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I have developed a theory of impurity- and phonon-assisted Auger recombination in
semiconductors. The theory is based on the Green’s function, which is derived by taking
into account both the impurity scattering and the phonon scattering. The function is
shown as a test to explain well the conductivity data of heavily doped n-type Ge. The
theory is applied to p-type materials of GaAs, InP, GaSb, and InAs for acceptor concen-
trations between 107 and 10 cm~2 and for temperatures between 77 and 500 K. Those
materials are typical in that the band-gap energy Eg is much larger than the spin splitoff
energy A, for the former two materials and these are comparable for the latter two. It is
shown that the impurity- and phonon-assisted Auger recombination is predominant in

materials with Eg >> A, for the acceptor concentrations between 107 and 10'° cm

-3

and/or for the temperatures below 300 K. Except for these cases the Auger recombina-
tion is roughly or well described by the pure collision Auger process. On the other hand,
at light-doping levels the Auger recombination assisted by the phonon scattering alone is
predominant for all materials. It is stressed that an analysis based on the pure collision
Auger process leads to erroneous numerical results for most cases of practical interest.

I. INTRODUCTION

The Auger recombination of the minority car-
riers in semiconductors is an important nonradia-
tive process, which cannot be suppressed by reduc-
tion of impurities other than dopants. A number
of theoretical and experimental investigations! have
been made on the basis of the pure collision Auger
process since the successful work by Beatie and
Landsberg.? However, the pure collision Auger
process alone is insufficient to explain the recombi-
nation rate especially at low temperatures®—°
and/or in heavily doped materials.” In order to
give a better explanation the phonon-assisted
Auger recombination®®~!! and the impurity-
assisted Auger recombination'? (referred to as I)
have been proposed. Though these were found to
be promising proposals, the theories given there are
incomplete for the reasons that follow.

In the earlier theory of the phonon-assisted
Auger recombination, the phonon scattering was
taken into account in terms of the second-order
perturbation treatment with respect to the
electron-phonon interaction as well as the
electron-electron interaction. Since the energy
denominator involved in the theory can be zero,
the divergence difficulty arose. The difficulty was
avoided by making the approximation that the en-
ergy denominator was replaced by the value

25

evaluated at the threshold of the Auger process.
Thus, the approximation is valid only under some
restrictive conditions. The divergence difficulty
was avoided by the present author on the basis of
the Green’s-function formalism!? (referred to as II).

On the other hand, the theory of the impurity-
assisted Auger recombination was developed using
the same formalism by the present author in L.
Here, the approximation used in the limit of the
low-impurity concentration and weak scattering is
not valid for cases of practical interest: The theory
provides only the qualitative description of the
Auger process. Furthermore, we must take into
account both the impurity and the phonon assis-
tance on an equal basis as long as the temperature
is moderately high.

The present paper describes a theory of the
minority-carrier lifetime of the Auger recombina-
tion, which is based on unified treatment of the
impurity and phonon scattering effects. As for the
impurity scattering effect the Green’s function is
derived under the restrictive condition that impuri-
ty potential is sufficiently slow with respect to spa-
tial dependence. Though this condition is not sa-
tisfied for the band-gap region, the theory is useful
for the intraband region, whose contribution to the
Auger process is predominant.

The theory is applied to p-type GaAs, p-type
InP, p-type GaSb, and p-type InAs for acceptor
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concentrations between 10'” and 10%° cm~2 and for
temperatures between 77 and 500 K. Those ma-
terials are typical in that the band-gap energy Eg
is much larger than the spin splitoff energy A, for
the former two materials and these are comparable
for the latter two. The threshold energy for the
pure collision process, which takes a finite value
for Eg >> Ay, is absolutely or nearly zero for

Eg <Ay so that the rate of the pure collision Auger
recombination is known!* to be especially large for
Eg <Ap. On the other hand, the impurity and
phonon scattering are efficient not only in reducing
the threshold energy but also in broadening the
band states. This suggests that the Auger recombi-
nation is enhanced by moderately strong scattering
in the case of Eg <A, as well as in the case of
Eg>> A, In Fig. 1 we show the Auger recombi-
nation called the CHHS process, which occurs
among the conduction band (CB), the heavy-hole
band (HB), and the spin splitoff band (SB).

II. MODEL AND BASIC FORMULATION

The expression for the minority carrier lifetime
of the Auger recombination, which is given in
terms of the retarded Green’s function including
phonon scattering effect, was given in I. The ex-
pression is also useful to the present case only if
we use the average Green’s function which includes
both impurity and phonon scattering effects. Since
especially at high doping levels the theory of the
impurity scattering has not yet been very well es-

FIG. 1. Auger recombination via the CHHS process
among the conduction band, the heavy-hole band, and
the spin splitoff band.

tablished, we must find out the practical way to
treat this problem. First, we define our model by
writing down the Hamiltonian as

H=H, +th +He-ph+He-i +H,, . (2.1

Here H,, Hyp,, H,.pp, H,.;, and H,., are the Hamil-
tonians for the band electrons, the phonons, the
electron-phonon interaction, the electron-impurity
interaction, and the electron-electron interaction.
We assume H, + Hy, and H,; + H, ;, + H,., to
be the unperturbed Hamiltonian and the perturba-
tion, respectively. The explicit forms of the Ham-
iltonians are

H’ = Z gl ?al’r?aal?o ’ (2.2)
lko
th= vai’bii’byﬁ’ ’ 2.3)
vqd
1 t t
He-ph-'—' ‘/-17 . qu(bva +bv”q’ )ali.+71’aalfa ,
vilko
2.4)
Z g oy T
Ho == 3 v(@n@)3y 2,47
e-i Vv = T{o +qo 4 (25)
H,,=—- (@K 4+ | 1K)
2V ity

X{(LK'—q|5k")

Xall X+ T]’a’alz X'— T;'a'als X 'a’al4 Xo -

(2.6)

Here, a,f—k*o, a,fm,, and ;3 are the creation opera-
tor, the annihilation operator, and the electron en-
ergy, respectively, for the electron with the band
index /, the wave vector k, and the spin o. bia”
bv?{» and w5 are the creation operator, the an-
nihilation operator, and the phonon energy, respec-
tively, for the phonon with the mode index v and
the wave vector . V is the crystal volume.

83/ V'V is the electron-phonon coupling constant,
which depends on the band index / though not ex-
plicitly shown. v(q)/V and Zv(q)h(q)/V are the
Fourier components of the unscreened Coulomb
potentials for the electron-electron interaction and
the electron-impurity interaction, respectively.
Here, we assume that the doped impurities are ion-
ized and of one species with valency —Z with
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respect to the host crystal. A(q) is the phase fac-
tor arising from the interference among scattered
waves. We have

N; -

= Y exp(—iq°'R,) 2.7)

n=1
for N; impurities which are located at ﬁ,,
(n=1,2,...,N;). Hereafter we use i=v'—1. For
the electron-electron interaction we take into ac-
count the interband scattering but this is neglected
for the electron-phonon interaction and for the
electron-impurity interaction. (/K |I'K’) is the
overlap integral between the modulating parts of
the Bloch functions |/k) and |I'k’), which are
normalized over the crystal volume. We take
(IK|IK’)=1 for the intraband matrix. v(g) is

given by
2
o(@) =T 2.8)
q

where e is the electronic charge. As for 8,5 we

(GRUK,IK ")) =

Here, A(q) is defined as A(q)=1 if =0 and
A(q)=0 otherwise. The last step comes from the
fact that the space uniformity, which is lost under
random distribution of impurities giving ks£k ’, is
restored under the average distribution _glvmg
momentum conservation k=K . GX(Ik,w) is the
retarded Green’s function in the average impurity
field, for which the rule of the diagram method is

- dRy, GR(IK,IK ;05K R,,..

consider the piezoelectric scattering (pe), the acous-
tic deformation potential scattering (ac), the nonpo-
lar optical deformation potential scattering (npo),
and the polar optical phonon scattering (po). The
former two and the latter two are for the acoustic
phonon mode and for the optical phonon mode,
respectively. In Table I we give the expressions
of (8,4 | 2 for those scatterings using definitions
in Table II. Assuming thermal equilibrium of the
system, the electron energy is measured from the
Fermi level.

Now we consider the retarded Green’s function,
which is derived from the Hamiltonian discussed
above. In the presence of impurities the function
is expressed in terms of two wave vectors K and
k one energy parameter o, and posmon vectors
of randomly distributed 1mpunt1m R,R,, .. .,RNi

as GRUIK,JK ,w,Rl,R2, .. .,RN',), whose dependence
on the impurity sites comes from 4(q) in Eq. (2.5).

10

Now we take an ensemble average!>~!7 over the
impurity sites, which is defined as
»Ry)
(2.9)

known.!® The phonon scattering effect can also be
incorporated into G R(IK,w) using the conventional
diagram method."® It was shown in I that
GRUK,IK ;05 R,R,,.. RN) tends to
(GR(IK,IK",0)), a8 ¥—>co. Considering a suffi-
ciently large crystal, all discussions hereafter may
be given in terms of GR(IK,w).

It is rather practical to start from the tempera-

TABLE L. The list of | g, |2

Scattering mode

Piezoelectric scattering (pe)

Acoustic deformation potential scattering (ac)

Nonpolar optical deformation potential scattering (npo)

Polar optical-phonon scattering (po)
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TABLE II. Definitions.

Py

his
(4]
Ct

C

C11,C12,C44

=)
-—

E
(e*)!

€

dimensionless isotropic piezoelectric constant
pr_hi (12 16
T35 g o

piezoelectric stress tensor
=%(36'11+26‘12+4C44)
=%(011—612+3C44)

=%C| +‘§‘Ct

elastic stiffness constant
effective deformation potential
optical deformation potential
—ell !

high-frequency dielectric constant

ture Green’s function (Ref. 18) % (] E,imm ), where
we define w,, =(2m + 1)7T with m and T as an in-
teger and the thermal energy, respectively. The re-
tarded Green’s function is obtained from the rela-
tion GR(IK,w)=Z(IK,w+i), where 5—0+. We
have a general form

1

GUK,iwp)= -
i0,—&7—2k,in,)

(2.10)

as a result of the Dyson’s equation,'6!® which is

obtained under the average impurity field. Here
3(Ik,iw,,) is the self-energy, which is given by
series expansion in terms of the free-particle tem-
perature Green’s function

GoIK,iwy)=— !

P (2.11)
0, —&7

and of the following three interactions resulting
from Eqgs. (2.4)—(2.6). The first is the electron-
impurity interaction as shown in Fig. 2, where
twice followed by twice scattering at two sites are

v EuiE)

//n\ / p\\

N, 4 \,

/, 4 \\

/ N /7 N
7’ N

N,
h 7/
/ b/ N
4 /'
4 VAN AN
e d ;'/ \\ \\
GoleF, iwom) Gol 2R+ $,+ T2, icom) Go(4F, i wm)
Go( 47+, iwm) Go(4F+ %, wom)

FIG. 2. Fourth-order diagram for the electron-
impurity interaction, where the full lines (=), the
dashed lines (---), and the points represent the free-
particle Green’s functions, the interaction constants, and
the scattering sites, respectively.

illustrated as an example. The second interaction,
shown in Fig. 3, is the electron-electron interaction
via the Coulomb potential, for which the overlap
integrals are assigned to each vertex. The third in-
teraction, shown in Fig. 4, is the electron-electron
interaction via the phonon emission followed by
reabsorption. The interaction constant for the last
oneis |g,g |22 (v3,iw, ), where

1 1

DV, )= _ 2.12)
ovG,ioy) (0=, 0y +0,4

is the free-particle temperature Green’s function
for the phonon. Here, we define w, =2n#T with n
as an integer. The free-particle retarded Green’s
function D&(vq,w) for the phonon is obtained
from DE(v{,0)=2(vq,0+i8).

Let us take into account the screening by the
band electrons on the basis of the electron-hole
bubbles shown in Fig. 5. We consider all combina-
tions of the bubbles connected with each other by
the broken lines (---) and the wavy lines (~~) as
shown in Figs. 3 and 4. Then sum of these in-

go(lzkb,‘ é: mez) <12E'_§I 133' > g0(13_k)'} me3)
g [
| Us)/v
[

Golt B+3,iwm) (LB FILED  Go(LaF,iwome)

FIG. 3. Diagram for the electron-electron interaction
via the Coulomb potential, where the fuil lines (=) and
the broken line (— — —) represent the free-particle
Green’s functions and the interaction constant, respec-
tively.
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go(jzkl" -Z—, iWm=-iwn ) go(ﬂai; me')
> >
19,512 D(5F,iwn)
> >
Go(4 %5, iwmtiwn)  So(2aF, iwom)

FIG. 4. Diagram for the electron-electron interaction
via the phonon emission followed by reabsorption, where
the full lines (—~) and the wavy lines (~~) represent the
free-particle Green’s functions and the interaction con-
stant, respectively.

teraction constants (--- and ~~) should be replaced,
as shown in II, by the effective interaction constant

U(Q,i0,)=U,..(§)+ Ue-ph(a:iwn ),
(2.13)

where

U, (@) =——0(q) (2.14)
e(q)

and
2

l8,g |22 o(vG,iw,) .

o . €
Ue-ph(q’lwn )= ['—T

e(q)
(2.15)
Here we have
€0=1—-U(Ef) z X"'(0,0) (2.16)
1l
and
E(?i)=eo—v(f]')2)(y(2i,0) ’ (2.17)
1
where
Go(2'E+3,iwm+iwn)
(LR3I 4R) IRILR+D)

FIG. 5. Electron-hole bubble, where the full lines
(~=—) represent the free-particle Green’s functions.

dk

)

Xp(@,i0,)=2T 3, [ (
"’m
XG(IK+G,iop+io,)

XK 'K+ 2. (.18

Xp(q,ie,) is obtained from the electron-hole
bubbles in Fig. 5 by replacing the free-particle
Green’s function & olIk,iw,) by the complete one
(XK, iw,). By a similar discussion the interaction
constant in Fig. 2 is replaced by the effective in-
teraction constant:

U;(§,in)= 1 Zv(q) . (2.19)
e(q)

Thus, €y and €(q) represent the dielectric constant

of the host crystal and that due to all band elec-

trons, respectively. To calculate X 1(q,0) we use

o(IK,iw,) for the moment in place of IUK,iwp).

Then it is shown'® that

- dk e(gll(+q) s(glk)
,0)=2
Xll(q ) ;f 2 )3

Evig—bv
(2.20)
where O(w) is the Fermi-Dirac distribution func-
tion
e(w>=———‘—— . 2.21)

exp +1

We have given the overlap integral as unity for
this intraband problem. As for €, we use the em-
pirical data. To take §—0 for X;(q,0) of Eq.
(2.17) is known as the Thomas-Fermi approxima-
tion, which gives

dk
(2m)? a§
It is shown later that this is a good approximation

in the range of high-carrier concentration. Defin-
ing inverse screening length A as

X1(0,0)=2 o ). (222

2
2= dme (2.23)
we obtain
}"2
e(d)=¢ 1+—2- . (2.24)
q

Having constructed the effective interaction con-
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stants as in Egs. (2.13)—(2.19), we are at the posi-
tion to find the self-energy S(/k,iw,,) in power
series of those constants using the conventional di-
agram method. At first we consider diagrams
made up of the free-particle Green’s functions.  We
classify the diagrams into two groups. One is the
sum of terms arising from U;(q) and the other is
that from U,(q,iw,) only. Then replacing the
free-particle Green’s functions by the complete
Green’s functions to obtain a better approximation,
we write 2+ 2, and =,+ 2 for the former and
for the latter, respectively. For 2y+4 2, we take all
possible diagrams, some of which are illustrated in
Fig. 6. For =,+ 3, we take all the diagrams
which come from the terms of first order in U,, as
shown in Fig. 7, since U, is small. The self-energy
is approximated as

SUK,iom)= Zo+Z1(IK,iwy,)
+3,+ 330K, i) . (2.25)

2o and 2, are shown later to be real constants.
Since 2y+ 32, comes from all irreducible diagrams
in series of U;, it is not necessary any more to in-
corporate 2y+ 2, into the Green’s functions in-
volved in the diagrams. The Green’s function to
be used there is

-—p . 1
Gk, iwp )= = ,
iom—& 7 —2r—25k,ion,)
(2.26)
" -
So= 4 = U3
i
L3 N
7N, SN
S c 4 Nt AN Vi ‘3\\ A
y4 AN i ‘3) ﬁly RN
/’\\ FARN ”&Q 4&’§\
PR NN 7 NI WXy, tommme
TSN + PR A N N
& LN N 2NN

=== G (E, iwm)

FIG. 6. Self-energy diagrams for 3, and =;, where
the double full lines (=), the double dashed lines (==2),
and the points represent the Green’s functions ¥ ,, the
effective interaction constants, and the scattering sites,
respectively.

which involves no impurity scattering effects expli-
citly.
Let us define

SRIK,0)=3(1K,0+i8)
and
sRIK,0)=3,(IK,0+i8)
(n=1,3). The retarded Green’s function is given as

GR(IK,0)= 1 . 2.27)

o—§&7—32R1K,0)

Using the transformation

2 "’—-)[V/(Zﬂ')ﬁfdf}'"' ,

q

which is often used hereafter, we obtain from Fig. 7

= f o )3 U,(0,0) [ doImGR(IK,0)0(w)

dk
———T;Uw(O)fdwf 27

(2.28)

The last step is obtained using U,_,,(0)=0, which
is found from Egs. (2.15), (2.24), and Table I. The
energy density of states p(co) is given!” by

p(w—E

(2.29)

With n; as the impurity concentration, the majori-
ty carrier concentration | Z | n; is given by

| Z | n;= fdcop(to)e’(w) . (2.30)

0 - &

FIG. 7. Self-energy diagrams for =, and =3, where
the double full lines (==) and the wavy plus broken lines
(=22) represent the complete Green’s functions ¥ and
the effective interaction constants, respectively.
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Here, we have O'(0)=06(w) when the majority zR(Ik ®)= E (lk)+2 h(lk ®) 0] 32)
carriers are electrons (Z <0) and we have eprt ’
©'(w)=1—O6(w) when they are holes (Z > 0). where
From Egs. (2.8), (2.14), (2.24), and (2.28)—(2.30)
we obtain a real constant ,,(Ik)— 2 f f do Um(k’_a)
s (2m)
3= T2 2.31)
? €r? ' X ImGX(I§,0")0(o’)

When the majority carriers are holes, we omit an

additive constant, which is of no interest here. 2.33)
Now we find from Fig. 7 and
|
2 2
R alK,0) —L - |
ph Ef 211')3 ek—q) &v¥-13
X [% fdco'DoR(vf(.-'d,w——w')lmGR(l?]’,w')e(w’)
+[1 +P(0,3)1GR(14,0—0,3)+Pl0,7)6X1,0+0,7) | . (2.34)
Here P(w) is the Bose-Einstein distribution function
Plo)=—1 (2.35)
exp |2 | -1
PlT

E, (I K) is known as the exchange energy and is not very important in this paper. We evaluate this term us-
ing the free-particle retarded Green’s function GX(IX,w)= % o(IK,0+i8). We have

EU)=— [ —gf;ue_e(ﬁ—a)e(g,q) . (2.36)

If the majority carriers are holes, ©(§;3) should be replaced by ©(§;4)—1. A residual term, which is a
constant of no interest here, is omitted. As for = _p,,(l K,0) we replace 0+o,4 by w as an approximation.
Then the first term in the second set of large parentheses in Eq. (2.34) vamshes SR ph IX, o) represents the
phonon emission followed by reabsorption. This can be evaluated using the free-particle retarded Green’s
function for the reason described in Appendix A. We obtain

R 142P(0,)
(k0= 3 [-2a e 2.37)

(2r)? ")

Let us now find the expression for 2o+ =%(/ K,»). We consider an irreducible self-energy diagram for n-
site scattering. This is expressed after converting from the temperature to the retarded Green’s-function for-
malism as

n
S(my,my, ... ,my)= 3, H,,,j , (2.38)
j=1
where m; is the number of the vertices connected to the Jjth site under m; >1 and

Hy= 3 A@ [1IU(E)6 K +Q;,01/GF1K0) . (2.39)
TpdpeeTm j=1
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Here we define Q,,= 37, q; and G{(Ik,0)= (Ik,0+i8), which is

1
o—&7—3-3Nk0)

GR(IK,0)=

(2.40)

As discussed in Appendix B, GR(/ K+ éj,co) in Eq. (2.39) can be replaced by GRa K,0) as an approximation
applicable at high-doping levels. Then Eq. (2.38) is rewritten as

- _ n
Smyma,.. .my)=nfIGR K" [ 27, [T IUG)™,
j=1

where FT,=dTdT, - - dT,, M= 3;_,mj, and
n;=N;/V. In deriving the equation we have used
the relation

A s - 1 g -
2 A(Qm)HUi(q,-)=7 fdr[U.-(r)]'",
j=t

Tp Ty O

(2.42)
where
U,-(?):iy S U(@)expli§-T)
q
2
=fiexp( —Ar) (2.43)
The last step is obtained from Eqgs. (2.19) and
(2.24). From the definition in Fig. 6 we have
4rZe zn,-
2p=8S()=——7— (2.44)
€0A.
From Egs. (2.31) and (2.44) we obtain
3,+24=0, (2.45)

which represents the charge neutrality condition.
Therefore we have

SRIK,0)=2R(1K,0)+3X(1K,0) . (2.46)

To obtain Ef(lﬁ,w) we define Q,(m,m,,...,m,)
as the number of all irreducible diagrams for n-site
scatterings with m; vertices connected to the jth
site. For these n-site scatterings we also define
P,(m,,m,,...,m,) as the number of all diagrams
both irreducible and reducible. We have

1M,

| n
j=1

P,,(ml,mz,...,m,,)= (2.47)

) n—1
_ . (n m
P=3 f DT, Y, (—1Y [j ] 3P, (0,...,0,m; L 1,mj 3. . .,m,,)uj_'{rlu;'_'ggz L
M, =1 j=0

(2.41)

T

Noting that S(m,m,,...,m,) is independent of
the positions of G R appearing in the diagram, the
sum of all irreducible diagrams Q is written as

=3 3

n=1my,m,,. ...m,

Q,,(ml,mz,. . .,m,,)

XS(ml,m2,. . .,m,,) .

(2.48)
The sum of all diagrams both irreducible and redu-
cible P is written as

=3 3

n=1my,m,,. ...m

P,(m{,m,,...,m,)

n

XS(my,maq,....m,) .

(2.49)
It is easy to see that
P=0+GTQP. (2.50)
Then 3¢+ 3f(=0) is rewritten as
P
Sp4+3f=—"70. 2.51)
0 1 1 + GfP

We must now calculate P. Using Eq. (2.41) and
abbreviated notation uj=Gf(l k,0)U;(T;), we ob-
tain

P=—r— 3 nl,,

— (2.52)
GRUK,0) <

P= 3

my,my,....m,

P,,(ml,mz,. . .,m,,)

n m
xfg?,,jI:Il(u,f), (2.53)

where 3.’ means the summation in the range
m;>1(j=12,...,n). P, is rewritten as

(2.54)
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where 3/ means the summation over m; ,,m; ,,. . .,m, under the restriction
mj1+mj o+ - +m,=M,. Use of Eq. (2.47) gives

P 1 Ll - i n
n=~—'— 2 f@r,, 2(*1)" [?](uj+l+uj+2+"' +un)M
M,= j=0
=L far, 3w t]|——-1|. @.55)
/=0 1- 3 y
p=j+1

Noting uj=Gf(lE,w)U,-(f'j) and Im [GR(IK,®)]' >0, we have

1 ® 1 n N
= — dsexp |i |———=—— Ui(t,) |s| . 2.56
1 2 0, iGR(IK,w) fo P GR(Ik,w) ,,EH P l ] (250
p=j+1
Defining
h(s)=n; fd?{ exp[ —isU;(T)] -1}, 2.57
we obtain from Egs. (2.52), (2.55), and (2.56)
— 1 ® is
P=—_, d . .=
i[GR(UIK,0)] fo PP GRIK )
X 3 % > (—1>f[7](n,.VV[h(s)+niV]"-f+(-1)"(niV)"
n=1"" |j=0
1 is
——— d: —— —[h(s)]"
T iGRUK WP L GRIK,0) ’nzl h(s)]

{explh(s)]—1} . (2.58)

=‘”—RIT—_ fwds exp —ls_.—

i[GR(Ik,w)]? 7O Gk, 0)
Using Egs. (2.27), (2.45), (2.46), (2.51), and (2.58) we finally obtain

GR(IE,w)=% J.” ds expl is[o— &7+ 20— 350K, 0)+h()]) - 2.59)

It is convenient to rewrite Eq. (2.59) using Eq. (2.44) and defining

IZI Zx[“’ &7 —3NUkK0)], (2.60)
y= 41;1' , (2.61)
and
g&)= fowdxxz exp —ié‘ig—r-l;(z—)exp(~—x) +i§§g¥exp(—x)—l , (2.62)
where sgn (Z)=Z/|Z |. We have
GR(IK,0)= Tz—EPIG Q,12Z), 2.63)
where

—R(m=% 7 dgexplicQ+1g(0)] (2.64)
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In the limit of £—0 we find g(§)=— %§2+O(§3). From Eqgs. (2.62) and (2.64) we notice the important re-
lation

GR—Q*y,—Z)=—GRQ,p,Z)* . (2.65)

Equation (2.59) is a general expression which involves the electron-impurity scattering effect, the
electron-phonon scattering effect, and the electron-electron scattering effect. Especially if we neglect the
phonon scattering effect and the exchange energy, i.e., SX=—i8, Eq. (2.59) agrees with the expression which
was derived!”!® for the impurity scattering problem by Bonch-Bruevich using a different method. One mer-
it of the method in this paper is that the electron-phonon scattering effect is naturally incorporated into the
theory. Another merit is to notice that especially for InSX(/K,w)= —i8, InGR(IK,®) should be nonzero

only in the range

[ReQ +sgn(Z)ylsgn(Z) >0 .

(2.66)

This is seen from the discussions in between Eqgs. (2.38) and (2.58) noting that

Im [ 97, L
- 3 u
p=j+1

does not vanish unless the condition (2.66) is satis-
fied. The condition (2.66) is important to notice
since numerical calculation never gives
ImGR(IK,w)=0 but often positive values as errors
in the range given by the relation (2.66).

III. DISCUSSIONS OF
THE IMPURITY SCATTERING

Before going into the discussion of the Auger
process, it is necessary to test the validity of the
theory of the impurity scattering since this has not
been well established as yet. We start from calcu-
lating ImG ®(Q,7;Z), in terms of which various
formulas for physical phenomena are given. The
phonon scattering effect is neglected here by taking
SR=E,(IX). Then Q is real. Figure 8 shows the
numerical results of ImG ®(Q,y; —1), which are
calculated from Eq. (2.64). We should have
ImG R=0 for Q >y as indicated in the last section
and ImG R <0 for Q <y as the retarded Green’s
function is generally required. In fact, however,
we obtain InG %> 0 for Q > y owing to a numeri-
cal error. It is seen from Fig. 8 that as long as ¥
is not very large, ImG ® has a considerably sharp
peak. As for the results for Z =1 we can use the
relation

ImG X(Q,y;1)=ImG ’(—Q,y;—1)

found from Eq. (2.65).

Now we discuss the impurity scattering effect on
the dielectric screening, neglecting the phonon
scattering effect which is considered to be small.

—Re[GR(K,0)]" [ 97,5|RelGRIK,0)]'-Z 3

¢? exp(—ir,)
Py exp(—Ar,

p=j+1

|

The general expressions for €; and e(q) are given

through Eq. (2.18). The impurity scattering effect
on €, can be neglected since €, arises from the in-

terband term, i.e., X;(I5£41"), and the energies

-ImGR(q,r;-1)

-1.0 -0.5 (0] 0.5 1.0

Q

FIG. 8. ImG®(Q,y; —1) as a function of Q for vari-
ous values of y.
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relevant to the impurity scattering are much small-
er than the band-gap energy. We do not calculate
Xyp(15£1') and use the empirical data of €,. For the

tailed discussion of the impurity scattering effect.
Replacing sum over w,, in Eq. (2.18) by the con-
tour integration'®!® we obtain after replacement

intraband term X, however, we must give a de- io—w
~ 4 r dk . - -
’ =— F ’—»7 ’_Q’ - 5 .
Xu(Go)=—— [ 2oy FK@.0)+F(K, —d, —a)] 3.1)
where
¢ 2
FK,§,0)= |——| [7 do'ImGR(IX,0")ImGRIK+G,0'+»)0(e’) . )
g Z1em [ q (32)

Under the condition that a sufficient number of
electrons are within the effective range of an im-
purity potential, we can use the Thomas-Fermi ap-
proximation, which is to take X;(0,0) in place of
Xu(q,0) in Eq. (2.17). As shown in Appendix C
we find

T 0

F(k,0,0)= — - ——
4 3¢

so that we obtain Eq. (2.22). Thus we have the
usual Thomas-Fermi potential, which is obtained
without considering the impurity scattering effect.
This result agrees with the fact that we have de-
rived the Green’s function under the assumption of
a sufficiently slowly varying impurity potential.
The criterion for this assumption is A/n;'/> < 2.6,
as given in Appendix B. On the other hand, the
criterion for the Thomas-Fermi approximation is
that the number of electrons within the effective
range of an impurity potential is large enough, i.e.,
n;/A*>> 1. Thus both criteria are expressed com-
monly as A/n}”* << 1. Further, if X;(g,0) with
440 is used in Eq. (2.17) assuming the free-carrier
screening, we obtain the Lindhart potential. This
potential is found from numerical calculation to be
well approximated by the Thomas-Fermi potential
in the range

A

P <1, (3.4)
where kj is the magnitude of the wave vector at
the Fermi level. Here, degenerate statistics and
spherical energy surface for the relevant band are
assumed. Taking | Z | =1 and noting
kp=(37n;)'3, Eq. (3.4) offers also the limit of
A/ n,~1 s, Therefore, we may consider the relation
(3.4) as a criterion that the present theory of the
impurity scattering is justified.

Here, we test directly the validity of the theory

of the impurity scattering. We first discuss the
conductivity of n-type Ge at 4.2 K, the data® of
which are available in the high doping range. For
such an indirect gap material we consider the CB
with v valleys, each of which is assumed to have
spherical energy surface. The expression for the dc
conductivity tensor o, has been given?! by
Bonch-Bruevich. We give this in a form more
tractable for this paper in Appendix D. For cubic
symmetry we have 0,,=A(u—v)o. We obtain

v e e 4 (@ d
e J, dkk* [ do——6(w)

X [ImGR(IK,0)]?,
(3.5)

where m is the mass of the CB and / means the
CB here. The Fermi level is determined from Egs.
(2.29) and (2.30), taking v valleys into account. We
assume singly ionized donors, i.e., Z=—1. We
consider the temperature to be 0 K as an approxi-
mation. The phonon scattering effect is neglected,
ie, 2X(k,0)=E,(IKk), in calculating the Green’s
function. The exchange energy is calculated from
Eq. (2.36). The curve of o~! calculated using v =4
and m¢/my=0.12 for n-Ge, where m, is the elec-
tron mass in the free space, is shown in Fig. 9 to-
gether with the experimental data.® We see a con-
siderably good agreement between the theory and
the experiments though the theoretical curve lies a
little higher than the experimental data. In con-
trast, the curves that are calculated in Ref. 20 us-
ing the earlier theories do not agree with the exper-
iments, as shown in Fig. 9.

Next, we compare the energy density of states
plw) given by Eq. (2.29) with the data® of p-type
GaAs at 4.2 K. The calculation is done for 0 K,
neglecting again the phonon scattering effect. We
use the material parameters shown in Table III, as-
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FIG. 9. Resistivity o~! as a function of donor con-
centration n; for n-type Ge. The open and the full rec-

tangles (0 and M) show the experimental data (Ref. 20).

The broken line (a) shows the present calculation. The
full lines show the results calculated (Ref. 20) on the
basis of the treatment of Brooks-Herring (b), Gulyaev
(c), and Conwell-Weiskopf (d).
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suming spherical energy surface of the HB with
the effective mass my. The result of the calcula-
tion is shown in Fig. 10 as aéEFop(w), where ap is
the Bohr radius defined as ap =#%€,/(mye?), and
Epg is the Fermi level for a pure crystal measured
downward from the HB edge, i.c., Epg=#k2/
(2mpg). The experimental data are also plotted in
the figure so that experimental value may fit the
theoretical one at a certain energy level lying deep
in the band. It is seen that the theoretical curve
deviates from the experimental values especially in
the band-gap region. The reason is that the as-
sumption of the slowly varying impurity potential
is not justified there, as discussed in Appendix B.
The energy density of states is underestimated
thereby. This may be the main reason for the
small but significant discrepancy between the
present theory and experiments on o in Fig. 9.
For the same reason the Auger recombination rate
will be underestimated though the underestimation
also may not be very serious.

IV. FORMULAS FOR THE AUGER
RECOMBINATION LIFETIME

In this section we discuss the Auger recombina-
tion lifetime. Hereafter we restrict the discussion

TABLE III. Material parameters and calculated band parameters.

Parameter GaAs InP GaSb InAs
Ego (V) 1.522 1.421 0.8128 0.4105
Ay (€V) 0.34 0.13 0.743 0.38

Eg, eVK™Y 5.8x10~* 2.9%10* 3.7x10~* 3.35x10~*

Ag (€VKTY 0 0 1.89x10~* 1.0x10~*
To (K) 300 0 0 248
me/mg® 0.067 0.078 0.043 0.023
my /myg 0.45 0.8 0.33 0.41
mg/mg° 0.11 0.12 0.12 0.083

feu® 5.63 4.76 9.64 18.0
fsu® 1.99 1.84 4.34E,? 20.1E,?
€ 13.18 12.35 15.69 14.55
(€,)~! 0.0159 0.0055 0.0241 0.0160
(10" dyn/cm?) 1.397 1.037 1.212 1.030
¢,(10'? dyn/cm?) 0.4862 0.3551 0.3652 0.3136
(10" dyn/cm?) 0.7898 0.5824 0.6407 0.5524
h14(10* esu) 4.833 3.167 1.167
Py 0.0526 0.0403 0.015° 0.0156
Z (eV) 6.6 6.9 7.0 6.1

Eopo (eV) 6.5 5.9 6.3 5.7

wop (V) 0.0296 0.0298 0.0394 0.0302
3F, in eV.
bAssumed.

°Calculated.
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o EXPERIMENTS ON GaAs:Zn
nj =9.9x 10'® e¢m3

~—— THEORY

Qg Epo P W)

0.1 - 0.05 o]

ENERGY (eV)

FIG. 10. Energy density of states p(w) as a function
of the energy o is shown on the present theory (—) and
the experiments (Ref. 22) (0).

to direct-gap semiconductors of p-type, which are
doped with singly ionized shallow acceptors, i.e.,
Z=1. We consider the Auger process, where a
given electron 1 transits down to a hole state 4 ex-

i f
Tip 8n rm3 Qem? Y @)

dk,  dk;, [ dk,
n)

citing another electron 2 to another hole state 3, as
shown in Fig. 1. This process is denoted as the
1432 process. Considering the CB, the HB, the
light-hole band (LB), and the SB, various transition
processes are possible such as CHHS, CHHL,
CHHH and so on. Among them, the CHHS pro-
cess shown in Fig. 1 may be predominant>'* in a
Dp-type semiconductor so that only this process is
considered. As was done in II, the Auger recombi-
nation lifetime 7ip is found from that part of the
self-energy =*(/k,w), which comes from the
electron-electron interaction, i.e., U,.,. This pro-
cedure is not repeated here. Assuming infini-
tesimally small departure from thermal equilibri-
um, we consider the quasi-Fermi-level F; for the
minority carriers and that for the majority carriers.
From the latter are measured all the energies (in-
cluding F;). We have

(f 12+ g2+ 1 f gD

4 b d
X [ do, [ do; [ doF(o,0y,05,04) [T ImGRLK,,0)], @.1)

j=1

. . . 0 . bad Pud ad >
where 87 is the minority-carrier concentration, k;=k3;+ks—K,, 0; =03+ 04— ,,

F=C1LK | LK) (LK, | LK) U, (K—K))

g={1k; | LK) (LK, | LK) U, (K3—K)),

and

4.2)
(4.3)

Flo1,02,03,04)= { 6(,)[1—6(03)][1—O(w,) ]+ [1—O(w,)]0(03)0(w,) }O(w;—F)) .

(4.4)

Let us rewrite Eq. (4.1) in a more tractable but approximate form. We know that ImG ®(/K,®) has a
maximum at a certain value of Re(), where Q is given from Egs. (2.32) and (2.60) as

€o

R =
= T—Z-ng-)c[w—gl-;—ze_ph(lk,w)] .

(4.5)

Here we have rewritten &, +E, (I K) as £,7, considering this as a renormalized energy. Hereafter, we re-
strict the discussion to the high doping range where the impurity scattering effect is much larger than the
phonon scattering effect. In fact, this condition is satisfied for the impurity concentrations down to 10!’
cm™>. Then the maximum of ImGX(/K,w) is found approximately at w=§,3 +E,, where E|, is

| Z | ezk/eo times Q) giving the maximum of ImG R(Q,7;Z). We neglect the phonon-induced energy shift,
i.e., Re=R (! K w) This is included in the band-gap energy, of which the empirical value is used. Consid-
ering that ImX ,ph(l K,o) is proportional to the effective mass of the band I as shown in II, the phonon
scattering effects are neglected for the CB and for the SB. Noting that ImX .p},(lk ) was assumed to be

small, we can write

H [ImG *(Q;)]=ImG *(£2,9)ImG R(Qy)[ ImG (Q30)ImG X(Q,) +ImG X(Q3)ImG R(Q4)
j=1

—ImG R(Q;30)ImG *(Q4)], (4.6)
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which is correct up to the first order in Im3 -ph(lk )’s. Here an abbreviation G R(Q, )=G

R( Q;,7Z) is

used, where (); is obtamed from Eq. (4.5) by the replacement 0—wj, | —-1;, and k—»k ;o is obtained
from Q; by takmg ImEe-ph(l K j»@;)=0. We use Eq. (4.6) in Eq. (4. 1) As seen from Flg 8, InG R(Q)’s are
more rapldly varying functlons of @’s than F(w{,w,,03,0,4) and ImZ, _ph(l K,0)s in Eq. (4.1). We evaluate
F(w,0,,03,0,) and ImZX ph(lk o) with o; -§, g +E, where j=1, 2, and 3 for the first term of Eq. (4.6),
noting w4-w,+m2—w3_§,l % 1+§,2 %, §,3 % 3—+—E0 For the second term of Eq. (4.6) the evaluation is
made with wj=§,1 i'j‘*'EO where j=1, 2, and 4, noting w3=w1+w2—w4—§ll s +§,2—>2—-§,4;> +E,. Since
both /; and /, stand for the HB Eq. (4.1) is the same for replacement 3—4 and 4—3 of suffices. Noting
this and after some manipulation valid up to the first order in =X ol K,»), we obtain

Y Ldk, , dKs  dK,
f (2m)? f r) f (2m)?

1%+ 1g 1>+ f—¢g 1D

XF(§1+Eo, 62+ Eo,§1+63—E§4+Eo,§4+Ep)

XH(11 Ky, Ky, 13K 3,14K,) , @.7)
where §; (j=1,2,3,4) is an abbreviated notation for §; ¢ ;¥ and
H(L K, LK, LK LK) = [ do, [ do; [ dco4H [Imc';'Rm,)]. 4.8)
j=1

Here we define

Q=[eo/(eM)][@3—E&3—2ImER (13K, &1 +E— E4+ Eo)]

and

—[Eo/ e 7\-)] é’,
f_'gr j=1,2,and 4. We define also
ki=k3+ks—k; and o=0w34+w4—

The integration over w’s in Eq. (4.8) is per-
formed using Eq. (2.64) and noting the relation

J° dacos ek £— §2)w]
) . 4.9)
We obtain
H(,K 1Kyl Kyl ky) = p U(ﬂ,,ﬂ,,y),
0
(4.10)
where we define
U(Q,,Q,7)= [ décosén,)
—T‘;<§1+§2—§3—§4> : (4.12)

€ —
Q;=— e—;)xlm2£ph(l3k3,§1 +&—E84+Ey) , (4.13)

_1],

4.14)

and g,(£) is the real part of g(£), i.e.,

Cos

£ exn(—
xexp( x)

g(©)= [~ dxx?

An approximate form of F in Eq. (4.4) is given
here. Let us assume that the spin splitoff energy
Ay is far larger than the thermal energy T. Then
the SB is almost completely full of electrons so
that we obtain ©(w,)=1 as a good approximation.
Further, since we consider infinitesimally small
concentrations of the minority carriers, nondegen-
erate statistics is applied to O(w;—F;). We obtain

Flo,0,,03,04)= 1 ,l
@3
exp T }+1 exp T l+l
Fi+
X exp ITQZ (4.15)

Now formulas for finding the quasi-Fermi-levels
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are given in tractable forms using Egs. (2.29) and
(2.30). As for the majority carriers we evaluate
©'(w) approximately with @ =§, ¢ +E, giving a
maximum of ImG?X, where £, is the energy for
the HB. Then the integration over w is performed
noting the relation similar to Eq. (4.9). We replace
&1—&, by & so that 7 in the right-hand side is re-
placed by w/2. We obtain

dk
n;=2 2P [1—-O(,v+E()] . (4.16)
Similarly we have
on=2 f exp[(Fl —Ec7—Eo)/T],
(4.17)

with £, 7 being the energy for the CB.

Here, we assume spherical energy surfaces for
the CB, HB, and SB, defining the effective masses
mc, my, and mg, respectively, for those bands.
The energies measured from the respective band
edges upward (CB) or downward (HB and SB) are
given by #k2/2m, with /=C, H, and S. In gen-
eral, m; depends on K. Let us recall that o and
&% are measured from the Fermi level for the ma-
jority carriers. We have §;=E;+Eg+F,
§r=—Ap—E,+F,, £3=—E3+F,, and
§4=—E4+F,, where Eg is the band-gap energy,

MASUMI TAKESHIMA
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F, the quasi-Fermi-level for the majority carriers
measured downward from the HB edge,
E,=#k?/(2m¢), E,=#%k3 /(2my),
E;=17k3/(2my), and Ey=#k}/(2my). Using
my at k=0, Eq. (4.16) is rewritten as

2

ni=7_‘r:NVFl/2(1’P) N (4.18)
where 1, =(F, +E)/T,
Ny=2 | 7L N 4.19)
= 217%2 :

is the effective density of the states for the valence
band, and Fy,(7,) is defined through the Fermi

integral
xa
_— 4.20
Fa(b)= f dxexp(x b)+1 420
Using mc at k=0 Eq. (4.17) is rewritten as
F,—Eg—F,—E
dn =Ncexp ! T P90 ] , 4.21)

where N is the effective density of states for the
CB,
3/2

Ne=2 (4.22)

21rﬁ2
Using Egs. (4.10)—(4.22), Eq. (4.7) is rewritten as

1 _41 & N Eo—b
Tip ﬁ NC ezk P ﬂp T
« [ dk, f dk; f dk4 _E 1
2P Y amd ) e T T E,—E,+E,+Eg—A,
exp |1, + T +1
X lE U@, Q5| f |2+ g 1>+ f =g D), (4.23)
4
exp np———i: +1
where
€
Qr=?%:(E1—E2+E3 +E4+Eg—A) , (4.24)
and
€ —
Q=— —;’zlmzf_ph(h k3,E\—E;+E4+Eg—Ag+Eo+F,) . (4.25)

This is the central result of this paper.
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Especially when the impurity and phonon scattering effects are neglected, we obtain the pure collision
Auger recombination. The neglect of both effects corresponds to replacing 4yg,(£)—2£Q; in Eq. (4.11) by
— &6 so that we obtain U=78((2,). The lifetime of the pure collision Auger recombination 7 is given by

1 47 1 Eg—A
o A NPt
dkz dk3 dE4 E, 1
f 3 f 3 3P | — 7
2y 7 @2m)P 7 Q) r E{—E,+E4+Eg—Ag
€xp |1, + +1
T
1
X 8(E1"E2+E3+E4+EG—AO)
exp 1, — - | +1
XUfP+ 1812 f—g . (4.26)

The energy conservation requirement implied by the § function and the momentum conservation

kl—- k3+ k4—- k2 implicit in the equation gives rise to nonzero threshold energy for the Auger process. On
the other hand the impurity and phonon scattering effects, which are present in actual cases, relaxes the
above conservation requirements so that the threshold energy is zero. Thus the Auger recombination pro-
cess is enhanced.

Equation (4.23) has been derived for the case where the impurity scattering effect is predominant though
the phonon scattering effect cannot be neglected. On the other hand, the phonon-assisted Auger recombina-
tion was discussed in II, where the impurity scattering effect was completely neglected. Considering that
the phonon scattering is weak, the lifetime of that process 7, is given in II by

1 1 8.1 Eg—A
Toh + 10 # N¢ exp(21 + T )
« [ dk, [ dk, f dk4 _E 1
m3 Y @r)? T E\—E,+E,+Eg—A,
exp |1, + T +1
1 €0
X ( -
E, 21.03—}-02 |fl+lg|+|f g|)
eXp |Mp— +1
4.27)
where we take Eq=0. It is seen from Egs. (4.24) and (4.25) that [eo/(e?A)]Q; /(Q2+Q2) is independent of

€0/(e?r).
Let us glve here (| f [2+ |g |+ | f —g |?) and Q;, which have appeared above. We take the former ap-
proximately” as (| f |2+ |g | ). As for the overlap integral we use the relation?3

ﬁz Ik __anZ
2mo 1§ ¢, —61%,]

for the interband matrix, where m, and f,,, are the electron mass in the free space and the oscillator
strength, respectively. We make an approximation |§,m T, - L%, | =Eg. From Egs. (4.2) and (4.3) we ob-

[l K | 1K ) 2= fomn 4.28)

tain
e #? | k3—K, |2 r | Ky—k, |2

mo€Eg

fCHfSH

—

| k3—ky | 2442

—

2
- . 4.29
| ky—k, | 2+A2 ] (429

If 12+ g |*= [
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); is obtained from Eq. (4.25) using the relations in II as follows:

Imzﬁph(laﬁs,El—E2+E4+EG~—A0+E0+F,,>=— 7 ko)+BH,(k3,kq)], (4.30)
where
m 172
ko= th (E,—E{—E4—Eg+Ao—Ey) | 4.31)
1 (1 1,
el T+ -Eipo0nl1+2Py)] | (4.32)
2
B=§1; PLT+ 2’; Oop[142P(0p)] 433)
(ks +ko)2+A2
Hy (ks ko)=2koks— A2 |In |- 02 T2 | 152 T 1|, (4.34)
(ky—ko 2+ A (ky—ko2 422 (ky+ko)+A

(k3+ko)+A?

(4.35)
(k3 —ko)2+A2

Hy(ky,ko)=7% lln

a2 1 3 1
[(k3—-k0)2+k2 (k3+k0)2+7»2]

As for Egs. (4.31) the restrictive condition is that k, should be real.
Let us facilitate numerical calculation of 7;, given by Eq. (4.23), starting from discussion of U(Q,,Q;;7)
given by Eq. (4.11). If | Q, | is sufficiently large, we obtain approximately

30240}

—r 1 4.36
(Q2+402)? (436

U(Q,,Q;7)= fo dg(1—-7/§2)cos(§ﬂ,)exp(—2§Q,-)=—Q—2-— 1+2y

40?2

by the method of the stationary phase, noting that g,(£)= — 52 when £—0. The equation offers a good
approximation if the second term in large parentheses is much smaller than unity. Considering

|Q, | >>Q;, Eq. (4.36) is found to be useful in the range 2> > 6y. On the other hand, if y is sufficiently
large, we obtain approximately

U(Q,,Q;7)= f0°° dE(1—2£Q; )cos(§Q yexp[47g,(€)]
= U0, 0) 2050 [, desin(€0, lexpl4ye, ()]
—
Numerical calculation shows that the left-hand . 172 Q?
side of Uu(Q,,0;7)= :’; exp ———47 . (4.40)

Q,
Q2412 4.37) From this we see that Eq. (4.39) is not useful when
| Q, | is too large. It is found that Eq. (4.39) is

) 0°° dEsin(£Q, exp[4yg, (£)]=

is well aproximated by the right-hand side of the
equation using

r2=0.948y"% (4.38)
in the range 0.1 <y <1. We obtain
2_r2
s
U(Qraﬂi;'y)= (Q,,O 7/)+2(). m (439)

If |Q, | is sufficiently large, U(Q,,0;y) is found
to be approximately given by

useful in the range Q2 < 6y. Therefore we use Egs.
(4.36) and (4.39) for Q, > 6y and for Q <6y,
respectively. As for U(L2,,0;y), we use Eq. (4.40)
if |Q, | is large enough and numerically calculate
it if | Q, | is small.

A next step to facilitate numerical calculation is
to modify Eq. (4.29). Especially at moderate dop-
ing levels we can take

| Kk, [2/(] K;—k, | 24AY)=1
and
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Ko— Ky |2/ | Ks— Ky [24AD) =1, The definition of z; is done in view of the cases
kel [P/ Re—ey |74 Eg <A as well as Eg > Ay. The condition that k
as was done before.> However this is not a good in Eq. (4.31) should be real leads to inequality
approximation at high doping levels. We approxi- x2+4yp?<r} under the requirement that 7, is real.
mately evaluate | f | LR lg | 2 by taking an angular We further define
average with respect to the direction of k,. In
place of Eq. (4.29) we give x=r¢, y=r(1—¢»)'?,
|12+ | g | 2=[Q2me*?) /(moerEg) - o
ko ks=kyksdy
X fenfsu(P3+Ps) rke=kzkad: (4.43)
where ®;(j=3,4) is given4by K (K,—Kg) =k, ' K,—k, |6y .
Qj=14+—5—5 kz 2 ) .
(ki +k3+A%)—4kjk; We give mc, my, and fcy by the band-edge
A2 (k; +Kp )2+ A2 values, while mg and fgy are evaluated at z=z, if
~ kK n|—2 IRy (4.41) zo>>1. f — w0 <2p<1, mg is given at z=0 and
2kska | (kj—ka) +A Fsu is given by foy =FiuE, with fig=dfsy /dE;
To perform the integration of Eq. (4.23), it is at E,=0. We finally obtain
convenient to replace f dk, f dE3 f _51 k4;' . _lgy
[ dk, f dk, [ dk,-- - under Ky=k;+k,~k, L 8mgmg) T%* foy
and t; glveA new definitions as follows: E ="n PmlcEL —Eexp&np +2z9—zi)
¢—Ao
Zp= T N Zl=‘ll,“(20+f20|)’
E £ |2 £, |12 -
shn==2, 2= ||, = =, x [_, dVaFziexpl—2)fsuS(z), (444)
(4.42)

2
e e“A

where
J

S(z)= fowdrrs fold¢¢2(1—¢2)1/2 fildfi’l f_lld¢2

1 1
exp(n, +r’—rf)+1 exp(n, —y?)+1

X U(Q;,Q;, YN (P34 D) . (4.45)

Here (,, Q;, ®;, and @, given by Egs. (4.12), (4.13), and (4.41), should be rewritten using the above new de-
finitions though not shown. It should be noted that we use U((,,9;;y) for 7 <r if r, is real while we use

U(Q,,0;y) for r > rg if rq is real or for r > 0 if 7, is not real. Using Fig. 8 and Eq. (2.65) E, is found to be
well simulated by the function

2
eA Y
Ey=——— 4.46
0 € 0.996+0.877Vy (4.46)
in the range 0.1 <¥<1. In actual calculations E, in k, [Eq. (4.31)] is neglected since E, is small in the
range where the phonon scattering effect is important.
In a similar way the integration of Eq. (4.27) is performed, as described in II. As for the integration of
Eq. (4.26), it is convenient to start from a new definition as follows:

- - ad - — - g — - 1 mc
J=k3+k4—bk2, h=k3— 4 2=-"k2, b=—‘—‘———', a=—————l+b,
. mce mg
1+
2mH
172 172
# mc  # -
— i2 —_ 2 211/2
X= |77 ’ =17 h ’ = ’ = - ’ o
2msabT] l ¥ my 4mgaT ] ] x=r¢, y=r(1—¢% “447)

T ky=jkopy, h(7T—bky)=|h||T—bK,|4,.
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we obtain
1 VImIm}/ %% *T?% 4f ot )
—_—= ex Zg—2
o PP mimiEE: CHCXP\ &)y T20—2)
m 4
Xf dzV'z+z, |z4+2z;— Cz exp(—
0 mg
where

1 1

z)fsuSo(z (4.48)

Soe)= [ dp#*1—¢02 [ dg, [ do,

Here z, and z; have been given by the definitions
(4.42). 7, is calculated from Eq. (4.18). @, @y,
1m3=E;/T, and 9,=E,/T are given using the de-
finitions (4.47).

Let us discuss the approximation that we have
taken w=¢§;3 +E, in Egs. (4.15)—(4.17). This re-
sults in overestimation and underestimation of the
relevent integrations for the CB and for the HB,
respectively, as long as E is calculated from Eq.
(4.46). On the other hand, we find that E, appears
in the forms of Fy—F,—E, and F,+E| in all the
relevant equations except Eq. (4.31). In place of
using Eq. (4.46) we give E, two different values
for the CB and for the HB so that F; and F,,
which are approximately calculated from Egs.
(4.18) and (4.21), may be correct values, which are
directly calculated from Egs. (2.29) and (2.30). In
this way the overestimation and the underestima-
tion are reduced. Actually, this is automatically
done only by using Egs. (4.18) and (4.21) since we
are not interested in the values of F;, F,, and E,
separately.

V. RESULTS AND DISCUSSIONS

The theory in the previous sections is applied to
the p-type materials of GaAs, InP, GaSb, and
InAs, which are doped with singly ionized shallow
acceptors. For the former two materials we have
Eg >> Ag and for the latter two we have Eg~A,.
We give the temperature-dependent E; and A, as

Eg=Ego—EgT*/(T+T,) (5.1)
and
A0=A00+A01T ’ (5.2)

where Eg, EGO, Ay, and Ay are in eV, Egq, and
Ag; in eVK ™!, and T in K. The band parameters
to be used are calculated on the basis of the kK-P p

exp(n, —m3)+1 exp(n, —n4)+1

(D3 +D,) . (4.49)

I

perturbation theory?* using the numerical values of
the interband matrix elements given by Lawaetz.%.
The material parameters®® and the calculated band
parameters are shown in Table III. In order to cal-
culate 7, from Egs. (4.44) and (4.45), computation
of S(z) using Weyl’s Gleichverteilung method fol-
lowed by numerical integration over z was per-
formed. For E; > Aj the range of the integration
over r is divided into two zones 0 <r <ry and
ro<r<r,, where r is an adequate upper value.
For Eg <A a single zone 0<r <r is used. At
most, 200 combinations of (y,¢,¢,,¢,) with ran-
dom values were found to yield well convergent re-
sults. The lifetimes of the pure collision Auger
recombination 7 and the phonon-assisted Auger
recombination 7,;, were calculated by the same pro-
cedure. It is convenient to present the results in
terms of Auger coefficients 7~ 'Cip, 7~ 1C,, and
_leh defined through Tip —17'_1C,pn,2,

T0 '=7=1Cyn?, and 73 h =7~IC hn,2 We calculat-
ed C;, and C, for n; =107, 10'5, 10", and 10?

f Then curves for the Auger coefficients
were obtained by interpolation.
The results for C;,, Cy, and Cpp, are shown in
Figs. 11—14, 15—18, and 19, respectively. In the
case of GaAs and InP the Auger recombination is
remarkably enhanced by the impurity and phonon
scattering as compared with the pure collision
Auger recombination especially at low tempera-
tures and/or at light-doping levels. The range
where appreciable enhancement is found is of
n; <10 em=3 and/or of T < 300 K. Outside the
range C;, can be roughly approximated by Cy. In
the case of GaSb and InAs, on the other hand, C;,
is close to Cy over all the range of n; and T con-
sidered. The reason why C;, is more or less close
to C, in the above cases is as follows. The en-
hancement of the Auger recombination is caused
by reducing the threshold energy for the pure colli-
sion Auger recombination to zero. However, the



25 UNIFIED THEORY OF THE IMPURITY AND PHONON . .. 5409
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FIG. 11. Auger coefficient of the impurity- and
phonon-assisted recombination 7r‘1C,-P on GaAs as a
function of the acceptor concentration n; for various
temperatures.

Auger recombination is little influenced by the
presence of the threshold energy as long as the
temperature is high enough and/or the degenerate
statistics are applicable to the majority carriers.
Especially if Eg~A, such as in GaSb and InAs,
the threshold energy is almost or absolutely zero.
Therefore in those cases the Auger recombination
is little influenced by the impurity and phonon
scattering. It is to be noted here that we have

1072%
E p-InP 500 K
T
(7]
E 102°F
o £
a i
o .
'0_30 | I}
1o!'” 1o'8 1o'® 102°
n; (cm-3)

FIG. 12. Auger coefficient of the impurity- and
phonon-assisted recombination 7~'C;, on InP as a func-
tion of the acceptor concentration n; for various tem-
peratures.

| 0‘27
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- 77K
| 0280 150K
™ »
© i
& 300K
[o R
'y -29
CroT 500K
1 073 1 !
o'’ 1o'® 10'® 10%°
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FIG. 13. Auger coefficient of the impurity- and
phonon-assisted recombination 7~'C;, on GaSb as a
function of the acceptor concentration n; for various
temperatures.

Cp~C, for n; down to 107 cm™> in GaSb and
InAs. This indicates that the present theory is well
applicable in the range of n; > 10'7 cm 3 though
this is only roughly guaranteed by the criterion
(3.8).

In Fig. 19 the Auger coefficient m~'Cy;, which
is calculated assuming the phonon-assisted process
alone is shown. The results are shown only for the
case of n;=10"7 cm™3, It was shown in II that

4x107%¢
- P-1InAs

~ 10728

»

o

13

S

a

(&)

4x10°28 | l

1o'” 1o'® 10'® 10%°

n;y (cm-3)

FIG. 14. Auger coefficient of the impurity- and
phonon-assisted recombination 7~'C;, on InAs as a
function of the acceptor concentration n; for various
temperatures.
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77K

'o’3| | 1
107 jo'8 1o'® 1o 20
nj (ecm-3%)

FIG. 15. Auger coefficient of the pure collision
recombination 7~ 'C, on GaAs as a function of the ac-
ceptor concentration n; for various temperatures.

Cpn is nearly independent of n; in the range of
n< 10" cm—3. Comparison of Cjp with Cpp,
shows that the Auger recombination is suppressed
by the impurity scattering for GaSb and InAs
while C, is close to C};, for GaAs and InAs. The
reason for the suppression is that the band states

| 0-28

|O|7 loas IOIS IOZO
ni (cm-3)
FIG. 16. Auger coefficient of the pure collision

recombination 7~ 'Cy on InP as a function of the accep-
tor concentration n; for various temperatures.

| 0-27

pP-GasSb

TTTTT

Co (cmé s7)

10'? 1o'® 1o'® 1020
ni (cm-3)
FIG. 17. Auger coefficient of the pure collision

recombination 7~ 'Cy on GaSb as a function of the ac-
ceptor concentration n; for various temperatures.

are broadened by the impurity scattering to a de-
gree beyond that which is efficient in increasing
the state density around the band edges.

Now comparison of the theory with experi-
ments’ is made on p-type GaAs and p-type InAs
with n; =10" cm~> at 77 K. The experimental
value of the Auger coefficient for GaAs is
10—312D cmés—1 while the theory gives
7~1C;,=0.51 X107% cm®s~" in considerably
good agreement. On the other hand, the experi-
mental value for GaSb is 10~V cm®s—1, which
does not agree with the theoretical value,
771C;p=3.0 X 1072 cmSs~!. Even the theoreti-
cal value ﬂ‘ICph=0.38 X 10~? cm®s~! is much
smaller than the experimental one. The discrepan-
cy cannot be explained within the framework of

the present theory.

4x| 0728

P- InAs

4x1072® L L
IOIT lole IOIQ ,020

nj (cm3)

FIG. 18. Auger coefficient of the pure collision
recombination 7~ 'C, on InAs as a function of the ac-
ceptor concentration n; for various temperatures.
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FIG. 19. Auger coefficient of the phonon-assisted
recombination w"Cph on GaAs, InP, GaSb, and InAs,
as a function of the temperature for the acceptor con-
centration of 10" cm—3,

A conclusion for direct gap materials of p-type
is as follows.

(i) At light doping levels (n; <10'7 cm ~3) the
phonon-assisted Auger recombination is predom-
inant for all materials.

(ii) For materials with Eg larger than A, plus
several times the thermal energy T the impurity-
and phonon-assisted Auger recombmation is
predominant in the range of 107 cm~3 <n; <10%°
cm™? and/or of T <300 K. Outside this range Cp
can be roughly approxxmated by Cop.

(iii) For materials with Eg smaller than A, plus
a few times the thermal energy T, C;, can be well
approximated by C, in the range of " 1> 10"
cm~3, In those materials we have Cpn>Cjp.

Though the above conclusion was for p-type ma-
terials, it is evident that the same conclusion is
drawn also for n-type materials only if we take Ag
as zero in (ii) and (iii). It is stressed that the

analysis based on the pure collision Auger process
leads to erroneous numerical results except for the
case (iii) only. Laser diode materials such as
GaAs, InP, GaAlAs, and InGaAsP should be
analyzed on the basis of the phonon-assisted Auger
recombination for nondoped materials or of the
impurity- and phonon-assisted Auger recombina-
tion for doped materials.
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APPENDIX A

The reason why the free-particle retarded
Green s, function can be used to calculate

.ph( Ik w) is described here. First of all we cal-
culate =X ol K,0) up to the first order in the
electron-phonon interaction since this is small.
Then our discussion should be on the impurity
scattering effect on = _ph(l K,0). During the pho-
non emission followed by reabsorption process, an
emitted phonon travels over the distance of the or-
der of csfi/w, 3, where 2mfi and cy are the

Planck’s constant and the sound velocity, respec-
tively. This distance is estimated to be 10~8 cm
This is far smaller than the effective radius
(~107% cm) of the impurity potential, out of
which an electron is scattered. Therefore, a
scattering event by an impurity is far from comple-
tion during the one-phonon —emission — reabsorp-
tion process.

APPENDIX B

The derivation of the retarded Green’s function
based on the assumption of the slowly varying im-
purity potential is discussed. We > analyze the re-
tarded Green’s function GR(/k. k, K ;@) in terms of
the potential I'(T") due to all impurities. We have

NI —
rM= 3 U(F¥-R,), (B1)
n=1

where U;(T— R_Z,,) is the potential due to the impur-
ity located at R,. Defining the Fourier transform

[(7)= 3 T'(q)exp(ig-T), (B2)
q

we obtain!®



5412 MASUMI TAKESHIMA 25

GRUK,IK ;0)=GEUK,0)[AK—K ")+ 3 T(§)GRIT,IK ;0)] . (B3)

q
Noting the relation

L | 0 O
K —§)GR(§,IK ;0)= — |i=—
2 Mk=a)67g, Zomt [ o7
the symbolic solution to Eq. (B3) reads
GRE, I ;0)= 1 AR —

o+id—§&7 —F(z Yy )

[(¥=0)GRUK,IK ;0), (B4)

(BS)

where T in [(T) is replaced by the operator id/dk. The equation is rewritten as

1

GR(lk IX )= fd
o+id—§&7v—T(i—=)
&% lak

exp[i(k—k ') T]

1 — g =,
=—V—fdrexp[l(k-k )-T]

1, (B6)

where we define an operator =k +id/dF. It is assumed that the potential I'(F) is effectively a slowly
varying function of T. Then we neglect spatial derivatives of I'(T) on all orders. We obtain

1
—£,p—I(T)

- > 1
GR(Ik,Ik w)=— | dT
vV f 0+id

=GRiK,0 3 [GRUK,0)]"
m =0

=GR(IKw 3 [GRUK,w]"
m =0

where Q,, = _1 q;. The last step has been ob-
tained using Eq (B2) in the integral over T. An
ensemble average, which is taken according to the
definition in Eq. (2.9), leads to the Dyson’s equa-
tion which defines the self-energy. Equatlon (B7)
indicates that we should use only G§ (IK,w) as the
Green’s functions appearing in the diagrams. This
is the requirement which results from the assump-
tion of the slowly varying potential. To obtain a
more complete Green s function we should replace
Go(lk ©) by G¥ (IK,w). As a result Eq. (2.41) is
obtained.

The criterion under which the assumption of the
slowly varying potential is justified is found from
Eq. (B6) as

172 172
. A Vs - “r
2m ] = [2m ] =
&zl o7 <
(B8)

- = —
Qpdp-- 9,

exp[i(k—K ')T]

1 oo T,
- [ dT[D(@®)]mexpli(k—K)-T]

-

Qn+k—k)[I (@), (B7)
j=1

T
where spherical energy surface with the effective
mass m is assumed for the relevant band. Here
only &;3 and w are measured from the relevant
band edge. We see that for low energy the as-
sumption of the slowly varying potential is not jus-
tified. Roughly speaking, » should be larger than
the impurity binding energy. In order to effective-
ly have a small value of |9I'(T)/97 |, the poten-
tials due to the nearest-neighbor impurities must
overlap each other to an appreciable extent. The
condition for this is that the average distance be-
tween the nearest-neighbor impurities, which is
given®” by [3/(2mn;)]'/3, is smaller than twice the
inverse screening length, i.e., 2/A. This criterion is

1/3n}/3

i

. (B9)
A <<

1

2

3

2

For degenerate statistics we find n/?/A «<n’® so
that the inequality holds at high doping levels.
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APPENDIX C
We calculate F(k,0,0), which is given from Eq. (3.2) using Eq. (2.63) as

F(k,0,0)= f do'GR(Q)ReG R(D)O(0") , (&3}

IZI e’A

where an abbreviation G X(Q)=G ®(Q,7;Z) with Q=[e,/( | Z | ?A))(0’'— —&;7) is used. Substitution of the
expansion

e(w'>—2—(w —&7) ag — o) (C2)
n=0" 1k

into Eq. (C1) yields

- € Q1 Zlek T oee ~R ~ R
—_— dQ Q"ImG “(Q)ReG *(Q) . C3
F(k,0,00=-—= | on'ag <§,k>[ . ]f mG K(Q)ReG R() (C3)

Using Eq. (2.64) and the 8 function
1 ©
= Q ’ C4
8&)=—[__dfQcosn) (C4)

the integration over ( is performed. Defining g,(£)=Reg(£) and g;(£)=Img(£), the integral in Eq. (C3) be-
comes

- % f()“° dé, fow ngCxp['ygr(gl)""}’gr(gz)]

(—1)"~sin[yg; (&) — 7&(51)[ ag 5(52 &), neven
X ? (©5)

(—1)"cos[vg;(&,)— ?’8,(§1)] 2E 5(52 —&1), nodd.
2

This term vanishes when 7 is even. It is to be noted that from Eq. (C4) we have (3"/3£™)8(§) | ¢=o=0 when
n is odd. Using this after performing the integration over &,, the term (C5) is found to be —7/4 if n =1
and zero otherwise. Substituting this term into Eq. (C3) we obtain

F(X, 00)_—~4-ag &) . (C6)

APPENDIX D

The expression for the dc conductivity is given for a material, which has v equivalent valleys with spheri-
cal energy surfaces characterized by the effective mass m. Starting from Kubo’s formula,?® the dc conduc-
tivity tensor o,,, is given by

i *# d 'O\ AT 1T+ ! ROIK 1Ko
Op=— 2 = lim = i% zkl,,kz,, [ do'®(")[ GAIK,, 1K ;0" — @) ImGR(IK 1, 1K 50")

+GRUIK,,IK 330" +0)ImGR(IK,, 1K ;0")] - (D1)

Here G®(Ik,,lk,;0) and G4(lk,,lk,;w) is the retarded and the advanced Green’s function, respectively,
which are characterized by Eq. (B3) with G4=(G®)*. As shown in I, GX(/ kl,l kz,w) can be approximated
by the average Green’s function defined by Eq. (2.9) assuming that the crystal volume is large enough.
Then we obtain

2vi e2ﬁ3 lim
[ 24 m m—»O dw

Opr= zk k, [ do'©(w")] GAIK,0'—o)ImGR(K,0")

+GR(IK,0'+©)ImGR(X,0")] . (D2)
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The equation is rewritten as

2v e2h3 d RI1T 2
e %k”kv [ do——~6(w)[ImGAIK,0)f .
(D3)
For cubic symmetry we have 0,,=A(u—v)o. After transformation from summation to integration over K
we obtain
v_ e o 4 [ d RoaT 2
o=—355 [, kit [ dog-0NImG ko) . (D4)
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