
PHYSICAL REVIEWS 8 VOLUME 25, NUMBER 8 15 APRIL 1982

Unified theory of the impurity and phonon scattering effects
on Auger recombination in semiconductors

MasuID1 Takcsh1IDa
Semiconductor Laboratory, Matsushita E/ectronics Corporation, Takatsuki, Osaka, Japan

(Received 27 October 1981)

I have developed a theory of impurity- and phonon-assisted Auger recombination in

semiconductors. The theory is based on the Green s function, which is derived by taking
into account both thc impurity scattering and the phonon scattering. Thc function is
shown as a test to explain well thc conductivity data of heavily doped n-type Ge. The
theory is applied to p-type materials of GRAs, InP, GaSb, and InAs for acceptor concen-

trations between 16' and 10 cm and for temperatures between 77 and 500 K. Those
materials are typical in that the band-gap energy E~ is much larger than the spin splitoff

energy ho for the former two materials and these are comparable for the latter two. It is

shown that the impurity- and phonon-assisted Auger recombmation is predominant m

materials with EG ~~ 60 for the acceptor concentrations between 10'7 and 10'9 cm
Rnd/or for the temperatures below 300 K. Except for these cases the Auger recombina-

tion is roughly or well described by the pure collision Auger process. On the other hand,

at hght-doping levels the Auger recombination assisted by the phonon scattering alone is

predominant for all materials. It is strcsscd that an analysis based on thc pure collision

Auger process leads to erroneous numerical results for most cases of practical interest.

I. INTRODUCTION

The Auger recombination of the minority car-
riers in scID1conductols 1s an 1IDportant nonradia-
t1vc pI'occss, wh1ch caIlQot bc supplcssed by I'educ-

tion of impurities other than dopants. A number
of theoretical and experimental investigations' have
bccll iliadc 011 thc basis of thc pill'c colllslon Allgci'

process since the successful work by Beatie and
Landsberg. However, the pure collision Auger
process alone is insufficient to explain the recombi-
nation rate especially at low temperatures
and/or in heavily doped materials. In order to
give a better explanation the phonon-assisted

Auger recombination ' aIld thc impurity-
assisted Auger recombination' (referred to as I)
have been proposed. Though these were found to
be promising proposals, the theories given there are
incomplete for the reasons that follow.

In the earlier theory of the phonon-assisted

Auger recombination, the phonon scattering was
taken into account in terms of the second-order
perturbation treatment with respect to the
electron-phonon interaction as well as the
electron-electron interaction. Since the energy
denominator involved in the theory can bc zero,
the divergence difficulty arose. The difficulty was
avoided by making the approximation that the en-

ergy denominator was replaced by thc value

evaluated at the threshold of the Auger process.
Thus, the approximation is valid only under some
restrictive conditions. The divergence difficulty
was avoided by the present author on the basis of
the Green's-function formalism" (referred to as II).

On the other hand, thc theory of the impurity-
assisted Auger recombination was developed using
the same formalism by the present author in I.
Hclc, thc approxllllatloll llscd 111 thc llmlt of thc
low-impurity concentration and weak scattering is
not valid for cases of practical interest: The theory
provides only the qualitative description of the
Auger process. Furthermore, we must take into
account both the impurity and the phonon assis-
tance on an equal basis as long as thc tcIDpclatuI'c

1s model'ately high.
The present paper describes a theory of the

minority-carrier lifetime of the Auger recombina-
tion, which is based on unified treatment of the
impurity and phonon scattering effects. As for the
impurity scattering effect the Green's function is
derived under the restrictive condition that impuri-

ty potential is sufficiently slow with respect to spa-
tial dependence. Though this condition is not sa-
tisfied for the band-gap region, the theory is useful
for the intraband region, whose contribution to the
Auger pioccss 1S pI'cdoID1nant.

Tbc theory is appl1cd to p-type GaAS, p-type
Inp, p-type GRSb, and p-type IQAs for acceptor
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concentrations between 10' and 10 em and for
temperatures between 77 and 500 K. Those ma-
terials are typical in that the band-gap energy E~
is much larger than the spin splitoff energy he for
the former two materials and these are comparable
for the latter two. The threshold energy for the
pure collision process, which takes a finite value
for Ea » lou, is absolutely or nearly zero for
Ea (hu so that the rate of the pure collision Auger
recombination is known' to be especially large for
E~ & ho. On the other hand, the impurity and
phonon scattering are efficient not only in reducing
the threshold energy but also in broadening the
band states. This suggests that the Auger recombi-
nation is enhanced by moderately strong scattering
in the case of Ea & hu as well as in the case of
E& pg h,o. In Fig. 1 we show the Auger recombi-
nation called the CHHS process, which occurs
among the conduction band (CB), the heavy-hole

band (HB), and the spin splitoff band (SB).

II. MODEL AND SASIC FORMULATION

The expression for the minority carrier lifetime
of the Auger recombination, which is given in
terms of the retarded Green's function including

phonon scattering effect, was given in I. The ex-

pression is also useful to the present case only if
we use the average Green's function which includes

both impurity and phonon scattering effects. Since

especially at high doping levels the theory of the
impurity scattering has not yet been very well es-

tablished, we must find out the practical way to
treat this problem. First, we define our model by
writing down the Hamiltonian as

~e ++ph+~e-ph++e-i ++e-e ' (2.1)

Here +g» +ph» +I-ph» +e-i» and +e-e are the Hamil-
tonians for the band electrons, the phonons, the
electron-phonon interaction, the electron-impurity
interaction, and the electron-electron interaction.
%eassumeH, +Hph and+ ++ ph++
be the unperturbed Hamiltonian and the perturba-
tion, respectively. The explicit forms of the Ham-
iltonians are

X ~/k Ika Iko '
l ko

Huk= gai„b„~b„-,

(2.2)

(2.3)

H, ; = gu(—q)h(q)ai-k+ ai-k
lg ko

H, ,= g u(q)(lik+q ~l4k)
l) l2l3l~

k k 'gcrcr'

l& k + q cr l& k '-
q n' l3 k 'cr' l& k o '

H, k ~ g g„g(b„-+b„-)aik - aik
v 1 k'

(2A)

(2.6)

HB

FIG. 1. Auger recombination via the CHHS process
among the conduction band, the heavy-hole band, and
the spin splitoff band.

Here, ai k ~, ai k, aiid gi k are the el'eatioil opera-
tor, the annihilation operator, and the electron en-

ergy, respectively, for the electron with the band
index I, the wave vector k, and the spin cr. b„
b„~, and co„-„are the creation operator, the an-
nihilation operator, and the phonon energy, respec-
tively, for the phonon with the mode index v and
the wave vector q. V is the crystal volume.

g„~ /v V is the electron-phonon coupling constant,
which depends on the band index l though not ex-
phcitly shown. u(q)/V and Zu(q)h(q)/V are the
Fourier components of the unscreened Coulomb
potentials for the electron-electron interaction and
the electron-impurity interaction, respectively.
Here, we assume that the doped impurities are ion-
ized and of one species with valency —Z with
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respect to the host crystal. h(q) is the phase fac-
tor arising from the interference among scattered
waves. We have

N.

h(q)= g exp( —iq R„) (2.7)

2

( )
4ne.

q
(2.8)

where e is the electronic charge. As for g„we

for ¹,impurities which are located at R„
(n=1,2,. . .+ I). Hereafter we use I =v' 1—. For
the electron-electron interaction we take into ac-
count the interband scattering but this is neglected
for the electron-phonon interaction and for the
electron-impurity interaction. (Ik

~

I'k ') is the
overlap integral between the modulating parts of
the Bloch functions ~1k) and

~

I'k'}, which are
normalized over the crystal volume. We take
(Ik

~

lk')=1 for the intraband matrix. v(q) is

given by

consider the piezoelectric scattering (pe), the acous-
tic deformation potential scattering (ac), the nonpo-
lar optical deformation potential scattering (npo),
and the polar optical phonon scattering (po). The
former two and the latter two are for the acoustic
phonon mode and for the optical phonon mode,
respectively. In Table I we give the expressions'
of

~ g„~ for those scatterings using definitions

in Table II. Assuming thermal equilibrium of the
system, the electron energy is measured from the
Fermi level.

Now we consider the retarded Green's function,
which is derived from the Hamiltonian discussed
above. In the presence of impurities the function
is expressed in terms of two wave vectors k and
k ', one energy parameter co, and position vectors
of randomly distributed impurities Ri,R2, . . .,RN.

as 6 (Ik,lk ',co;Ri,R2, . . .,RN. ), whose dependence

on the impurity sites comes from h(q) in Eq. (2.5).
Now we take an ensemble average' ' over the
impurity sites, which is defined as

(6"(Ik,lk ',co) },„= f dR, dR2 dRN 6 (Ik, lk';r0;Ri, R2, . . .,R~)

=6"(Ik,co)4(k —k ') (2.9)

Here, h(q) is defined as h(q)=1 if q=0 and
b,(q) =0 otherwise. The last step comes from the
fact that the space uniformity, which is lost under
random distribution of impurities giving krak, is
restored under the average distribution giving
momentum conservation k = k '. 6"(Ik,co) is the
retarded Green's function in the average impurity
field, for which the rule of the diagram method is

known. ' The phonon scattering effect can also be
incorporated into 6"(Ik,co) using the conventional

diagram method. ' It was shown in I that
6 (Ik, lk ';co;Ri, R2, . . .,RN, ) tends to
(6 (Ik, lk', co)),„as V~oo. Considering a suffi-

ciently large crystal, all discussions hereafter may
be given in terms of 6"(Ik, co).

It is rather practical to start from the tempera-

TABLE I. Thelistof ~g„q ~

.

Scattering mode

Piezoelectric scattering (pe)

Acoustic deformation potential scattering (ac)

Nonpolar optical deformation potential scattering (npo)

Polar optical-phonon scattering (po)

2 2e P~m„
2g

COac

2CI
2

Enpoop

2c
2&e coop
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TABLE II. Definitions.

dimensionless isotropic piezoelectric constant

12 16I' +—
35 CI Cg

&14

c)

Cq

piezoelectric stress tensor
1—
5 (3c11+2c12+4c44)
1=
z (c11—c12+3c44)
1 2= 3C1+ 3Ct

elastic stiffness constant
effective deformation potential
optical deformation potential

-1 -1=&~ —&0

high-frequency dielectric constant

8'(/k, iso~ )=
iso gi „—X{1k,—iso~ )

(2.10)

as a result of the Dyson's equation, ' ' which is
obtained under the average impurity field. Here
X(lk,ice~ ) is the self-energy, which is given by
series expansion in terms of the free-particle tem-
perature Green's function

(2.11)

and of the following three interactions resulting
from Eqs. (2A) —{2.6). The first is the electron-
impurity interaction as shown in Fig. 2, where
twice followed by twice scattering at two sites are

ture Green's function (Ref. 18) S(lk, iso ), where
we define co =(2m+1)m.T with ni and T as an in-

teger and the thermal energy, respectively. The re-
tarded Green's function is obtained from the rela-
tion G (Ik, co)=9'(1k,co+i 5), where 5—+0+. We
have a general form

illustrated as an example. The second interaction,
shown in Fig. 3, is the electron-electron interaction
via the Coulomb potential, for which the overlap
integrals are assigned to each vertex. The third in-
teraction, shown in Fig. 4, is the electron-electron
interaction via the phonon emission followed by
reabsorption. The interaction constant for the last
one is

I g„- I Np(vq, iso„), where

(2.12)1 1
&p( q, ipse„)= . +

is the free-particle temperature Green's function
for the phonon. Here, we define co„=2nmTwith n.
as an integer. The free-particle retarded Green's
function Dp(vq, co) for the phonon is obtained
from Dp (vq, oi) =~p(vq, o~+iti).

Let us take into account the screening by the
band electrons on the basis of the electron-hole
bubbles shown in Fig. 5. 'We consider all combina-
tions of the bubbles connected with each other by
the broken lines (—-) and the wavy hnes (~) as
shown in Figs. 3 and 4. Then sum of these in-

//r r
/

r

o(JIB,ivtn) o(Jk 'II} t2, i.~) o(Xk, (,urn)

&o(jTJ,+g„&~ ) &o(XS S„.a )

~p(t, ra,
"-s, i~m, ) (J,k'-}}

~
2~It' ) 9p(x~k', iu)~, )

I

J ~(s)/v

(J(}t+g I24R ) Gp(J4$, i+~4)

FIG. 2. Fourth-order diagram for the electron-
impurity interaction, a&here the full lines ( = ), the
dashed lines (—-), and the points represent the free-
particle Green's functions, the interaction constants, and
the scattering sites, respectively.

FIG. 3. Diagram for the electron-electron interaction
via the Coulomb potential, where the full hnes (~) and
the broken line (———) represent the free-particle
Green's functions and the interaction constant, respec-
tively.
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gp(~sT? i mm')

l S,S I'P(&T), tme )

X?Ir( q, im }=2Tg g (Ek im )
dk

(2e )

X 9'(E'k+ q,i mm +im„)

~o(&~)t+'8~i &m+I &r ) ~o(A%I,, Lmm)

FIG. 4. Diagram for the electron-electron interaction
via the phonon emission follmvcd by reabsorption, where
the full lines (~) and the wavy lines (~) represent the
free-particle Green's functions and the interaction con-
stant, respectively.

g ((lk (
E'k+q) ['. (2.18)

XN {q,im„) is obtained from the electron-hole

bubbles in Fig. 5 by replacing the free-partide
Green's function 9e('Ekim, , ) by the complete one
9'(Ek,im„). By a similar discussion the interaction
constant in Fig. 2 is replaced by the effective in-

teraction coastant:

teraction constants (-- and ~}should be replaced,
as shown in II, by the effective interaction constant

&,(q, im„)= &,~(q )+U, g,(q,im„),

U&(qim, ) = Zv(q) .
e(q)

Thus, ee and e(q) represent the dielectric constant
of the host crystal and that due to all band elec-

trons, respectively. To calculate XN(q, O) we use

Se(lkim, „)for the moment in place of 9'(Ekim,„).
Then it is shown' that

U, ,(q)= v(q)
e(q)

(2.14)
dk 8(kk+", }—8(kk}

U, ~h(q, im„)=
e(q)

where 8(m) is the Fermi-Dirac distribution func-

tion

&u= 1 —&(q) g X?p(0,0)
l+l'

(2.16)

(m)—,. — . (2.21

exp —+ 1
T

We have given the overlap integral as unity for
this intraband problem. &s for ee we use the em-

pirical data. To take q~O for X??{q,O) of Eq.
(2 17) is known as the Thomas-Fermi approxima-
tion, which gives

(2.22)

~o(4 )t+g, «m+tmn)

It is shown later that this is a good approximation
in the range «high-carrier concentration. ~m-
ing inverse screening length lL, as

@re
+ XII (0,0), (2.23)

g (&)t,t~m)

PIG. 5. Electron-hole bubble, where the full lines

( =-) represent the free-particle Green's functions.

e(q)=we 1+
q

2
(2.24)

Having constructed the effective interaction con-
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stants as in Eqs. (2.13)—(2.19), we are at the posi-
tion to find the self-energy X(/k, iso ) in power
series of those constants using the conventional di-

agram method. At first we consider diagrams
made up of the free-particle Green's functions. We
classify the diagrams into two groups. One is the
sum of terms arising from U, ( q ) and the other is
that from U, (q,iso„) only. Then replacing the
free-particle Green's functions by the complete
Green's functions to obtain a better approximation,
we write Xc+Xi and X2+X& for the former and
for the latter, respectively. For Xi+Xi we take ail
possible diagrams, some of which are illustrated in
Fig. 6. For X2+X3 we take all the diagrams
which come from the terms of first order in U„as
shown in Fig. 7, since U, is small. The self-energy
is approximated as

X(/k, ice )= Xo+X(tk/, i &a)
+X2+Xs(/k, /co~ ) .

Xo and X2 are shown later to be real constants.
Since Xc+Xi comes from all irreducible diagrams
in series of U;, it is not necessary any more to in-

corporate Xo+Xi into the Green's functions in-
volved in the diagrams. The Green's function to
bc Used there is

19i(/k, iso~ )=
iso —gt „—X2—Xi(lk, iai )

(2.26)

X„(/k,ai) =X„(lk,ai+i 5)

(a=1,3). The retarded Green's function is given as

6"(/k, co) =
co —gl-„—X"(/k, a) )

Using the transformation

~[V/{2n.) ]f dq. . .

(2.27)

which is often used hereafter, we obtain from Fig. 7

X2 ————f &
U, (0,0) f dao ImG"(/k, co)B(ai)

(2m. )

U,~—(0) f dco f s
ImG"(/k, ro)B(r0) .

(2m )

{2.28)

The last step is obtained using U, ~„(0)=0, which
is found from Eqs. (2.15), (2.24), and Table I. The
energy density of states p(co) is given'7 by

p(co)= ——g f s ImG"(/k, co) .
(2m )'

which involves no impurity scattering effects expli-
citly.

Let Qs define

X"(/k, ai) =X(/k, m+ /5)

{2.29)

//IIiAg
,

//II gl ~%
//II 0

/III II LL

/4 & II ~ LL

(2,30)

With n; as the impurity concentration, the majori-

ty carrier concentration
~
Z

~
n; is given by

i
Z

i n; = f da) p(a))B'(ai) .

JS E Pf %h. LL I Q // E fP E. Lt h. 4.

FIG. 6. Self-energy diagrams for Xo and X~, where
the double full lines (~), the double dashed lines (==/,
and the points represent the Green's functions 9 ~, the
effective interaction constants, and the scattering sites,
respectively.

I

= Ua(g, i(u, )
l

FIG. 7. Self-energy diagrams for X2 and X3, where
the doub1e full lines (~) and the wavy plus broken lines
(—.) represent the complete Green's functions 9' aud
the effective interaction constants, respectively.
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4n.Ze n~
X2———

2
(2.31)

Here, we have 8'(co) =8(co) when the majority
carriers are electrons (Z &0) and we have
8'(co)= 1 8—(ro) when they are holes (Z & 0).
From Eqs. (2.8), (2.14), (2.24), and (2.28)—(2.30)
we obtain a real constant

Xi(/k, a&) =E„(/k)+X,"p) (/k, a)),

where

E~(/k)= f— i f de U,~(k —q)
(2ir)i

X ImG (/q, co')8(co')

(2.32)

When the majority carriers are holes, we omit an
additive constant, which is of no interest here.
Now we find from Fig. 7

(2.33)

X,"ph(/k, a))= g f (2~) e(k —q)

—f do)'Do (vk —q, a) —oi')ImG "{/q,o)')8(co')
g

(2.34)

Here P(m) is the Bose-Einstein distribution function

(2.35}P(o))= 1

exp T

E,(l k ) is known as the exchange energy and is not very important in this paper. We evaluate this term us-
ing the free-particle retarded Green's function Go (lk, co)= 9'0(/k, co+i5). We have

E~(/k)= —f 3 U, ,(k —q)8(pig) .
(2ir)3

(2.36)

If the majority carriers are holes, 8(g&~) should be replaced by 8(g,~)—1. A residual term, which is a
constant of no interest here, is omitted. As for X, zh(/k, co) we replace m+co„by co as an approximation.
Then the first term in the second set of large parentheses in Eq. {2.34) vanishes. X,"~h{/k,co) represents the
phonon emission followed by reabsorption. This can be evaluated using the free-particle retarded Green s
function for the reason described in Appendix A. We obtain

X,"~h(/k, oi)= g f (2n ) e(q)

1~2P{o)„)
gg 0

o) gi k -+/5— (2.37)

I.et us now find the expression foi Xo+X, {/k,m). We consider an irreducible self-energy diagram f«n-
q;:te scattering. This is expressed after converting from the temperature to the retarded Green's-function for-

Hla11SHl SS

(2.38}

where mj is the number of the vertices connected to the jth site under mj & 1 and

j=1
(2.39)
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Here we define Q = g .. , q J and G I (lk, co)=9' I(l k,f0+i 5), which is

GI (lk, a))=
co —(I I,

—Xl—XI(lk,co)
(2.40)

As discussed in Appendix 8, 6 I (l k+Qj, co) in Eq. (2.39) can be replaced by GI (lk, co) as an approximation

applicable at high-doping levels. Then Eq. (2.38) is rewritten as

S(ml, m2, . . ,m». )=n;"[GI (/k, co}] " f &r» ff [UI(rI}] J, (2A1)

where &r» =d rid rz dr„, M» = g' I mj, and

n; =¹,/V. In deriving the equation we have used

the relation

I

Noting that S(ml, mz, . . .,m„) is independent of
the positions of GI 's appearing in the diagram, the
sum of all irreducible diagrams Q is written as

q I, g&, . . ., q

h(Q ) g U;(qJ)= —f dr [UI(r)]
V 5 1 ill ]l 182l ~ e ~ IlgI

Q„(ml, ml, . . .,m» )

U;(r)= —g U;(q)exp(iq r)
y l

q

Ze
exp( —A,r) .

6'OI'

(2.42)

(2.43)

XS(ml, mz, . . .,m») .
(2A8)

Thc sulll of all dlagrallls both lrrcduclbie and redu-
cible P is %vritten as

P» (m I,my, . . .,m» )

XS(m„m„.. .,m„) .
The last step is obtained from Eqs (2 19) and
(2.24). From the definition in Fig. 6 we have

4FZe )le
Xo——S(1)= 2

From Eqs. (2.31) and (2.44) we obtain

X2+XO——0,

(2.44)

It is easy to see that

P=Q+Gl QP

Then Xo+XI ( =Q) is rewritten as

Xo+X1 ——

1+61P

{2.49)

(2.50)

(2.51}

X"{1k, ro) =XI (lk,a))+XI{lk,a)) . (2A6)

which represents the charge neutrality condition.
Therefore we have

We must now calculate P. Using Eq. (2.41) and
abbreviated notation uj —Gl (lk, co)U, (r&), we ob-
tain

To obtain Xl (lk, cl) we define Q„(mI,ml, . . .,m» )

as the number of all irreducible diagrams for n-site

scatterings with mj vertices connected to the jth
sltc. Fol tllcsc n-site scattcflllgs wc also dcflllc

P„(ml,ml, . . .,m„) as the number of all diagrams
both irreducible and reducible. %e have

With

Gl (Ik,a)) „

nl j,m2, .. .,nt~

Nrg Q~

P»(m i~my, . . .,m» )

(2.52)

(2.53)
M„

P»(ml, ml, . . .,m» )=

pent

8

g (mj(}
j=1

{2.47)
where g' means the summation in the range

mj & 1 {l=1,2,. . .,n). P„ is rewritten as

co n —1

P„= g f &r» g ( —1}j QiP»(0, . . ,0,mj+I, mj.+I, . ,m»)u~+J+I. 'u. I+~l+' . u„
M„=1 ~ 0 iJ (2.54)
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—1
1

1 —g us
p=j+1

'
Noting uz

——Gf(lk, co)U;(rj) and Im [G~ (lk, co)]'&0, we have

, f~r. g( —IV

where QJ means the summation over mj+~, mj +2,. . .,m„under the restriction

rnj+~+mz+2+ . . +m„=M„. Use of Eq. (2.47) gives

1 coI'„=, g f &r„g ( —lp ". (u;+)+u;~2+ . . +u„) "
n J J+ J+ n

Ij

(2.55)

1 —g us
P=J+&

1 00 n

ds exp i „—g U;(rs} s
iG( (lk, ri)) o G) (lk, a))

(2.56)

Defining

h(s)=n; f dr{ exp[ isU—;(r)] 1 I—,
we obtain from Eqs. (2.52), (2.55), and (2.56)

1 CO LsP= s exp
i[G) (lk, co)] G) (lk, co)

1
X g g ( —1}' " (n(V}j[h(s)+n;V]" '+( —1)"(ngV)"

n=1 ' j=p

1 is 1
ds exp „h(s)'

i[Gf(lk, a)] Gt (Ik, co)

(2.57)

f ds exp z {exp[h(s)] —1 ] .
i[Gt (Ik,co)] 6f (1k, co)

Using Eqs. (2.27), (2.45), (2.46), (2.51), and (2.58) we finally obtain

Ga(lk, ro)= —f ds exp{ is[co gl k ++—0 +3(lk,—~)+h(s)] ] .
i

It is convenient to rewrite Eq. (2.59) using Eq. (2.44) and defining

Cp R
[co—gi-„—X3 (l k, co)],

iZ /e2A,

4n.n;

A,
3

and

g(g) = dx x exp i/ e—xp( —x) +i g exp( —x}—1
sgn(Z) sgn(Z)

0 X X

where sgn (Z)=Z/~Z ~. We have

G"(lk,co)= 2 G "(Q,y;Z),
/Z /e'A,

where

G "(0)=—f dg exp[i(Q+yg(g)] .

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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In the limit of (~0 we find g((}=——,g +0(g }. From Eqs. (2.62} and (2.64) we notice the important re-

lation

G "( Q—',y; Z—)= G—"(Q,};Z)' . (2.65)

Equation (2.59}is a general expression which involves the electron-impurity scattering effect, the
electron-phonon scattering effect, and the electron-electron scattering effect. Especially if we neglect the
phonon scattering effect and the exchange energy, i.e., X3 —— i 5,—Eq. (2.59}agrees with the expression which
was derived' ' for the impurity scattering problem by Bonch-Bruevich using a different method. One mer-
it of the method in this paper is that the electron-phonon scattering effect is naturally incorporated into the
theory. Another merit is to notice that especially for ImX3(lk, u}=—i5, ImG (Ik,m) should be nonzero
only in the range

[ReQ+ sgn(Z)y]sgn(Z) y 0 .

This is seen from the discussions in between Eqs. (2.38) and (2.58) noting that
I

(2.66)

I— Q

P=J+1

5 2

=Re[G${Ek,co)] ' JO'r, 5 Re[G|(lk,m)] ' —Z g exp( —Ar~}
'

Esp

does not vanish unless the condition (2.66) is satis-
fied. The condition (2.66} is important to notice
since numerical calculation never gives
ImG"(Ik, a))=0 but often positive values as errors
in the range given by the relation (2.66}.

I

The general expressions for eo and e( q) are given
through Eq. {2.18). The impurity scattering effect
on eo can be neglected since eo arises from the in-
terband term, i.e., X0 (l+l'), and the energies

Before going into the discussion of the Auger
process, 1i is necessary to test the va11dlty of the
theory of the impurity scattering since this has not
been vrell estabhshed as yet. We start from calcu-
lating ImG "{Q,y;Z), in terms of which various
formulas for physical phenomena are given. The
phonon scattering effect is neglected here by taking

X3 ——E (1k). Then Q is real. Figure 8 shows the
numerical results of ImG "(Q,y; —1), which are
calculated from Eq. (2.64). We should have
ImG "=0for Q )y as indicated in the last section
and ImG" &0 for Q &y as the retarded Green's
function is generally required. In fact, however,
we obtain ImG ")0 for Q ~ y owing to a numeri-
cal error. It is seen from Fig. 8 that as long as y
18 not v~ larger IIDG has a consMierablf sharp
peak. As for the results for Z =1 we can use the
relation

ImG "(Q,y;1)=ImG "(—Q,y; —1)

found from Eq. {2.65).
Now we discuss the impurity scattering effect on

the dielectric screening, neglecting the phonon
scattering effect which is considered to be small.

j2
I

Io

I
geeswf

I

8 - g =02

0
-t. 0 -0.5

FIG. 8. Imo' "(Q,y; —1) as a function of 0 for vari-
ous values of p.
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relevant to the impurity scattering are much small-
er than the band-gap energy. Vfe do not calculate

Xs (/@/') and use the empirical data of eo. For the
intraband term +II, however, we must give a de-

tailed discussion of the impurity scattering effect.
Replacing sum over co~ in Eq. (2.18}by the con-
tour integration ' we obtain after replacement
l 6)~N

4 dk
Xs(q, co) = ——I 3 [E(k,q, co)+E(k, —q, —co)],

(2m)
(3.1)

2

F(kq,, co) =
2 I dco'Imo "(/k, co')ImG "(/k+ q, co'+co)8(co') .

iZ /e2A,
(3.2)

Under the condition that a sufficient number of
electrons are within the effective range of an im-

purity potential, we can use the Thomas-Fermi ap-
proximation, which is to take Xii(0,0) in place of
X0(q,O) in Eq. (2.17). As shown in Appendix C
we find

F(k,0,0)=—— 8(g -),
4 g, -,

(3.3)

(3.4)

where k~ is the magnitude of the wave vector at
the Fermi level. Here, degenerate statistics and
spherical energy surface for the relevant band are
assumed. Taking

~

Z
~

=1 and noting

kz (3m n;)', E——q. (3.4) offers also the limit of
A, /n . Therefore, we may consider the relation
(3.4} as a criterion that the present theory of the
impurity scattering is justified.

Here, we test directly the validity of the theory

so that we obtain Eq. (2.22). Thus we have the
usual Thomas-Fermi potential, which is obtained
without considering the impurity scattering effect.
This result agrees with the fact that we have de-

rived the Green's function under the assumption of
a sufficiently slowly varying impurity potential.
The criterion for this assumption is A, /n; &2.6,
as given in Appendix B. Qn the other hand, the
criterion for the Thomas-Fermi approximation is
that the number of electrons within the effective
range of an impurity potential is large enough, i.e.,
n;/l(, i py 1. Thus both criteria are expressed com-

monly as A, /n «1. Further, if Xs(q, O) with

q+0 is used in Eq. (2.17) assuming the free-carrier

screening, we obtain the Lindhart potential. This
potential is found from numerical calculation to be
well approximated by the Thomas-Fermi potential
in the range

of the impurity scattering. %e first discuss the
conductivity of n-type Ge at 4.2 K, the data of
which are available in the high doping range. For
such an indirect gap material we consider the CB
with v valleys, each of which is assumed to have
spherical energy surface. The expression for the dc
conductivity tensor o.&„has been given ' by
Bonch-Bruevich. We give this in a form more
tractable for this paper in Appendix D. For cubic
symmetry we have 0&„——h(p —v)o. We obtain

X [Imo "(/k, co)]

(3 5)

where mc is the mass of the CB and / means the
CB here. The Fermi level is determined from Eqs.
(2.29) and (2.30},taking u valleys into account. We
assume singly ionized donors, i.e., Z =—1. %e
consider the temperature to be 0 K as an approxi-
mation. The phonon scattering effect is neglected,
i.e., Xi (/k, co) =E„(/k), in calculating the Green's
function. The exchange energy is calculated from
Eq. (2.36). The curve of cr ' calculated using U =4
and mc/mo ——0.12 for n-Ge, where mo is the elec-
tron mass in the free space, is shown in Fig. 9 to-
gether with the experin1ental data. %e see a con-
siderably good agreement between the theory and
the experiments though the theoretical curve lies a
little higher than the experimental data. In con-
trast, the curves that are calculated in Ref. 20 us-

ing the earlier theories do not agree with the exper-
iments, as shown in Fig. 9.

Next, we con1pare the energy density of states
p(co) given by Eq. (2.29) with the data of p-type
GaAs at 4.2 K. The calculation is done for 0 K,
neglecting again the phonon scattering effect. %e
use the material parameters shown in Table III, as-
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{a)

0 y

R

~ 6
{a)g

— {b) BH

{c) 6
{d) CW

Q I I I I l1

3 xIQ )Q

CWLCULArIQ N

I t i I I 1 ill
l9 l7

lQ 2x lQ

(CAR )

FIG. 9. Resistivity 0 ' as a function of donor con-
centration nr for n-type Ge. The open and the full rec-
tangles (0 and 0) show the experimental data (Ref. 20}.
The broken line (a) shows the present calculation. The
full lines show the results calculated (Ref. 20) on the
basis of the treatment of Brooks-Herring (b), Gulyaev

(c), and Conwell-%'eiskopf (d}.

suming spherical energy surface of the HB with
the effective mass m~. The result of the calcula-
tion is shown in Fig. 10 as asE~qp(co), where as is
the Bohr radius defined as as ——iri eo/(m~e ), and

Ego ls the Fermi level for a pure crystal measured
downward from the HB edge, i.e., E~o fi k——~/
(2m' ). The experimental data are also plotted in

the figure so that experimental value inay fit the
theoretical one at a certain energy level lying deep
in the band. It is seen that the theoretical curve
deviates from the experimental values especially in
the band-gap region. The reason is that the as-
sumption of the slowly varying impurity potential
is not justified there, as discussed in Appendix B.
The energy density of states is underestimated
thereby. This may be the main reason for the
small but significant discrepancy between the
present theory and experiments on o in Fig. 9.
For the same reason the Auger recombination rate
will be underestimated though the underestimation
also may not be very serious.

IV. FORMULAS FOR THE AUGER
RECOMMNATION LIFETIME

In this section we discuss the Auger recombina-
tion lifetime. Hereafter we restrict the discussion

TABLE III. Material parameters and calculated band parameters.

Parameter GaAs InP InAs

EGo (eV)

hoo (eV)

EGi (eVK ')

o, {eVK-')
To (K)

PBC /Pl o

m~/mo
m, /mo'
fee'
fsa'

Eo

(~„) '

eI(10' dyn/cm2)
t(1012 dyn/cm )

c(10' dyn/cm )
h ~4(104 esu)

I'~
:- (eV)

E„~ (eV)
co,~ (eV)

'E2 in eV.
Assumed.

'Calculated.

1.522
0.34
5.8y 10-4
0

300
0.067
0;45
0.11
5.63
1.99

13.18
0.0159
1.397
0.4862
0.7898
4.833
0.0526
6.6
6.5
0.0296

1.421
0.13
2.9X 10-4
0
0
0.078
0.8
0.12
4.76
1.84

12.35
0.0055
1.037
0.3551
0.5824
3.167
0.0403
6.9
5.9
0.0298

0.8128
0.743
3.7X 10-4
1.89' 10-4
0
0.043
0.33
0.12
9.64
4.34E2'

15.69
0.0241
1.212
0.3652
0.6407

0.015
7.0
6.3
0.0394

0.4105
0.38
3.35 X10-4
1.0X 10-4

248
0.023
0.41
0.083

18.0
20.1E,'
14.55
0.0160
1.030
0.3136
0.5524
1.167
0.0156
6.1
5.7
0.0302
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o EXPERIMENTS ON GaAs: Zn

n~ = 9xl0' cm

- 0.05

ENERGY (eV)

0 0 O

0.05 0.08

to direct-gap semiconductors of p-type, which are
doped with singly ionized shallow acceptors, i.e.,
Z =1. %e consider the Auger process, where a
given electron 1 transits down to a hole state 4 ex-

FIG. 10. Energy density of states p(~) as a function
of the energy ~ is shown on the present theory (—}and
the experiments (Ref. 22} (0).

citing another electron 2 to another hole state 3, as
shown in Fig. 1. This process is denoted as the
1432 process. Considering the CB, the HB, the
light-hole band (LB},and the SB, various transition
processes are possible such as CHHS, CHHL,
CHHH and so on. Among them, the CHHS pro-
cess shown in Fig. 1 may be predominant '" in a
p-type semiconductor so that only this process is
considered. As was done in II, the Auger recombi-
nation lifetime r&& is found from that part of the
self-energy X"(/k, co), which comes from the
electron-electron interaction, i.e., U, , This pro-
cedure is not repeated here. Assuming infini-
tesimally small departure from thermal equilibri-

um, we consider the quasi-Fermi-level F~ for the
minority carriers and that for the majority carriers.
From the latter are measured all the energies (in-
cluding F, ). We have

» fin (2n. ) (2n.)' (2~), If I

'+
I g I'+ lf g I')—

X f da)~ f da)3 f da)Q(co), co2, A@3,co4) g [ImG"(/Jkq, coj)], (4.1)

where» is tlm minority-carrier concentration, k
~
=k3+ k4 —k2, co~ =ci)3+co4—cop,

f=(/) k)
~
/4k4)(/2k2

~
/3k3) U, ,(k4 —k)),

g= (/)k)
~
/3k3)(/2k2

~
/4k4) U, ,(k3 —k)), (4.3)

Ri z 3 ~4) = I e(2)[1 —e(~3)][1—e(4}]+ [1—e(~2)]e(~3)e(~q) I e(co~ I'~ ) . —

(4A)

Let us rewrite Eq. (4.1) in a more tractable but approximate form. We know that ImG (/k, co) has a
maximum at a certain value of ReQ, where 0 is given from Eqs. (2.32) and (2.60) as

0= [a)—gI-„—X, ph(/k, m)] . (4.
/Z ie~A,

Here we have rewritten g&-„+E,(/k) as g&-„, considering this as a renormalized energy. Hereafter, we re-
strict the discussion to the high doping range where the impurity scattering effect is much larger than the
phonon scattering effect. In fact, this condition is satisfied for the impurity concentrations down to 10'
cm 3. Then the maximum of ImG "(/k, co) is found approximately at co=/& z +ED, where Eo is

~
Z

~

e~/(, /eo times 0 giving the maximum of ImG (Q,y;Z). We neglect the phonon-induced energy shift,
i.e., ReX, zh(/k, m}. This is included in the band-gap energy, of which the empirical value is used. Consid-
ering that ImX, zh(/k, co} is proportional to the effective mass of the band / as shown in II, the phonon
scattering effects are neglected for the CB and for the SB. Noting that ImX, zh(/k, co) was assumed to be
small, we can write

[ImG (0.)]=ImG (0, )ImG "(0 )[ImG (0 )ImG "(0 )+ImG "(0 )ImG "(0 )

—ImG "(030)ImG "(040)], (4.6)
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which is correct up to the first order in ImX,"~h(1k, co) s. Here an abbreviation G "(Ql )=G "(Ql,y;Z) is
used, where 0& is obtained from Eq. (4.5} by the replacement co~mj, l~lj, and k-+kj. QJ& is obtained
from QJ by taking ImX,"~h(1kj,roj )=0. We use Eq. (4.6) in Eq. (4.1). As seen from Fig. 8, ImG "(0)'s are
more rapidly varying functions of ops than I'(CI I,oiq, co3,co4) and ImX, ~h(lk, m)'8 in Eq. (4.1). .We evaluate

E(coi,ai2, co3,oi4) and ImX, .&h(l k, co) with coj ——
g& & +Eo where j= 1, 2, and 3 for the first term of Eq. (4.6),

noting co4——mi+co2 —co3——g'& -„+pl g —
g& k +Eo. For the second term of Eq. (4.6) the evaluation is

made with co =gl p +Eo where j= 1, 2, and 4, noting oi3 co——i+co2 ro—~ g&
——p +g& I,

—
g& k +Eo. Since

1 1 2 2 4 4

both 13 and lq stand for the HB Eq. (4.1) is the same for replacement 3-+4 and 4-+3 of suffices. Noting
this and after some manipulation valid up to the first order in X, ~h(l k, ro}, we obtain

'4

X+(k+EO42+EO4I+4 4—+EO k4+&O)

XH(l, k„/, ki, l3k3, 14k4),

where gj (j=1,2,3,4} is an abbreviated notation for g& &
and

J

H(liki, lik3, 13k3,lqk4)= f d 3 I d 3 Jdco4g [ImG (0 )].
1

we define

03=[eo/(cIA, )][m3—$3—2 ImX, ~h(13k3 (i+(i $4++0)]

(4.7}

(4.8)

SIld

QJ ——[C'0j(e A, )](coj—gj )
0 =—,ImX.-Ih(13k34I+4 —4+ED), (4.13)

for j=1, 2, and 4. We define also

kg= k3+ k4, —k2 and Q)~ =QP3+QP4 —QP2.

The integration over ~'s in Eq. (4.8) is per-
formed using Eq. (2.64} and noting the relation

CO &0
N COS

5(k —k) .

%c obtain

H(liki, lik3, 13k3,14k4)= U(0„,0;;y),

(4.10)

and g„(g) is the real part of g(g), i.e.,

g„(g)= dx x cos exp( —x)
x

(4.14)

An approximate form of E in Eq. (4A) is given
here. I-et us assume that the spin splitoff energy
40 is faf largci' than tllc 'tllcrII181 cllcrgy T.
the SB is almost completely fuB of electrons so
that we obt»n e(oi2) =»s 8 good approximation.

since wc consider lllflnltcsinlally sII1811

concentrations of the minority carriers, nondegen-
cratc statistics ls applied to e(oui EI ). We obt—ain

where we define

U(0„,0;,y)= f dgcos($0, )

Xc p[41'g. (k)—2'] (4.11)
Ii )+o)g

Xcxp (4.15)

(4.12)
Now formulas for finding the quaii-Fermi-levels
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are given in tractable forms using Eqs. (2.29) and
(2.30). As for the majority carriers we evaluate
e'(co} approximately with co=gn z +Eo giving a
maximum of ImG", where gH-„ is the energy for
the HB. Then the integration over co is performed
noting the relation similar to Eq. (4.9). We replace

gi —
g2 by g so that m in the right-hand side is re-

placed by ir/2. We obtain

n;=2 I [1—e(gH-„+ED)] .dk
(2m )

(4.16)

Similarly we have

5n =2 i exp[(Fi —ge-„—Eo)/T],dk
(2m)

with pep being the energy for the CB.
Here, we assume spherical energy surfaces for

the CB, HB, and SB, defining the effective masses

mc, m~, and m~, respectively, for those bands.
The energies measured from the respective band
edges upward (CB) or downward (HB and SB) are
given by iri k /2m' with /=C, H, and S. In gen-

eral, mI depends on k. Let us recall that m and
g&-„are measured from the Fermi level for the ma-

jority carriers We ha.ve gi ——Ei+EG+F~,
$2

— 50 E2+F—~, gz——— Ei+Ez, an—d

g4 —— E4+F~, wh—ere EG is the band-gap energy,

E& the quasi-Fermi-level for the majority carriers
measured downward from the HB edge,
Ei ——iii k i /(2me), E2 ——iri ki/(2ms},
Ei ——R ki/(2m' ), and E4 ——R k4/(2m ' ). Using

mH at k =0, Eq. (4.16}is rewritten as

2
n; = — Ni Fi)2(r}p),~ fP

where g~ =(F~+Eo)/T,
' 3/2

mHT"'=' 2~

(4.18)

(4.19)

F,(b)= I dx
exp(x —b)+1

Using me at k =0 Eq. (4.17) is rewritten as
t

I'"
I
—Eg —I' —Ep

5n =Neexp
T

(4.20)

(4.21)

where Ne is the effective density of states for the

CB,
' 3/2

mcT"'=' 2~ (4.22)

Using Eqs. (4.10)—(4.22), Eq. (4.7) is rewritten as

is the effective density of the states for the valence
band, and Fi&z(rl&) is defined through the Fermi
1nteglal

Eo . Eg Ap

z exp 2g~+
I

dk2 dk& dk4' (..) J(2.) (2.)""'—E2
T E)—E2+E4+EG —hp

exp q&+ +I

exp

U(&. &r r}(If I

'+
I g I'+ If —g I'} (4.23)

E'p

0„= 2 (Ei E2+Es+Eg+Eo——60), (4.24)

Qg
——— ImXg pj (Inks Ei E2+E4+EG ho+—Eo+Ep) ~—

8 A,

This is the central result of this paper.
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Especially when the impurity and phonon scattering effects are neglected, we obtain the pure colHsion
Auger recombination. The neglect of both effects corresponds to replacing 4yg„(g) —2/0; in Eq. (4.11) by

f—5 so that we obtain U=n 5(Q, ). The lifetime of the pure collision Auger recombination ro is given by

4m j. Eg —50
exp 2f]p +

dkt dk3 dkg Ep

(2m )3 (2m )' (2m )

1

E)—Z2+Eg+Eg —50
CXP 'gp+ + ~

CXP
E4
T +1

5(Ei —E2+&3+E,+Z, —S,)

The energy conservation requirement implied by the 5 function and the momentum conservation
k~ ——k3+ k4 —k2 impHcit in the equation gives rise to nonzero threshold energy for the Auger process. On
the other hand the impurity and phonon scattering effects, which are present in actual cases, relaxes the
above conservation requirements so that the threshold energy is zero. Thus the Auger recombination pro-
cess is enhanced.

Equation {4.23) has been derived for the case where the impurity scattering effect is predominant though
the phonon scattering effect cannot be neglected. On the other hand, the phonon-assisted Auger recombina-
tion was discussed in II, where the impurity scattering effect was completely neglected. Considering that
the phonon scattering is weak, the lifetime of that process mph is given in II by

ANg T

dk2 dk3 dk4

(2m )' (2a ) (2m)'

E~
exp q&

— +f
,
'

„-, '02 lf I'+lg I'+lf —g I')

(4.27)

where we take ED =0. It is seen from Eqs. (4.24) and (4 25) that [eo/(e2A, )]0;/(02+ 02) is independent of
eo/f e2A, ).

Let us givehere( f I + g I2+
I f—g I ) and 0;, which have appeared above. We take theformer ap-

proximatelyx as ( I f + Ig ). As for the overlap integral we use the relation 3

IINk. &l'= f n
I
k —k„ I2

(4.28
2Nlo ( ~g —

g ~g

for the interband matrix, where mo and f~„are the eltx:tron mass in the free space and the osciHator
strength, respectively. We make an approximation

I g'& p —
g& p I

=Eo. From Eqs. (4.2) and (4.3) we ob-

tR,n

If I
'+

I g I

'= fcafsa
Ik3—k2I lk4 —k2I-

I k3 —» I
2+k~

I k4 —k2 I
z+A~
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0; is obtained from Eq. (4.25) using the relations in II as follows:

2mH 1
ImX, ph(liki, Ei Ei—+Eg+EG bo—+Eo+Fp) =— [AHi(ki, ko)+BHi(ki, ko)],

k,
(4.30)

' 1/2
2mB

ko —— (Ep —Ei E4—EG—+ho Eo)—

:"iT+—E,~m,@[1+28(co,p)]
sm el

(4.32)

2 8e2P2 T+, ro,~[1+2P(co,~)]
sm ~ e'

(4.33)

(ki~ko} +A,
Hi(ki, ko) =2koki —A, ln

(kg —ko) +A,

1

(ki —ko)~+A, (ki+ko) +A,
(4.34)

(ki+ko) +A,
H2(ki, ko)= —, ln

(ki —ko) +A,

1 1

(k, —k, )'+x' (k, +ko)'+~'
(4.35)

(4.36)

by the method of the stationary phase, noting that g„(g)= —
4

g~ when (~0. The equation offers a good

approximation if the second term in large parentheses is much smaller than umty. Considering

~
Q„~ &&0;, Eq. (4.36) is found to be useful in the range 0„&6y. On the other hand, if y is sufficiently

large, we obtain approximately

U(0„,0;;y)= J dg(1 —2(0;)cos($0„)exp[4yg„(g)]
CO=U(0„,0;y) —20; dgsin($0„)exp[4'„(g)] .

As for Eqs. (4.31) the restrictive condition is that kz should be real.
Let us facilitate numerical calculation of r& given by Eq. (4.23), starting from discussion of U(0„,0;;y)

given by Eq. (4.11). If
~
0,

~
is sufficiently large, we obtain approximately

CO 20; 30,—40;
U(0„,0;;y)= dg(1 —g' )cos($0„)exp( —2(0;)= 1+2y0,+40; (0„+40;)2

Numerical calculation shows that the leA-hand

side of U(0„,0;y) =
' 1/2

1'

exp
4y

(4.40)

I,=0.948y' (4.38}

in the range 0.1 & y & 1. %'e obtain

U(0„0;;y)=U(0„0;y)+20;, , , (4.39)
(0„'+I",)'

If
~
Q„~ is sufficiently large, U(0„,0;y) is found

to be approximately given by

J d g sin($0„)exp[4yg„(g)] =
z 2 (4.37)a,'+r,'

is well aproximated by the right-hand side of the
equation using

From this we see that Eq. (4.39}is not useful when

~
Q„~ is too large. It is found that Eq. (4.39) is

useful in the range 0„&6y. Therefore we use Eqs.
(4.36) and (4.39) for 0„&6y and for 0„&6y,
respectively. As for U(0„,0;y), we use Eq. (4.40)
if

~
0,

~

is large enough and numerically calculate
it if ~0„~ is small.

A next step to facilitate numerical calculation is
to modify Eq. (4.29). Especially at moderate dop-

ing levels we can take

[ k, —ki [
i/(

~
kg —k2

~

~+A2) =1



i k4 —ki i /(i k4 —ki i
+A, )=1,

as was done before. However this is not a good
approximation at high doping levels. %e approxi-
mately evaluate

( f ) + ( g ) by taking an angular
average with respect to the direction of k2. In
place of Eq. (4.29) we give

( f (2+ (g [2=[(21«e2A )/(moeoEg)]2

XfCafSa(@2+@4)
where 4~(j=3,4) is given by

The definition of zi is done in view of the cases
Eg & b,o as well as Eg & ho. The condition that ko
in Eq. (4.31) should be real leads to inequality
x +y &«o under the requirement that «o is real.
We further define

x=«P, y=«(1 —4 )'/,

k2.k4 ——k2k4$1,

ki (k2 —k4)=ki
~
k2 —k4~ $2.

(4A1)

' 2/2
4

T

i (ki2+k22+A, 2)2-4kJ2k22

(ki+k2}2+F2
ln

2kjk2 (kj —k2)2+A,

To perform the integration of Eq. (4.23), it is
convement to re lace f dk2 f dki f dk4 . by

f dk2 f dki dk4. under ki ——ki+k2 —k4
and to give new definitions as follows:

EG —~0
zo= ~ zi =—,(zo+ lzo I )T ' 1/2

S+Z] —
~ X =

T T

We g1ve mc, mii, slid kg by the ba11d-edge
values, while ms and fsir are evaluated at z =zo if
zo » 1. If —ao &zo & 1, ms is given at z =0 and

fzg is given by fsH =fzgE2 ~&h fsg =df~/dE2
at E2 ——0. We finally obtain

8(mrrmz) /2T2e fcir
exp(22)p +zo —zi )

R moeoEg

X f, dz+z+zi exp( —z)fsHS(z), (4.44)

e A
«o V'z+zi ———zo 4=

GOT

(4.42)

S(.)= f"Z««' f dyy2(1 y2}'/—2 f dy, f Zy,
1 1

exp(rl«+«2 «o)+1 ex—p(rl« —y )+1

X U(Q„Q;,y}(42+44) .

(4A6)

in the range 0.1 & y & 1. In actual calculations Eo in ko [Eq. (431)] is neglected since Eo is small in the
range where the phonon scattering effect is important.

In a similar way the integration of Eq. (4.27) is performed, as described in II. As for the integration of
Eq. (4.26), it is convenient to start from a new definition as follows:

1j =ki+k4 bk2, h=ki ——k4, k2 ——k2, b=
PBQ

1+
2M,H

Here Q„Q;, 42, and 4'4 given by Eqs. (4.12), (4.13), and (4A1), should be rewritten using the above new de-
finitions though not shown. It should be noted that we use U(Q„Qi,y) for «& «o if «o is real while we use
U(Q„O;y) for «& «o if «o is real or for «&0 if «o is not real. Using Fig. 8 and Eq. (2.65) Eo is found to be
well simulated by the function

8~k

0.996+0.877' y

~ J'
2mggbT

1/2 1

X= , y= fh/2
NlH 4NlgQT

, x=«P, y=«(1 —$2)'~, (4A7)
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we obtain

'Tp

i/2773 7/277i 3/2u 2g 3/2 T2e 4
Nlg Nl~ 8

fcHexp(2rlq +zo —zi }

r '4
CO P72C

&( dz+z+zi z+zi — Zp exp( —z)fsHSO(z),
p ams

(4 48)

where

So(z}=f de&2(1 O' }'"-f dpi f d&2 (43+qig) .
exp(7)z —rj3)+ 1 exp(7)z —rj4)+ 1

(4.49)

V. RESULTS AND DISCUSSIONS

The theory in the previous sections is applied to
the p-type materials of GaAs, InP, GaSb, and
InAs, which are doped with singly ionized shallow

acceptors. For the former two materials we have

EG » 60 and for the latter two we have EG-50
We give the temperature-dependent E~ and hp as

and

EG EGO EG iT2/(T+——To)—
I

(5.1)

~p= ~pp+ ~pi T (5.2)

where EG Eap, kp and happ are in eV, EG i, and

Ape in eVK ', and T in K. The band parameters
to be used are calculated on the basis of the k-p

Here zo and zi have been given by the definitions
(4.42). 7' is calculated from Eq. (4.18). 43, 44,
713—E3/T, and 7l4 E4 /T a——re given using the de-
finitions (4.47).

Let us discuss the approximation that we have
taken co=pi-„+ED in Eqs. (4.15}—(4.17). This re-

sults in overestimation and underestimation of the
relevent integrations for the CB and for the HB,
respectively, as long as Ep is calculated from Eq.
(4.46). On the other hand, we find that Eo appears
in the forms of Fi E& Ep an—d F~—+ED in all the
relevant equations except Eq. (4.31). In place of
using Eq. (4.46) we give Eo two different values
for the CB and for the HB so that Fi and Fz,
which are approximately calculated from Eqs.
(4.18) and (4.21), may be correct values, which are
directly calculated from Eqs. (2.29) and (2.30). In
this way the overestimation and the underestima-
tion are reduced. Actually, this is automatically
done only by using Eqs. (4.18) and (4.21) since we
are not interested in the values of I"i, Ez, and Ep
separately.

perturbation theory using the numerical values of
the interband matrix elements given by Lawaetz.
The material parameters and the calculated band
parameters are shown in Table III. In order to cal-
culate 7;~ from Eqs. (4.44) and (4.45), computation
of S(z) using Weyl's Gleichverteilung method fol-
lowed by numerical integration over z was per-
formed. For EG & b,o the range of the integration
over r is divided into two zones 0& r & rp and

rp & r &r, where r„ is an adequate upper value.
For EG & Ap a single zone 0& r & r„ is used. At
most, 200 combinations of (y, p, pi, p2) with ran-
dom values were found to yield well convergent re-
sults. The lifetimes of the pure collision Auger
recombination ~p and the phonon-assisted Auger
recombination mph were calculated by the same pro-
cedure. It is convenient to present the results in

terms of Auger coefficients 7r 'Cii, n 'Co, and

m 'C„h defined through ~,~'=n. 'C;~n;,
7"p =~ Cpn& and Spy K Cphnp We calculat-

ed C; and Co for n; =10'7, 10', 10'9, and 1020

cm . Then curves for the Auger coefficients
were obtained by interpolation.

The results for C~, Cp, and C~h are shown in
Figs. 11—14, 15—18, and 19, respectively. In the
case of GaAs and InP the Auger recombination is
remarkably enhanced by the impurity and phonon
scattering as compared with the pure collision
Auger recombination especially at low tempera-
tures and/or at light-doping levels. The range
where appreciable enhancement is found is of
n;&10' cm and/or of T & 300K. Outsidethe
range Cz can be roughly approximated by Cp. In
the case of GaSb and InAs, on the other hand, C&
is close to Cp over all the range of n; and T con-
sidered. The reason why Cz is more or less close
to Cp in the above cases is as follows. The en-

hancement of the Auger recombination is caused

by reducing the threshold energy for the pure colli-
sion Auger recombination to zero. However, the
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FIG. 11. Auger coefficient of the impurity- and
phonon-assisted recombination m 'Cqz on GaAs as a
function of the acceptor concentration n; for various

temperatures.
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FIG. 13. Auger coefficient of the impurity- and

phonon-assisted recombination m 'C~ on GaSb as a
function of the acceptor concentration n; for various

temperatures.

Auger recombination is little influenced by the
presence of the threshold energy as long as the
temperature is high enough and/or the degenerate
statistics are applicable to the majority carriers.
Especially 1f EG kp such as in GaSb and InAs,
the threshold energy is almost or absolutely zero.
Therefore in those cases the Auger recombination
is little influenced by the impurity and phonon
scattering. It is to be noted here that we have

Cz-Cp for n; down to 10 cm in GaSb and

InAs. This indicates that the present theory is well

applicable in the range of n; ) 10'7 cm 3 though
this is only roughly guaranteed by the criterion
(3.8).

In Fig. 19 the Auger coefficient m 'C~h which

is calculated assuming the phonon-assisted process
alone is shown. The results are shown only for the
case of n;=10' cm . It was shown in II that

I
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FIG. 12. Auger coefficient of the impurity- and

phonon-assisted recombination ~ 'C@ on InP as a func-

tion of the acceptor concentration n; for various tem-

peratures.
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FIG. 14. Auger coefficient of the impurity- and

phonon-assisted recombination m 'C~~ on InAs as a
function of the acceptor concentration nf for various

temperatures.
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FIG. 15. Auger coefficient of the pure collision
recombination ~ 'Co on GaAs as a function of the ac-
ceptor concentration n; for various temperatures.
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C~h is nearly independent of n; in the range of
n; &10' cm . Comparison of C~ with C~h
shows that the Auger recombination is suppressed
by the impurity scattering for GaSb and InAs
while C& is close to Cph for GaAs and InAs. The
reason for the suppression is that the band states

FIG. 17. Auger coefficient of the pure collision
recombination m. 'Co on GaSb as a function of the ac-
ceptor concentration n~ for various temperatures.

are broadened by the impurity scattering to a de-

gree beyond that which is efficient in increasing
the state density around the band edges.

Now comparison of the theory with experi-
ments is made on p-type GaAs and p-type InAs
with n; =10' cm at 77 K. The experimental

value of the Auger coefficient for GaAs is

10 ' '+-" cm s ', while the theory gives

m 'CI& ——0.51 X10 cm s ' in considerably

good agreement. On the other hand, the experi-

mental value for GaSb is 10 ' +-" cm s ', which

does not agree with the theoretical value,

~ 'C; =3.0 )(10 cm s '. Even thetheoreti-
cal value m 'C~h=0. 38 X10 cm s ' is much

smaller than the experimental one. The discrepan-

cy cannot be explained within the framework of
the present theory.
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FIG. 16. Auger coefficient of the pure collision

recombination m 'Co on InP as a function of the accep-
tor concentration n~ for various temperatures.

FIG. 18. Auger coefficient of the pure collision
recombination m 'Co on InAs as a function of the ac-

ceptor concentration nl for various temperatures.
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2xl 0

0-26
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analysis based on the pure collision Auger process
leads to erroneous numerical results except for the
case (iii) only. Laser diode materials such as
GaAs, InP, GaAlAs, and InGaAsP should be
analyzed on the basis of the phonon-assisted Auger
recombination for nondoped materials or of the
impurity- and phonon-assisted Auger recombina-
tion for doped materials.
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APPENDIX A

lo"-

2x I 0
0 l 00 200 300 400 500

T (K)
FIG. 19. Auger coefficient of the phonon-assisted

recombination m 'Cph on GaAs, InP, GaSb, and InAs,
as a function of the temperature for the acceptor con-
centration of 10' cm

A conclusion for direct gap materials of p-type
is as follows.

(i) At light doping levels (n; & 10'7 cm ) the
phonon-assisted Auger recombination is predom-
inant for all materials.

(ii} For materials with Ea larger than ho plus
several times the thermal energy T the impurity-
and phonon-assisted Auger recombination is
predominant in the range of 10' cm & n; & 10'9

cm andlor of T & 300 K. Outside this range Cz
can be roughly approximated by Co.

(iii) For materials with Eo smaller than 50 plus
a few times the thermal energy T, C~ can be well

approximated by Co in the range of nq & 10'
cm . In those materials we have Cph Q Cp.

Though the above conclusion was for p-type ma-

terials, it is evident that the same conclusion is
drawn also for n-type materials only if we take 60
as zero in (ii) and (iii). It is stressed that the

The reason why the free-particle retarded
Green's function can be used to calculate
X,".~h(l k, co) is described here. First of all we cal-
culate X,"~h(l k, co} up to the first order in the
electron-phonon interaction since this is small.
Then our discussion should be on the impurity
scattering effect on X,"~h(l k,co). During the pho-
non emission followed by reabsorption process, an
emitted phonon travels over the distance of the or-
der of csfilco„~, where 2M and cs are the

Planck's constant and the sound velocity, respec-
tively. This distance is estimated to be 10 cm.
This is far smaller than the effective radius
(-10 cm) of the impurity potential, out of
which an electron is scattered. Therefore, a
scattering event by an impurity is far from coinple-
tion during the one-phonon —emission —reabsorp-
tion process.

APPENDIX 3

The derivation of the retarded Green's function
based on the assumption of the slowly varying im-
purity potential is discussed. We analyze the re-
tarded Green's function 6"(ik,l k ';co) in terms of
the potential I'(r) due to all impurities. We have

(Bl)

1(r)= pl'(q)exp(iq r), (B2)

we obtain'

where U;(r —R„) is the potential due to the impur-
ity located at R„. Defining the Fourier transform
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6"(/k, /k ';co) =Go (/k, oi)[b(k —k ')+ g I'(q)6 "(/q, l k ',co)] . (83)

Noting the relation

Q I'(k —q)6"(/q, l k ';co) = g i I (r =0)6"(Ik, l k ';co),
q gg —o in Bk Bl

the symbolic solution to Eq. (83) reads

(84)

Ga(/k, Ik 'co)=
co+i5 g&

—
z 1(—i }

h,(k —k '),

where r in I (r) is replaced by the operator iB/Bk. The equation is rewritten as

6"(/k, lk', co)=—f dr
V

co+i 5 gI -„— I (i— }
Bk

exp[i(k —k') r]

1=—f dr exp[i(k —k')-r] 1,
a)+i 5 gi ——I"( r )

where we define an operator p =k+i5/Br. It is assumed that the potential I (r ) is efflux tively a slowly

varying function of r. Then we neglect spatial derivatives of I (r } on all orders. We obtain

G"(Ik, l k ';co)= Jd r — exp[i(k —k ') FJ
co+i5—

g& k
—I (r)

=Gz(/k, e) g [Go(/k, co)] —I dr [1(r)] exp[i(k —k') FJ

=Go(/k, oi) g [Go(/k, oi)]
q )p q pe ~ ~ y

a(Q +k —k') gr(q, ),

where Q = g .. , qj. The last step has been ob-

tained using Eq. (82) in the integral over r. An

ensemble average, which is taken according to the

definition in Eq. (2.9), leads to the Dyson's equa-

tion which defines the self-energy. Equation (87)
indicates that we should use only Go (/k, co) as the
Green's functions appearing in the diagrams. This

is the requirement which results from the assump-

tion of the slowly varying potentiaL To obtain a
more complete Green's function we should replace

Gz (/k, co) by 6 i (/k, co). As a result Eq. (2.41) is

obtained.
The criterion under which the assumption of the

slowly varying potential is justified is found from

Eq. (86) as
' 1/2 ' 1/2

I'( r ) I'(F)2' Q r 201
1

(88)

1/3
I 3
2 2$' l{,

(89)

For degenerate statistics we find n / /g ~ a /s so
that the inequality holds at high doping levels.

l

where spherical energy surface with the effective
mass m is assumed for the relevant band. Here
only g& I, and co are measured from the relevant

band edge. We see that for low energy the as-
sumption of the slowly varying potential is not jus-
tified. Roughly speaking, co should be larger than
the impurity binding energy. In order to effective-

ly have a small value of
~

Bl'(r )/Br ~, the poten-
tials due to the nearest-neighbor impurities must
overlap each other to an appreciable extent. The
condition for this is that the average distance be-
tween the nearest-neighbor impurities, which is
given' by [3/(2m.n;)]'/, is smaller than twice the
inverse screening length, i.e., 2/A, . This criterion is
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APPENDIX C

We calculate E(k,0,0), which is given from Eq. (3.2) using Eq. (2.63) as

(Cl)F{k,0,0)= 2 J de'6 "(Q)ReG "(Q)8(co'),
iZ ie2A,

where an abbreviation 6 "(Q)=6 "(Q,yZ) with Q = [eo/( ( Z ~
e A)](r0' —g& ~ ) is used. Substitution of the

exps681OIl

into Eq. {Cl) yields
'5

E(k 0,0}= g — „8(g&g) J dQQ ImG "{Q)ReG "(Q) .
(
Z

(
ezra, „0&i Bg,"-„'" eo

Using Eq. (2.64) and the 5 function

5(g) =—J d Q cos(gQ), (C4)

the integration over Q is performed. Defining g, (g) =Reg(g) and g, (g) =Imgg), the integral in Eq. (C3) be-

5N
{—I)'cos[yg;(g2) —yg;(gi)] „5($2—gi), n odd.

I~

This term vanishes when n is even. It is to be noted that from Eq. (C4) we have (5"/BP)5(g)
~ ~ 0=0 when

n is odd. Using this after performing the integration over gi, the term (C5) is found to be —m/4 if n = I
and zero otherwise. Substituting this term into Eq. (C3) we obtain

F(k,0,0)=—— 8(fi i, ) . (C6)

The expression for the dc conductivity is given for a material, which has u equivalent valleys with spheri-
cal energy surfaces characterized by the effective mass m. Starting from Kubo's formula, the dc conduc-
6vlty teoso~ 0.„„jsgiven by

o&„——— lim g k i&k2„ f dm'8(r0') [6"(/kz, /k i,'ai' —m)lmG"(/k i,/k2, 'm')
1TV ni m~0 Bco ~&

+6"(/k i, /k2,'ai'+m)lmG" (1k2,/k i,co') ] .

Here 6"(/ki, /ki, 'm) and 6"(/ki, /k2, ai) is the retarded and the advanced Green's function, respe:tively,
which are characterized by Eq. (83) with 6"=(6")'. As shown in I, 6"(/k i,/k2, m) can be approximated
by the average Green's function defined by Eq. (2.9) assuming that the crystal volume is large enough.
T11CIl %'e Obf, siI1

o'„„=—
2 hm $k„k„Jda)'8(a)')[ 6"(/k, co' —r0)lmG "{/k,ep')

8 V ppg m~0 BQP

+G"{/k, +r0r0)lmG "(/k, r0'}] .
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The equation is rewritten as

2U eAcr&„——— 2 g k&k„ f dao 8(co)[ImG".(lk, co)]
~V m2

k
dco

(D3)

For cubic symmetry we have o»——6()"—v)o. After transformation from summation to integration over k
we obtain

e fi', ' ", f "dk k4 f" d~ d e(~)[imG"(lk, ~)]'.3' m dN
(D4)
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