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Effective charges of amorphous silicon, germanium, arsenic, and ice
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The mean-square effective charge e 2= (™e;:e; );, where e; is the effective charge tensor
for the displacement of atom i and ( ); means the average over all atoms i, has been ob-
tained from the integrated infrared absorptivity of amorphous silicon, germanium, and
arsenic. It has also been obtained from the infrared intensity of the translational lattice
vibrations of the molecules in ice I, which resembles amorphous silicon and germanium in
being approximately tetrahedrally coordinated and in being disordered, although with a
different kind of disorder. In ice, the root-mean-square effective charge of the molecules
is 0.83 electron charges, although they carry only very small equilibrium charges. In con-
trast, the rms effective charge of the atoms in amorphous silicon agrees, within a consid-
erable uncertainty, with the rms equilibrium charge calculated from molecular orbital
theory, but does not exclude a difference of perhaps as much as 30%.

I. INTRODUCTION pe';=0.

Although the atoms at their equilibrium posi-
tions in crystalline silicon and germanium and
similar substances carry no charge by symmetry,
the atoms in their equilibrium positions in amor-
phous silicon and germanium do carry charges be-
cause they lack symmetry. These equilibrium
charges have never been measured but have been
calculated recently for amorphous silicon using an
atomic-orbital model. '

%hen the atoms in amorphous silicon, etc.,
move from their equilibrium positions, they induce
dipole moments. The change d p,

' of the dipole
moment of the sample induced by the displacement
d r; of atom i is described by the equation

d p; =e';.dr;,
where e*; is the effective-charge tensor of atom i.
Its elements are defined as

The effective-charge tensor so defined describes the
dipole moments induced by atomic displacements.
It is comprised, therefore, of dipole-moment
derivatives and, of course, may not be an actual
electrostatic charge, although it has the dimensions
of charge. Because a uniform translation of the
sample produces no change of dipole moment, the
effective-charge tensors are subject to the sum rule

The mass-weighted mean-square value (e'; /rnt );
over all atoms of the effective-charge tensor, where

m; is the mass of atomi and

e; =e;:e;,
can be obtained experimentally from the intensity
of the infrared spectrum. No theoretical value

seems to have been calculated. The equilibrium
and effective charges are usually represented by
tensors of different ranks, the equilibrium charge
being a scalar and the effective charge a second-
rank tensor. In general, therefore, equilibrium and
effective charges are not equal to one another, con-
trary to a recent suggestion, ' but they may be if
the effective-charge tensor has only equal diagonal
elements.

The purpose of this Comment is to determine the
root-mean-square effective charges from the in-
frared spectra of the amorphous elements silicon,
germanium, and arsenic, whose crystalline forms
have no fundamental infrared absorption, and to
compare the value for silicon with the mean value
of the actual charge carried by the atoms calculat-
ed recently. ' In addition, the rms effective charge
for the translational motions of the water mole-
cules in ice I, whose structure is closely related to
that of silicon and germanium, has been obtained
because it is large, although the equilibrium
charges on the molecules are small, and so em-
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phasizes that equilibrium and effective charges
may be quite unrelated.

dpi ei ' 1 1k

&Qk

II. THE EFPECTIVE CHARGES

The derivative of the dipole moment p, per unit
volume of sample with respect to the normal coor-
dinate Qk of the kth normal vibration is related to
the absorption by that normal vibration, for small

damping, by the equation

Bp

ag,
3c 3I n'(v)Ek(v}dvc'v+2

(3)

where Ek(v} is the absorptivity at wave number v
due to vibration k defined so that the intensity of
light diminishes, due to absorption by vibration k,
by the factor e k after travelling a distance x in
the medium, e{v) the complex permittivity at wave
number v, n'(v) the real part of the refractive in-

dexan, d c the speed of light.
Equation (3) can be summed over all vibrations

k to give

Bg7X
2 3I n'(v)K(v)dv,

1T CV +2

where E is the absorptivity caused by all the vibra-

t1ons be1ng considered and the 1Qtegrat1on 1s over
all these vibrations. For amorphous silicon and
germanium, whose refractive index is hardly af-
fected by the vibrational spectrum, the factor

~
3/[e(v)+2]

~

n'(v) can be put outside the in-

tegral sigil. For tllc trR1181Rtloilal vlbratloils of lcc,
however, the lattice vibrations contribute greatly to
the refractive index, and then it must be kept
within the integral sign.

The atomic displacements can be expanded in
the normal coordinates Qk,

—1j2r;=m; g 1 kgk,
k

where 1 k is the vector relating the mass-reduced
displacement vector r; to the normal coordinate

Qi, and is part of the transformation matrix 1,
which relates the 3N mass-weighted atomic dis-
placements to the 3E normal coordinates where E
is the number of vibrating particles per unit
volume. From Eqs. (1) and (5)

Woolen tllls cqllatioil 18 sllillnlcd over all Rfonls slid
squared, and summed over all normal coordinates,
remembering that the transformation matrix 1 is
orthonormal, the result is

Equation (7} 18 identical to Eq. (15) of Ref. (3}.
From the measured infrared spectrum and Eqs. (4)
and (7), the mean-square mass-reduced effective
charge of the vibrating particles can. be obtained.
The only approximations made in the derivation
are that the normal vibrations are harmonic and
the dipole moment is linear iri the displacements.
Earlier values of the effective charges were based
on an approximate equation.

The integrated absorption intensities of amor-
phous sihcon, germanium, and arsenic and the
corresponding root-mean-square effective charges
are listed in Table I. The integrated intensity of
the translational lattice vibrations of ice, which oc-
cur in the range 0—320 cm ', and the correspond-
ing rms effective charge of the water molecules are
also listed for comparison. The equihbrium
charges on the atoms or molecules are listed in the
fourth column of the table. The equilibrium

charge of a water molecule in ice was estimated to
first order as follows. Every water molecule is
electrically identical with every other, except for
orientation, insofar as each has two hydrogen
atoms as first atomic neighbors and four oxygen
atoms as second neighbors. There are six hydrogen
atoms as third neighbors, but they differ from
molecule to molecule in their location. Conse-
quently, all molecules are identical up to second
atomic neighbors, and so to this approximation
have the same charge, which must therefore be
zero. The third-neighbor hydrogen atoms cause a
variation in charge from molecule to molecule, but
its effect is expected to be small.

III. DISCUSSION

The equilibrium and effective charges are, of
course, quite different quantities, the equilibrium
charge being the total charge on an atom at its
equihbrium position and the effective charge the
change of the dipole moment of the sample with
the displacement of an atom, which is a much
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TABLE I. Root-mean-square effective charges of the atoms in amorphous silicon, ger-
manium, arsenic, and of the molecules in ice.

IEdv'
(103 cm 2)

( a2 b)1/2

(Electronic charge)
( 2) 1/2

(Electronic charge)

Amorphous
silicon

110'
77'

0.24+ —.0.04
0.20+ -0.02
0.26+ -0.06

019

Amorphous
germanium

27'
38~
43h

41'

0.16+-0.02
0.20+ -0.02
0.21+-0.03
0.20+ -0.02

Amorphous
arsenic

29' 0.25+ -0.02

Ice 238~ 0.83+-0.08 -0k

'Obtained by integration of the referenced spectra.
'The errors were estimated from the apparent uncertainty of the measured spectra.
'Reference 5.
dReference 1.
'Reference 6.
fReference 7.
preference 8.
"Reference 9,
'Reference 4.
Reference 2. The integral E(v)n'(v) 3/ e(v)+2 2 over the translational band 0—320
cm ', is, from the data in Ref. 2, 178000 cm
"See the text.

more complex quantity. To account for the effec-
tive charge, both the charge and the dipole mo-
ment of each atom and how they change when any
atom is displaced must be taken into account. The
dipole moment of the sample is

~g
p =~earp ~

P

where the sum is over all electrons and nuclei. It
is more convenient to convert it to a sum over all
atoms by assigning to atom i an equilibrium scalar
charge e; and an equilibrium dipole moment p;, so
that the equilibrium dipole moment of the sample
1s

p =Re'r'+X p' ~

The atomic charges and dipole moments are, of
course, to some extent arbitrary because the atoms
cannot be unambiguously distinguished from one
another, and because the dipole moment of a

charged atom depends on the origin of the coordi-
nate system. The dipole moment of the sample is,
nevertheless, quite unambiguous. When a displace-
ment dr p; of atom i occurs in the P Cartesian
direction the dipole moment of the sample in the
direction a changes by the amount

Be&
dna, i ei&ap&rp——i++ raj drp;

dip i

P, d
drp;

where (Be~/drp;)drp; and (dp &/drp;)drp; are
the changes of the (real) charge e& and of the a
component of the dipole moment p,~, respectively,
of atom j caused by a displacement drp; of atom i
Only the first term is associated with the displace-
ment of the equilibrium charge of atom i, and the
last two terms, which are due to changes in the
charge and the dipole moment of atom j caused by
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~eJ ~PQ J
cap i ei5ap+graj +gTp. ~ rp.

(9)

where 5~~ is the Kronecker delta.
The difference between the equilibrium and ef-

fective charges of the atoms in ionic crystals is
often interpreted approximately by a shell model,
in which a dipole moment is generated by the dis-
placement of an outer shell of electrons relative to
a core. This model is probably less useful for
atomic crystals such as silicon and germanium be-
cause the atoms cannot be as clearly distinguished
as they can be in, for example, sodium chloride.

An extreme example of the dominance of the
last two terms in Eq. (9) is a water molecule in ice,
whose rms effective charge for the translational
lattice vibrations, according to Table I, is
0.83+-0.08 electron charges, while the equilibri-
um charge is very small. The effective charge is,

the displacement of atom i, cause the difference be-

tween the equilibrium and effective atomic charges.
We can immediately write from Eq. (8) the expres-
sion for an element of the effective-charge tensor
e*; defined by Eq. (l) as

no doubt, due to the dipole moment of the water
molecule and its great enhancement by the electric
fields of neighboring molecules and to specific
hydrogen-bond interactions. Its value emphasizes
the highly polar nature of ice, as is also shown by
the TO-LO splitting of the translational vibra-
tions.

Other examples are crystalline selenium and tel-
lurium. Their unit cells contain three atoms, all on
crystallographically equivalent sites, and so the
atoms carry no permanent charge. They do, how-

ever, have an infrared spectrum due to the funda-
mental atomic vibrations, and so the atoms have
finite effective charges. "

The several experimental effective charges of sil-

icon and of germanium atoms in their amorphous
phases, as listed in the third column of Table I,
agree within the apparent uncertainty of 10—20%
or so. The effective charge of silicon and the
equilibrium charge calculated by approximate
molecular orbital methods agree to well within
their combined errors, but the uncertainties are
high enough to allow a difference of as much as
30% or more of the equilibrium charge. The rela-
tion between the equilibrium and effective charges
is, therefore, not yet well known.
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