fully
in the sequel.

On substituting (3.1) into (2.5), dividing out by

n(qco) =[m. (qco)+a'(qco)]

where

X [4'"'( qco)+ u( q )n( qco)], (3.4)

0 0
p 1 k —( q/2)a k+( q /2)cr

rr qco =—
D(kq)

(3.5)

is the familiar Lindhard function and

the one-particle flow term on the left, and sum-

ming over all ko we obtain

1 1 1
m'(qco) =, u(q ')

D(k+(q '/2), q) D(k —(q '/2), q)

, [f'k —(q/2)n, k'e'( 1 ) f k+(q/2)nk n ,
(''

D(k, k', q —q', q ')

+f k ' —( /2) ', k ( —q+q')-f'k '+( /2) ', k ( q+q')] .

(3.6)

Thus, in GRPA the electrons respond to the Har-
tree potential as in RPA, but with the modified
proper polarizability m + m'. The post-RPA ef-
fects are contained in the term m'. Alternatively,
we can recast (3.4) in the form

n(qco)=n. (qco)[ 4'"'(qco)

+u(q)[1 —G(qco)]n(qco) },
which defines the dynamic local-field factor
G(qco). In GRPA we find

1 1
G(qco) =

Q (qco) Q (qco)+Q'(qco)

where

Q '(qco)= —u(q Hr '(qco) .

According to this second interpretation, the elec-

trons respond as free particles to the Hartree mean

field modified by the dynamic local field G(qco).
Of the two interpretations we have given, the first
is more in line with perturbation theory, in which

one expresses the proper polarizability as a sum of
terms involving increasing powers of the potential,

while the second is more closely allied with ap-

proaches based on the approximate decoupling of
the kinetic equations.

The structure of the term m' merits some com-

ment: Of the wave vectors entering it, q is associ-

ated with the external momentum transfer, k with

a particle in the system and k ' with a particle i.n

I

the correlation hole of k. The denominators D
and the equilibrium Wigner functions f'2' couple
the motions of the particle k and k '. It is this
latter feature which gives rise to many of the in-

teresting effects in GRPA, as we shall see below.

In order to make contact with earlier work we

now introduce an alternative truncation of Eq. (2.6)
that is closely related to our GRPA. In this

scheme, one retains only the forcing terms due to
the external potential, i.e., in Eq. (3.1) the term un

is omitted throughout. Since this is a direct gen-

eralization of the ordinary Hartree-Fock approxi-
mation on the one-particle kinetic equation [Eq.
(3.3) with un omitt(xl], we will refer to it as

GHFA. By contrasting GHFA with GRPA
below, we shall highlight the significance of the
additional screening fields which the latter con-

tains.
In the limit of large q or ~ the distinction be-

tween GRPA and GHFA disappears and, in fact,
both approximations become formally exact. The
reason for this is the following: At short distances
or times, the particles do not interact appreciably
with each other and respond only to the external

potential F"', the screening fields retained in

GRPA thus do not come into play. If the energy
denominators D and D in ~' are expanded in in-

verse powers of [hco+(h q /2m)], with only leading

terms being retained, then both GHFA and GRPA
lead to exactly the expressions for the local field
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4
lim

q Q'(qco) =6 (q),
CO~ oo Q)p

(3.10)

where the definition of 6 (q) and discussion of
the moment sum rules may be found in Sec. III of
I.

IV. CONNECTION OF THE PRESENT
APPROACH WITH PERTURBATION THEORY;

APPROXIMATIONS FOR f' '

Equation (3.6) for ir' contains the equilibrium
two-particle Wigner function f' ' which is not
known as an explicit function of its arguments.
We shall now investigate the consequences of ap-
proximating f' ' by the expression

~ ko, k'o'~~ k k' k+(q/2)o k —(q/2)o

(4.1)

which is obtained by. evaluating (2.4) with the
noninteracting ground-state wave function of the
system. It is easily verified that f' ' " satisfies the
relation

fg) (~q~) SHF(~q)

ko; k 'o'

where S "(q) is the Hartree-Fock structure factor.
On substituting (4.1) into (3.6) and simplifying the
resulting expression we find

6 (qco) first obtained by Niklasson (see Ref. 4).
We note in passing that Niklasson's local field, al-
though frequency dependent, is purely real. It
should also be emphasized that Niklasson's local
field applies only at large q or co but that it is ex-
act in either of these limits.

When we imply in the previous paragraph that
GHFA and GRPA become exact at large co, what
we mean is that both schemes satisfy exactly the
first- and third-frequency-moment sum rules. This
follows from the following asymptotic property of

C,

where the expressions for rc (qc0) and n "(qco) are
given in Eqs. (2.7) and (2.8) of I. Thus m.HF is sim-

ply the sum of the first-order self-energy and ex-
change graphs in the perturbation expansion of the
proper polarizability. This demonstrates that the
first-order result of I is contained in the present
theory as a special case. Although we cannot ex-
tract the higher-order diagrams present in rc (since
f' ') is unknown), we can clarify the situation by
going to the co~ ~ limit, in which case H is
known exactly from the third moment [see Eq.
(3.10) above and Sec. III of I]. Since n' in this
limit is expressed in terms of S(q), which is a non-
analytic function of r„ it must therefore contain an
infinite subset of diagrams in the perturbation
series.

In order to extract more than just the first-order
diagrams from m we must use in place of (4.1) a
more sophisticated approximtion for f' '. A '

straightforward method of proceeding would be to
make a perturbation expansion for f ' ' in powers
of the potential. However, a more fruitful ap-
proach seems to be to try and express f' ' approxi-
mately in terms of the static structure factor S(q).
Since the latter quantity contains the potential im-
plicitly to all orders, one hopes thereby to have
simulated the effect of a large number of terms in
the perturbation expansion. In choosing an ap-
proximate representation for f' ' in terms of S, one
is constrained by the following exact relation con-
necting the two:

S(q)—'= —X XfP.', k. (q»
ko k'o

(4.4)

which follows from the definition of the structure
factor. [Note that Eq. (4.2) is a special case of
(4.4)].

%'e now propose the following two approxima-
tions for f' '.

Ansatz A:

f(Q)A (q) f(Q)HF (q)
7

irHF( qco) =77 ( coq) s+ ( qco), (4.3)
+ n „—n „-[S-(q, ,) S "—(q)] (4.5).

Ansatz 8:

&-( q / )~ k '+( q /2)0'+ k+( q/2)n k '-( q/2)e' [ (4.6)
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where f~k' k, , (q) has been defined earlier in (4.1).
It is easily verified that both (4.5) and (4.6) are
consistent with the relation (4.4). The structure of
both (4.5) and (4.5) is such that the zeroth order or
Haitree-Fock part has been separated out and an
Ansatz is made on the remaining part containing
potential effects. The structure of the Ansatze may
be clarified still further by examining them in the
classical limit, i.e., Pi~0, fik~p (finite),

nk ~f (p) (the Maxwellian distribution). Realiz-

ing that exchange effects vanish in this limit, one
finds easily that both (4.5) and (4.6) reduce to

f~koko (q')~f-',"-, (q)=f'(p)f'(p')[S(q) —1],

COp
I = lim

2 q —+0

ImQ'(q, cop )

q
(5.4)

4

As in I, we express the wave vector in units of kF
and frequency in units of 2Ef/R. The plasmon
frequency in these units is co& (4——/9') ~ (3r, )'~

In order to obtain a and I" from our theory we

need, therefore, to calculate the q coefficient of
Q'. The detailed calculation of the quantity,
which makes use of the Ansatze A and B intro-
duced in the preceding section, has been discussed
in Ref. 7 and we shall quote only the final results
here. We find, for small q,

(4.7)

which will be recognized immediately as being the

exact representation of the classical two-particle
distribution function, S(q) now being the Fourier
transform of the classical pair correlation function.

Thus, both the Ansatze are seen to reduce correctly
to the known limiting form in the classical case.
While Ansatz A is relatively straightforward,
Ansatz B is a little more complex because it in-

volves a mixing of correlations in position and

momentum space. In the remainder of the text we

shall quote only formulas obtained on the basis of
Ansatz A, since we find that it leads to much better
results than Ansatz B. Formulas pertaining to
Ansatz B which are long and tedious are given in

Ref. 7.

Q'(qco)= — y(cu)q +O(q ),
S co

where

y(co) = —, —», f dq'[S(q') —1]H

For Ansatz A we have

ReH(v) =Ro(v)+R ](v)ln
I
v+2

I

+R2(»»
I

v —2
I
+R3(»»

I
v

I

ImH(v) =-mR, (v)8(2 —v) .

The functions Rh are defined as follows:

R 0( v) = 16(20—8v —7v ),

(5.5)

(5.6)

(5.7)

V. DISPERSION AND DAMPING OF THE
LONG-WAVELENGTH PLASMON

The energy and linewidth of the long-wavelength
plasmon is determined by the complex zeros of the
complex dielectric function, i.e.,

R &(v) =4( —16v+40v'+46v —7v ),
R2(v) =4(16v—40v'+46v —7v ),
R3(v)= —R&(v) —R2(v) .

(5.7b)

e(q, co) =1+Q (q, ~)+Q'(q, ~)=0. (5.1) In terms of the function y, dispersion and damping
coefficients are, respectively, given by

(5.2}

In the limit q~0 the above equation yields for the
plasmon energy co~~(q) the expression

cop)(q}=co~+aq —iI q +O(q ),
+RPA

26)p

3
Rey(co& ) (5.8)

where I = Imy(co&) . (5.9)

5cop ReQ'(q, cop )
cx =cKRpA 1 — 11m

3 q~0 q

3
&RPA

10cob

and for the plasmon width the expression

(5.3)

Note that the contribution to o; from the first-
order diagrams [equal to —Rap~ (2'&/3)(3/8)]
together with the remaining correlation contribu-

tion opposes the Hartree mean field and leads to a
reduction in the plasmon energy from its RPA
value. As regards the width, the entire contribu-
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tion arises from the post-RPA collisional effects
present in Q'.

The result for the plasmon energy as a function
of wave vector, Eq. (5.2), can be recast in a form
which is instructive. We write

~,i(q) =~RpA(q)+~E(q ~p)

depend too sensitively on the particular S(q) used.
In Fig. 1(a) we have plotted Re and Im y, calculat-
ed using both Ansatze A and 8, as a function of co

for r, =2 (Al). In Fig. 1(b) we have shown the
same functions for r, =4 (Na}. The arrows in all

figures denote the position of the plasmon frequen-

where

ib—, W(q, cop)+O(q ), (5.10)

l.6-
2

~RPA(q} ~p+iiRPAq

Q)p
EE(q, co) = — Reg'(q, co),

(5.1 la)

(5.11b)

I.4

I.2

I,O

&W(q, ~)= Img'(q, ro) .
2

(5.11c)

)
1 I" b, W(q, a)')

d
CO —CO

(5.12)

This relation is perfectly general since the only

property used in its derivation was the analyticity
of g', which is determined unambiguously by
casuality. Relations similar to (5.12) are common
in other parts of many-body physics. The point
of our mentioning the relation (5.12) is to em-

phasize that, even in an approximate theory, the
plasmon dispersion and damping cannot be in-

dependent of each other but must be related

through casuality. We have exploited this fact to
cut down considerably on the labor leading to our
results (5.5}—(5.7). Rather than calculate the
dispersion and damping separately, we calculated
only the dispersion AE and inferred the damping
58' through analytic continuation in the frequency
variable (see Ref. 7 for details}.

Before we can obtain numerical results for
plasmon dispersion and damping we must evaluate
the functions Re and Imy(co}, which are essentially
the q coefficients of Re and ImQ' at small q. To
perform the integrals in y(co) we have used the
self-consistent $(q) of Vashishta and Singwi (VS},
although it turns out that the result does not

The first term on the right-hand side of Eq. (5.10)
is the plasmon energy in the RPA. When higher-

order correlation effects are taken into account, the
RPA plasmon is "renormalized" in two ways —it
suffers a downward shift AE in its energy and at
the same time it develops a finite width A8'.
These two quantities are not independent of each
other. From the analyticity properties of the
complex function Q' we can establish the follow-

ing dispersion relation connecting AE and 68':
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FIG. 1. Function y(~) vs ~ in units of 2EF/A, for (a)

r, =2.0 (Al) and (b) r, =4.0 (Na). The full (broken) lines

represent the results obtained with Ansatz A (Ansatz B)
and the S(q) of VS.
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TABLE I. Coefficients of plasmon dispersion a and damping I .

Element
rs

Ansatz

Al
2.0

Na
4.0

Np

&RPA

Rey{cop )
a =aapp[1 , cop R—e—P(rap )]

a Expt.
rmy{~, )

I /COp

{I/cop) Expt.

0.665
0.451

1.063 1.053
0.310 0.311

0.39, Ref. 3
0.449 0.282
0.090 0.056

0.13, Ref. 9

0.941
0.319

0.725
0.145

1.154 1.253
0.102 0.083

0.24, Ref'. 9
0.322
0.064

0.07, Ref. 9

cy cop,
' from Eqs. (5.8) and (5.9) we see that the

dispersion and damping coefficients are determined

by the values of Re and Imy at this single point.
Our detailed numerical results for the plasmon

dispersion and damping coefficients are shown in
Table I together with the RPA predictions and the
experimentally measured values of these quanti-
ties. ' We see that our predictions az z for the
dispersion coefficient are somewhat below the ex-
perimental values for both Al and Na. On the oth-
er hand, the RPA values are seen to be too high.
Apparently, the higher-order correlations entering
in our theory have the effect of pulling down the
RPA dispersion by more than the required
amount. The situation is worse for Na than it is
for Al.

Equation (5.8) shows that the correction to the
RPA dispersion is proportional to co& -r„' conse-
quently, any error in estimating it is considerably
magnified in the case of Na for which r, =4.0.
Our predictions for the relative plasmon width
I /co& are generally less than the experimental
values. For Al, the theoretical width is a factor of
-2 smaller than experiment while for Na the
difference is less. There exist in the literature a
number of microscopic calculations of plasmon
width at long wavelengths. ' ' The first attempt
was made by DuBois' who developed a "golden-
rule" formula for the width, applicable at very
high densities. This approach was subsequently
modified by DuBois and Kivelson" and, indepen-
dently, by Hasegawa and Watabe' who included
the effects of dynamical screening in the calcula-

tion. With this modification it was found that the
calculated width was substantially below the exper-
imental value. ' The contribution of various solid
state effects to the plasmon width was studied in a
later paper by Hasegawa. ' All these calculations
were perturbative in that they involved expansions
in powers of the coupling parameter r, . Since
r, )2 for metals, the validity of such an expansion
is uncertain. Our calculation of plasmon width is
not perturbative in the sense that the potential
enters to all orders through the structure factor
S(q) that occurs in our expressions. We have thus
included, in an approximation way, the effect of a
large number of terms in the perturbation expan-
sion. We feel that our calculation complements
the work of earlier authors because, first, it is non-
perturbative and, second, it illuminates from a dif-
ferent point of view the role of two-pair excitations
in determining the finite width of the long-
wavelength plasmon.

VI. EVALUATION OF Q'(q) AT FINITE q

On evaluating the expression for Q', using
Ansatz 3, we find

Q'(q~) =Q'(q~)+Q "(q~), (6.1)

where Q is the first-order proper polarizability and
Q" is the contribution coming from higher-order
potential effects. The explicit form of Q" is
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3(ar,), +1
g"(q~)=—,, f, de f, "i'

[g( ) g (&')] y
0 W P' q —qqp q —qqp

2 '
2

qqp —q qqp —q
2 2

+ qqv —q —q —qq v
2

'
2

+l~«e'+e' 2ee'—i ')'") ~HF«e'+e' 2W'—i ')'")1

where

eev wi
2

'
2

—qqv
2

—qq'p' qq'p' —qq'p' —qq'p'

2 2
+~

2 2

(6.2)

g(cp, q, q ',H1,H&)= f d k f d k[co+iri H1 ——q ' k ' —(q —q ') k] '(~+iri —H~ —q k)
/4[&1 /k)&1 (6.3)

To save writing in formula (6.2), we have suppressed the first three arguments of g, which are always co, q,
and q ', and showed only the last two. The imaginary part of P turns out to be easier to evaluate than its
real part and can, in fact, be expressed entirely in terms of elementary functions. The details of this calcula-
tion are described in Ref. 7, and we quote only the final results here:

Imp(H1, Hp ) = — G
4m (q —q')

S

G (x)=G1(x)+Gq(x),
where

co —H1+q' —G
co —H1 —q

I q —q'
I

(6.4a)

(6.4b)

G1(1)+F1(1)[—,(x~—1)—hp(x —1)] for 1&x

G, (x)= G, (x) for —1&x&1

G1( —1)++1(—1)[—,(x —1)—hp(x+1)] for x & —1,
(6.4c)

hPh2 2, , 3, 4G1(x)= — x + —,(hq+ , chp)x ——,cx —s—gn(hz —cx)D ReL
x —ch2 ch2 —hP

D ' ' D
(6.4d)

1 X —Ch2
F&(x)=hex ——,cx —sgn(h1 cx)D ReA — ,o.2 (6.4e)

2 1 3j4 4x —ch2ch2 —hpG1(x)=8(1—hp)
&

chphpx —
3 (chp+

& hp)x + —,x —sgn(x —chz)D ReL, —1, , ie.46

co —H1 N —H2
hp —— , h2 ——— c q q''q, s 1 c

2 1/2 2 CA 2
—AP

D=&( lhz —1I » o=sgn(hz —1) fp=

A(g, o)=-,' p(g, o)+ -,
'
r(g, ~),

L(g, o,gp)=[ —,', ( op+2(')+ ,—( 2o+g —)gp—]A(g,o)+[ „(o+4g—')+ , ggp]r(g—,o),
A(g, o)=(g' +o)'

r(g, ~)=~ln[g+ug, o)],

(6.4g)

(6.4h)

(6.4i)

(6.4j)

(6.4k)
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With a suitable choice of the structure factor
S (q), ImQ" may now be obtained through numeri-
cal integration. In our calculations, the S(q) used
was the self-consistent S(q) of Vashishta and
Singwi (VS). Once ImQ" has been computed the
corresponding real part may be obtained numeri-
cally through the dispersion relation

'I. 0—

3
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0. 5
C3

-05—
I 0-

/

/~~
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\

3
a0.5-

E 0

FIG. 2. Proper polarizability at r, =2.0:
Q (qco); ———Q (qco); —Q~(q~); —.——Qs(q~)0 h h

Wave vector q is expressed in units of k~, frequency co

in units of 2EF/fi here and on all other figures.

(6.5)

which follows from the fact that the function Q"
is analytic in the upper half of the complex co

plane and falls off asymptotically as co

In Fig. 2 we have shown the polarizabilities Q,
Q', and Q" as functions of frequency for momen-

turn transfer q=1.0 and electron density r, =2.0.
The values of the first-order polarizability Q' were

taken from I. The frequency regions around

co, =
~ q /2+q

~

have been deliberately omitted
from Q ', since we know from the discussion in I
that the first-order theory becomes invalid there.
The function Q" has been calculated with both An-

satz A (solid line) and Ansatz 8 (dash-dot-line).

VII. THE DYNAMIC LOCAL FIELD

The dynamic local field in the present theory is

given by

1
G ( qco) ——

Q (qco)

1

Q (qco)+Q'(qco)+Q "(qco)

(7.1)

In the first-order theory of I, it is given by the
above expression with Q" in the second term omit-

ted. In Fig. 3(a) we have shown the dynamic local

fields G (present theory) and G "(first-order
theory) as functions of frequency for q= 1.0 and

r, =2.0. We see that over most frequencies Gz
(solid line) and Gii (dash-dot-line) are qualitatively

Where the results for the two Ansatze become
identical, only the curve for Ansatz A has been
shown (this convention is followed in all subse-

quent figures). The first point to note in Fig. 2 is
the relative magnitude of the functions Qo, Q',
and Q": While Q' is about 30% of Q, Q" in turn
is about 30% of Q' or only about 9% of Q . Al-
though the absolute magnitude Q" is small in rela-
tion to Q and Q', thereby justifying our looking
upon it as a correction, the modulation it produces
in the total dielectric function
@=1 + Q + Q' + Q" has important consequences,
as we shall see later. While both ImQO and ImQ'
fall off to zero at w, =ql2 + q, ImQ" has a tail
beyond this point. This tail, which is initially
negative, causes S(qco) to become negative in a
narrow frequency region around co, (see Sec. X) be-

fore it finally becomes positive. The oscillatory
character (i.e., the sequence of positive and nega-
tive parts) of ImQ" ensures that when it is added
to ImQ(Q +Q') the correct value of the first fre-

quency moment (f sum rule) predicted by RPA
and the first-order theory of I is maintained, while
the deficiency in the third moment present earlier
is made up. For r, &2.0, the magnitude of Q" be-

comes negligible compared to Q' and we recover
substantially all the results of first-order perturba-
tion theory.

On repeating the above calculations for r, =4.0,
we found that Q' and Q were of the order of
70% and 25%, respectively, of the magnitude of
Qo. Thus, at r, =4.0, Q' and Q" are no longer

small "corrections" to the RPA, but instead give

sizable contributions to the total dielectric func-

tions e. This fact will be recalled later when we

discuss the results of our theory at r, =4.0.
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dart and Taylor. It should be pointed out that i

has been calculated at r, =2.0. However, this
difference in r, is small and will be ignored in
what follows. The local field of Geldart and Tay-
lor G *has been adjusted to have the correct value
at small q required by the compressibility sum rule.
%'e see that 6 " at q=O lies considerably below6, thus implying a large violation of the
compress» i'b'lity sum rule in the first-order theory.
However, when the higher-order term Q is inc u-
ed, a rama ic impd, d t' improvement results: the local field

hilGz at q=O is seen to be very close to 6 while
6& is only a little different from it. This shows
h t th higher-order correlational effects entering

in our theory play a crucial role in ensuring t e
correct compressibility, with Ansatz A producing a
better result than Ansatz B. A detailed quantitative
estimate of the compressibility will be presented in
the next section.

Returning to the curves for G(q, O)/q, we see
that G differs appreciably from the other curves
in t e vicini yth

'
inity of q=2: whereas the other curves

exhibit a sharp maximum there, 6 has no suc
pronronounced structure. The sharp maximum

6 "i as we have seen in I, an arti act
of the first-order perturbation theory. It is evident
t at ~anh 6 d G do not succeed in eliminating this
r d 6 is probably a more accurate repre-eature an
sentation of the static local field in this region. At
very large q our local fields Gq, G~ tend to a com-
mon limiting value given by

lim Gz s(q, O)= —,[1—g(0)],
q~ oo

FIG. 3. (a) Dynamic local field at r, =2.0: ———
G ( ) —G (qco); —.—.—G~(q~). (b) Static partq i-
of the local-field function G(q, Q)/q: —~, a

at r =2.0;,=1.894; ——— G~ at r, =2.0; ~ G& at r, = . ;———GG at r, =1.894.

similar to asG (d hed line). However, the differ-
clearlence in ein the three local fields shows up quite clear y

in eth frequency region beyond q /2+ q, w ere
ImG =0. For large ~ both ReGq and ReG~6 tend

third moment, while ReG tends to the value GHF

In Fig. 3(b) we have plotted the static part of the
local field divided by q as a function of q in (i)
the first-order theory of I, (ii) the present theory,
both Ansatz A and 8, and (iii) the theory of Gel-

where g(0} is the pair correlation function at zero
eparation in our theory. Stnce g (0))0,

limG(q, 0)(—, in general. For the S(q) of V,fVS
which has been used as input in our calculations,

g (0)=0.033 22 and consequently,

lim G„s(q,O}=0.64 .
q —+oo

It is interesting to note that at the largest q s
shown in the figure our local field is practically
the same as that of Geldart and Taylor.

VIII. COMPRESSIBILITY

In this section we make a quantitative estimate
of the compressibility. In the present theory, the
dielectric function is given by
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E(q~) = I+Q'(qco)+Q'(qco)+Q"(qco) .

(8.1)

of the ground-state energy. In this way one ob-
tains

The limiting forms of the functions Q, Q', and
Q" at co =0 and q ~0 are

Ef =1-
K

4ar&
( 4 +1 corr)

7T
(8.6)

CI
Q'(q0)= +0(q ), i =0,1,h2

(8 2)
The three terms in the above expression are the
contributions arising from the kinetic, exchange,
and correlation energies, respectively. For y„„we
have taken"

Co=

C)=

kp

4a r
~2

4ur,
m'

(8.3a)

(8.3b)

and cs is a quantity (depending only on r, ) which
we shall estimate below. On using (8.2) we find in

the static, long-wavelength limit

(co+c) +cs ) o (8.4)

From Eq. (8.2) we see that cs may be determined

by extrapolation if the function Q" is known at
two (small) values of q. Using the data given in
columns 3 and 4 of Table II we obtain for CE the
numbers given in column 5 of the same table.
[The accuracy of our extrapolation procedure was

checked by calculating the quantities co and c& us-

ing the same technique and it was found that our
estimates differed from the true values (8.3a) and
(8.3b) by less than 1%j. In terms of c; and the
compressibility of the noninteracting gas Kf, the
compressibility E in the present theory is given by

Ef c) +cit,1+E, co
(8.5)

The subscript e above indicates that the compressi-
bility has been obtained from the limiting form of
the dielectric function. Alternatively, the compres-
sibility may be determined through differentiation

)„,„=(0.0088+0.0008) . (8.7)

Our calculated values of (Kf/K), are given in the
sixth column of Table II and the values of
(Kf/K)E are listed alongside for comparison. We
see that for r, =2.0 the compressibility sum rule is
remarkably well satisfied, with Ansatz A producing
a better result than Ansatz 8. In fact, for
Ansatz A, the discrepancy between the two esti-
mates is considerably smaller than the magnitude
of the correlation-energy contribution to (Kf/K)E.
For r, =4.0, our estimate of compressibility is al-
most twice as large as that obtained from the
ground-state energy. The reason for this can
perhaps be understood if we recall from Sec. VI
that, for r, =4.0, the functions Q' and Q" are fair-
ly appreciable in relation to Q . This seems to in-

dicate that the terms we have neglected in our
theory may not be small and might compete quite
effectively with the terms we have retained in pro-
ducing the final result. The general conclusion we
can draw from this is that owing to the strongness
of the correlation term Q'= Q'+Q" and neglect-

ing all other potential effects may not be a very
fruitful course at low densities.

In this section we compare the two approxima-
tion schemes GHFA and GRPA and show that the

IX. COMPARISON BETWEEN GHFA AND GRPA

TABLE II. Test of the compressibility sum rule.

rs Ansatz Q "(0.25,0) g "(0.5o,o)

2.0 4.0741
2.7890

0.8026
0.5488

0.2726
0.1867

0.6505
0.6792

0.644

4.0 22.2204
14.6288

4.4404
2.9286

1.4817
0.9750

0.4501
0.4924

0.243
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latter is clearly superior to the former. As we have
seen, the only difference between the two is the
presence of screening fields in the latter. At first
sight it might appear that this difference is not a
very significant one. Indeed, it has been shown
earlier that in the limit of large q or co both
schemes become identical. However, at lower q
and co the difference between the two schemes is
marked, as is evident from the following:

(1) The expression for the density-density
response function in GHFA is

&ouF~ - ~ (q)+~'(qto)
1 —v( q )~ ( qto)

(9.1)

eGHFA I+Qo+Qc +Q
(1— ') (9.3)

In the limit q —+0, Eq. (9.3) gives for the plasmon
energy the expression

(q) =~op+2aRp&q +O(q )+tO(q ). (9.4)

We thus see that in GHFA the plasmon dispersion
coefficient is the same as in RPA, the change oc-
curring only in the term of 0 (q ). Further, there
is no damping of the plasmon to order q . On the
other hand, GRPA predicts modifications in

dispersion and damping of order q (see Sec. V), in
line with experiment and also with other theoreti-
cal estimates based on perturbation theory. '

(3) In the static long-wavelength limit the dielec-
tric function in GHFA becomes

Cp

l+ n

(9.5)

From this it is evident that e " violates the per-
fect screening requirement which demands that
lim~ 0 [(1/e(q0)]=0. However, in GRPA the
dielectric function is consistent with this require-

Notice that m' occurs only in the numerator but
not in the denominator; this unsymmetrical form
makes it impossible to establish a direct connection
with perturbation theory. On the other hand, the
corresponding expression in GRPA,

oRp~( 'Ir (qco)+n (qco)

1 —v(q)[n. (qco)+m'(qco)]

(9.2)

allows one to establish such a connection very easi-
ly.

(2) The dielectric function in GHFA can be
shown to be

ment as is obvious from Eq. (8.4). We can con-
clude from the above discussion that, as in the case
of the one-particle kinetic equation, the inclusion
of screening effects in the two-particle equation is
a matter of crucial importance.

X. DYNAMIC STRUCTURE FACTOR:
COMPARISON WITH EXPERIMENT

The dynamic structure factor S(qto) is expressed
in terms of the energy-loss function Im[ —1/e(qco)]
through the relation

S(qco) = Im3q

4ar,
(10.1)

where q is in units of kz and S in units of A/2E+.
The expression for the energy-loss function in the
present theory is

1
Irn

e(qto)

—1=Irn
I+Q'(q~o)+Q'(qto)+ Q "(qto)

(10.2)

If Q" is omitted in Eq. (10.2) we get the expression
for the loss function in first-order perturbation
theory; if both Q" and Q' are omitted we are back
to the RPA. In Fig. 4(a) —4(c), we compare our
theoretical calculations of the loss function with
the experimentally measured line shapes by Batson
et al. ' The theoretical curves shown are (1) RPA
(solid line labeled RPA), (2) first-order perturbation
theory (dashed line), (3) present theory with
Ansatz A (solid line labeled A), and (4) present
theory with Ansatz 8 (dash-dot line). The experi-
mental points are shown by heavy dots in the fig-
ures.

We turn first to Fig. 4(a) which shows the loss

function at momentum transfer q=2.0 A
= 1.1412k~. We have already remarked in I that
in going from the RPA to the first-order theory
(FO) the peak position of the loss function shifts
downward in energy until it practically coincides
with experiment. We observe now that in passing
from FO to the present theory the peak position of
the loss function shifts downward in energy until it
practically coincides with experiment. We also ob-
serve that in passing from FO to the present
theory the shift in peak position is almost imper-
ceptible but the absolute intensity of the loss func-
tion rises until it comes very close to experiment.
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With Ansatz A, particularly, we find that we can
reproduce quite well the overall line shape of Bat-
son et al.

Another new feature of our theory compared to
RPA and FO is the appearance of a high-
frequency tail in the loss function, although this is
too small to be visible in the figure. Two negative
aspects of our theory are (1) its failure to remove
the singularities at r0, = ~(q /2)+q~ present in the
first-order term Q' (because of this, our theory,
like FO, becomes invalid in the vicinity of co, and
we have deliberately not shown results for it there),
and (2) the occurrence of a small negative portion
in Im( —I/e) in the neighborhood of the RPA cut-
off q /2+ q. To understand the origin of this
negative portion we note from (10.2) that
Im( —1/e) Im(Q +Q'+Q"). On examining Fig.

FIG. 4. (a) Energy-loss function Im[ —I/e(qe)] [pro-
portional to S(qco)] for q=2.0 A ' at r, =2.0; —RPA
(labeled); —.—.—- FO, Ref. I; —present theory with
Ansatz A (labeled); ———present theory with Ansatz 8;
experimental points are the measurements of Batson
(Ref. 3) for aluminum. Note the units for q and co used
in these figures. (b) Same as 4(a) for q=2.5 A '. (c)
Same as (a) for q=3.0 A

2 we see that both ImQ and ImQ' fall off sharply
to zero at q /2+q, while ImQ" is negative in this
region and later develops a positive tail.

It is this behavior of ImQ" which is refiected
directly in the loss function for co & q /2+q. We
should mention that the negative portion in
Im( —1/e) around q /2+q, like the positive high-
frequency tail, is too small to be visible in Figs
4(a) —4(c). The occurrence of a negative portion in
ImQ" cannot be regarded as spurious since we
know from our discussion of Sec. II that such a
piece is necessary in order to keep the f-sum rule
intact (the negative part in ImQ' occurs for the
same reason). What is necessary is that the nega-
tive bit in ImQ" occur somewhat below q /2+q so
that it can be compensated for by the large and po-
sitive ImQ . This fine balance is lacking in our
theory. If we ignore the frequency regions in the
vicinity of ~q /2+q~, where we have seen that our
theory breaks down, we find that for other fre-
quencies our calculated loss function at q=2.0 A
agrees remarkably well with the line shape of Bat-
son et al.

Figure 4(b) shows the line shape for q=2.5
—1 426kF There is a fair amount of scatter

in the experimental data and observations do not
seem to have been made in the low-frequency
(0—5 eV) and high-frequency (& 45 eV) regions.
Again we find that our peak position is practically
the same as in FO, while the intensity is somewhat
higher. Although this trend is certainly in the
right direction, our theoretical curve does not fol-
low the experimental points as closely as could be
hoped for. Figure 4(c) shows the situation at
q=3.0 A '=1.711k~. Although there is a consid-
erable amount of scatter in the data, the mean ex-
perimental intensity is well above the calculated in
any of the theories. We find this fact puzzling and
feel it needs further clarification. However, if we
ignore the difference in intensities and look at peak
positions (taking the experimental peak position
from Batson's estimate), we find once again that
neither at this q nor at any other q do we see any
evidence for the "two-peak" structure in S(qco) re-
ported earlier by Platzman and Eisenberger. '5

In Table III we summarize our calculations for
the loss functions by listing its peak position and
maximum intensity (i.e., intensity at the peak posi-
tion) for a wide range of momentum transfers.
The different entries shown in the table are for (1)
RPA, (2) the first-order theory of I, referred to
here as FO, and (3) present theory with Ansatz A.
For r, =2.0, the experimental peak positions of
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TABLE III. Peak position and maximum intensity of Im[ —I/eiqcoi] in different theories.

Peak position (in units of E~/A) Maximum intensity

rs (units of
kF) RPA FO GRPA RPA FO GRPA

2.0 0.9
.1.0
1.2
1.4
1.6
1.8
2.1

2.5
3.0

2.40
2.59
2.90
3.21
3.59
4.08
5.04
6.69
9.30

1.89
2.03
2.27
2.55
2.94
3.45
4.44
6.12
8.75

1.90
2.01
2.26
2.48
2.80
3.25
4.17
6.01
8.68

1.76
1.04
0.54
0.34
0.24
0.17
0.11
0.07
0.04

1.07
0.81
0.50
0.33
0.23
0.17
0.11
0.07
0.04

1.38
0.98
0.56
0.36
0.25
0.18
0.11
0.07
0.04

4.0 1.2
1.4
1.8
2.1

3.48
3.90
4.75
5.60

2.52
2.84
3.63
4.49

2.61
2.81
3.39
4.09

1.46
0.74
0.33
0.21

1.05
0.66
0.33
0.22

1.87
0.91
0.38
0.23

Batson are only slightly lower than those of FO
(see Fig. 7.4 of I). This table reinforces the com-
ments made earlier about the loss function in our
theory: the peak positions are practically the same
as in FO while the intensities are somewhat higher.
Both these trends are confirmed by experiment. In
the lower part of the table we have shown our re-
sults for Na (r, =4.0) at some momentum transfers
where the plasmon is no longer a well-defined exci-
tation. %e hope that our results will serve as a
spur to the experimentalists to measure the detailed
line shapes at these larger momentum transfers.

In Table IV we show the static structure factors
calculated in the different theories discussed above.
In the last column we have shown the structure of
Vashishta and Singwi (VS), which has been taken

as an input in our calculation. It is interesting to
note, on comparing the last two columns, that our
theory is almost "self-consistent" in that the differ-
ence between our calculated S(q) and that of VS is
less than 3%%uo on the average. On the other hand, a
qualitative difference between the two S(q)'s is

that ours exhibits a slight but definite maximum

around q-2.5. This tendency happens to be in ac-

TABLE IV. Structure factor S(q) calculated in different theories.

Structure factor S(q)

(units of kF) RPA FO GRPA VS

2.0 0.9
1.0
1.2
1.4
1.6
1.8
2.1

2.5
3.0

0.428
0.497
0.626
0.741
0.835
0.904
0.953
0.977
0.989

0.44
0.51
0.670
0.790
0.891
0.959
0.986
0.991
0.995

0.42
0.53
0.681
0.805
0.907
0.976
1.001
1.002
1.001

0.453
0.527
0.668
0.789
0.883
0.947
0.982
0.993
0.997

4.0 1.2
1.4
1.8
2.1

0.537
0.655
0.840
0.912

0.52
0.721
0.924
0.968

0.57
0.77
0.957
1.005

0.597
0.734
0.926
0.976
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cord with the recent x-ray scattering experiments
of Eisenberger et al. ,

' where a rather pronounced
maximum in S(q) is observed at the same wave
vector. This point needs further theoretical con-
sideration, i.e., inclusion of multiple particle-hole
pairs.

XI. CONCLUSION

Before reviewing the overall performance of our
theory, we would like to recall briefly the motiva-
tions that led to it. Our aim has been to formulate
a microscopic theory of dynamical correlations
which incorporates explicitly the role of the multi-
pair excitations. In order to do this we felt it
would be fruitful to begin from the exact quantum
kinetic equation for the two-particle distribution
function because (a) it provides a rigorous basis for
studying the dynamics of two-coupled particle-hole
excitations and (b) the various terms occurring in it
have a simple semiclassical interpretation. The
latter aids greatly in a visualization of the physical
processes involved, which is necessary if one is to
develop suitable approximation schemes. By mak-

ing an RPA-like truncation of this equation and
using the result in the exact one-particle kinetic
equation, we were able to obtain a simple expres-
sion for the density-density response function in

the present theory.
In order to obtain numerical results on the basis

of this approach, we made the approximative
Ansiitze A and 8 for the equilibrium correlation
function f' '. Our polarizability was then expressi-
ble in the form Q=Q + Q' + Q", where the con-
tributions arise, respectively, from RPA, first-order
perturbation theory (FO), and higher-order correla-
tion effects. In comparing our theory with experi-
ment, we shall first confine our remarks to Al
(r, =2.0). The positive achievements of our theory
are as follows: (1) The correction Q" gives rise to
a damping of the plasmon at long wavelengths,
which was lacking in both RPA and FO. We find
that the width of the plasmon is proportional to
q . Our numerical estimate of the plasmon disper-
sion is in good agreement with the data for Al,
while the width is half the experimental value. (2)
There is an enhancement of the compressibility
over RPA and FO coming from Q", and we find
that the compressibility sum rule is remarkably
well satisfied for r, &2. (3) There is a considerable
shift towards lower energy in the peak position of
the energy-loss function and the latter is in good

agreement with the experiment. (4) The absolute
value of the intensity of the loss function is much
closer to the experiment than in first-order theory.
(5) There is a high-frequency tail in S(qco) due to
multipair excitations. (6) A small but definite peak
is observed in S(q) at q=2.5. Our calculations
show that Ansatz A leads to much better results
than Ansatz B.

The negative features of the theory are as fol-
lows: (1) It fails to remove the singularities at
c0, = ~(q /2)+q~ present in FO and therefore, like

FO, becomes invalid in the vicinity of these fre-

quencies. (2) As a consequence of (1), S(qto) be-

comes slightly negative around this region. For q
close to the critical wave vector q„ this negative
portion is quite pronounced and the theory be-

comes completely unreliable. However, if we stay
away from the dangerous frequency regions around

t0, (for a given q), the theory is seen to be in good
overall agreement with experiment.

For r, =4.0, the predictions of the theory are not
satisfactory. Because of enhanced correlation ef-
fects the terms Q' and Q" are much larger in rela-
tion to Q than they are for r, =2.0. This leads us
to infer that the role of the terms we have neglect-
ed in our theory may be quite significant at lower
densities (r, & 2). If this is indeed the case, our
theory would have a quasiperturbative character
and its validity would be best confined to the
high-density region r, & 2.

In attempting to improve the present theory, the
major objective should be to remove the unphysical
behavior present in the vicinity of the characteris-
tic frequencies co, . Unfortunately, we know of no
precise criterion which tells us which additional
terms to retain in the equation of motion in order
to accomplish this objective, and even if such a cri-
terion existed, it might not prove possible to imple-
ment in practice. One new physical effect arising
from some of the neglected terms in the two-
particle equation is a renormalization of the free-
particle energy denominators occurring in our
theory. Although this effect can be demonstrated
in a straightforward manner, the problem is again
of incorporating it into the theory in a tractable
way. For r, =2.0, we feel that these extra sophisti-
cations will serve only to patch up our theory near
co„while leaving it essentially unaltered at other
frequencies. For r, & 2, however, the present ap-
proach becomes increasingly inadequate, and it is
clear that much work remains to be done on the
problem of including higher-order correlation ef-
fects in a low-density electron gas.
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